Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38721685

RESUMEN

Hepatitis B virus (HBV) is a hepatotropic non-cytopathic virus characterized by liver-specific gene expression. HBV infection highjacks bile acid metabolism, notably impairing bile acid uptake via sodium taurocholate cotransporting polypeptide (NTCP), which is a functional receptor for HBV entry. Concurrently, HBV infection induces changes in bile acid synthesis and the size of the bile acid pool. Conversely, bile acid facilitates HBV replication and expression through the signaling molecule farnesoid X receptor (FXR), a nuclear receptor activated by bile acid. However, in HepaRG cells and primary hepatocytes, FXR agonists suppress HBV RNA expression and the synthesis and secretion of DNA. In the gut, the size and composition of the bile acid pool significantly influence the gut microbiota. In turn, the gut microbiota impacts bile acid metabolism and innate immunity, potentially promoting HBV clearance. Thus, the bile acid-gut microbiota axis represents a complex and evolving relationship in the context of HBV infection. This review explores the interplay between bile acid and gut microbiota in HBV infection and discusses the development of HBV entry inhibitors targeting NTCP.

2.
Curr Atheroscler Rep ; 25(10): 653-662, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37736845

RESUMEN

PURPOSE OF REVIEW: Transintestinal cholesterol excretion (TICE) is a non-biliary pathway that excretes excess cholesterol from the body through feces. This article focuses on the research progress of the TICE pathway in the last few years, including the discovery process of the TICE pathway, its molecular mechanism, and potential clinical applications. RECENT FINDINGS: Cholesterol homeostasis is vital for cardiovascular diseases, stroke, and neurodegenerative diseases. Beyond the cholesterol excretion via hepatobiliary pathway, TICE contributes significantly to reverse cholesterol transport ex vivo and in vivo. Nuclear receptors are ligand-activated transcription factors that regulate cholesterol metabolism. The farnesoid X receptor (FXR) and liver X receptor (LXR) activated, respectively, by oxysterols and bile acids promote intestinal cholesterol secretion through ABCG5/G8. Nutrient regulators and intestinal flora also modulate cholesterol secretion through the TICE pathway. TICE allows direct elimination of plasma cholesterol, which may provide an attractive therapeutic targets. TICE pathway may provide a potential target to stimulate cholesterol elimination and reduce the risk of cardiovascular diseases.

3.
Front Res Metr Anal ; 9: 1335454, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38456123

RESUMEN

Academic departments, research clusters and evaluators analyze author and citation data to measure research impact and to support strategic planning. We created Scholar Metrics Scraper (SMS) to automate the retrieval of bibliometric data for a group of researchers. The project contains Jupyter notebooks that take a list of researchers as an input and exports a CSV file of citation metrics from Google Scholar (GS) to visualize the group's impact and collaboration. A series of graph outputs are also available. SMS is an open solution for automating the retrieval and visualization of citation data.

4.
Front Neurosci ; 18: 1374948, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686326

RESUMEN

Introduction: Cognitive impairment (CI) is a common complication of end-stage renal disease (ESRD) that is associated with structural and functional changes in the brain. However, whether a joint structural and functional alteration pattern exists that is related to CI in ESRD is unclear. Methods: In this study, instead of looking at brain structure and function separately, we aim to investigate the covariant characteristics of both functional and structural aspects. Specifically, we took the fusion analysis approach, namely, multimodal canonical correlation analysis and joint independent component analysis (mCCA+jICA), to jointly study the discriminative features in gray matter volume (GMV) measured by T1-weighted (T1w) MRI, fractional anisotropy (FA) in white matter measured by diffusion MRI, and the amplitude of low-frequency fluctuation (ALFF) measured by blood oxygenation-level-dependent (BOLD) MRI in 78 ESRD patients versus 64 healthy controls (HCs), followed by a mediation effect analysis to explore the relationship between neuroimaging findings, cognitive impairments and uremic toxins. Results: Two joint group-discriminative independent components (ICs) were found to show covariant abnormalities across FA, GMV, and ALFF (all p < 0.05). The most dominant joint IC revealed associative patterns of alterations of GMV (in the precentral gyrus, occipital lobe, temporal lobe, parahippocampal gyrus, and hippocampus), alterations of ALFF (in the precuneus, superior parietal gyrus, and superior occipital gyrus), and of white matter FA (in the corticospinal tract and inferior frontal occipital fasciculus). Another significant IC revealed associative alterations of GMV (in the dorsolateral prefrontal and orbitofrontal cortex) and FA (in the forceps minor). Moreover, the brain changes identified by FA and GMV in the above-mentioned brain regions were found to mediate the negative correlation between serum phosphate and mini-mental state examination (MMSE) scores (all p < 0.05). Conclusion: The mCCA+jICA method was demonstrated to be capable of revealing covariant abnormalities across neuronal features of different types in ESRD patients as contrasted to HCs, and joint brain changes may play an important role in mediating the relationship between serum toxins and CIs in ESRD. Our results show the mCCA+jICA fusion analysis approach may provide new insights into similar neurobiological studies.

5.
ACS Appl Mater Interfaces ; 15(26): 31917-31926, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37348078

RESUMEN

Photoresponsive smart actuators based on carbon materials are attracting increasing attention. However, the low content of carbon materials currently limits the development of carbon material actuators. In this work, we designed and prepared a multifunctional bilayer composite actuator with controllable structures and high photothermal conversion efficiency. The actuator consists of a graphene/polydimethylsiloxane (PDMS) composite layer and a PDMS layer. With an ultrahigh graphene mass fraction (30%), the actuator exhibits a good hydrophobicity, unexpectedly high photothermal conversion performance (from room temperature to 120 °C within 1 s), and rapid photo-response capability. By thermal regulation, ultraviolet laser cutting, and assembly, the actuator can achieve shape programmable configuration in three-dimensional directions. Bionic crawling robots achieve a crawling speed of 0.065 mm/s, and liquid tracking robots achieve a rotational motion of 106°/s, a linear motion of 8.42 mm/s, and a complex "W"-shaped trajectory motion. This work provides a simple and effective method for the preparation and realization of multifunctional actuators based on graphene composite materials.

6.
Front Neurol ; 13: 903207, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090881

RESUMEN

Introduction: Spinal cord injury causes permanent neurological deficits, which have devastating physical, social, and vocational consequences for patients and their families. Traditional Chinese medicine uses acupuncture to treat neuropathic pain and improve nerve conduction velocity. This treatment can also reduce peripheral nerve injury joint contracture and muscle atrophy in affected patients. And it's got a remarkable restoration when electrical stimulation therapy on impaired peripheral nerves in animal models and clinical trials. Case description: A 48-year-old woman was hit by a heavy object that injured her lower back. The patient had a T12-L1 vertebral flexion and stretch fracture with traumatic spinal stenosis. The patient was transferred to the rehabilitation department after posterior T12-L2-segment pedicle screw system distraction and reduction, internal fixation, decompression, and bone graft fusion. Ultrasound-guided electroacupuncture was used to stimulate the sacral nerve, the spinal nerve, and the head of the patient, accompanied by spinal joint loosening training, respiratory training, lumbar comprehensive sports training, paraplegic limbs comprehensive training, and other manipulative treatment. Outcomes: After the intervention, the patient showed significant improvements in sensory and motor scores, resulting in functional recovery according to ASIA and FIM. The patient gradually showed reasonable functional remission. Discussion: The sacral nerve, the spinal cord, and the head were electrically stimulated by ultrasound-guided electroacupuncture in terms of intervention, and various functions of the patient were alleviated to a certain extent. The efficacy of ultrasound-guided electroacupuncture stimulation in treating neurologic symptoms should be validated in future clinical trials.

7.
J Colloid Interface Sci ; 595: 142-150, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33819689

RESUMEN

The current commercialized polyethylene (PE) separator has poor wettability and thermal stability which will seriously restrict the electrochemical performance and affect the safety of lithium ion battery. Herein, a porous hybrid layer coated separator with high thermal stability, good electrochemical performance and improved wettability was prepared by a template-free method via the synergistic effect between tetraethoxysilane (TEOS) and aramid nano fibers (ANFs) during the evaporation of solvent and the in-situ gelation of TEOS. The results show that the porous hybrid coating layers can enhance the thermal stability, wettability and electrolyte uptake of the separators. Moreover, the lithium ion transference number is also increased. As a result, the battery assembled with the composite separator exhibits enhanced electrochemical performance in terms of cycle stability and rate performance. When coupled with LiCoO2cathode, the capacity retention rate is as high as 96.0% after 100 cycles at 0.2C.

8.
Int J Mol Sci ; 11(4): 1352-64, 2010 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-20480024

RESUMEN

We have studied the dynamic scanning of liquid-crystalline (LC) poly(p-phenyleneterephthalamide) sulfuric acid (PPTA-H(2)SO(4)) solution, and its blend with single-walled carbon nanotubes (SWNTs), by using a flat plate rotational rheometer. The effects of weight concentration and molecular weight of PPTA, as well as operating temperature, on dynamic viscoelasticity of the PPTA-H(2)SO(4) LC solution system are discussed. The transition from a biphasic system to a single-phase LC occurs in the weight concentration range of SWNTs from 0.1% to 0.2%, in which complex viscosity reaches the maximum at 0.2 wt% and the minimum at 0.1 wt%, respectively, of SWNTs. With increasing SWNT weight concentration, the endothermic peak temperature increases from 73.6 to 79.9 degrees C. The PPTA/SWNT/H(2)SO(4) solution is in its plateau zone and storage modulus (G') is a dominant factor within the frequency (omega) range of 0.1-10 rad/s. As omega increases, the G' rises slightly, in direct proportion to the omega. The loss modulus (G'') does not rise as a function of omega when omega < 1 s(-1), then when omega > 1 s(-1) G'' increases faster than G', yet not in any proportion to the omega.


Asunto(s)
Nanotubos de Carbono/química , Ácidos Ftálicos/química , Polímeros/química , Reología , Ácidos Sulfúricos/química , Elasticidad , Cristales Líquidos/química , Peso Molecular , Temperatura , Viscosidad
9.
ACS Appl Mater Interfaces ; 12(41): 46455-46465, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32991137

RESUMEN

An enormous challenge exists in the achievement of one-dimensional (1D) dielectric carbon composite high-performance microwave absorbents at a low filling ratio. Porous/core-shell dual microstructures have been considered as the potential candidate for designing remarkable microwave absorbers with strong absorption and wide band. Herein, novel multiple-structured tubular carbon nanofibers@TiO2 (TCNFs@TiO2) hybrids were constructed via the sequential steps of hydrolysis and pyrolysis. The dielectric properties of the as-prepared composites can be tuned by adjusting the relative content of the TiO2 shell and carbonaceous temperature to enhance the impedance matching behavior. Notably, the minimum reflection loss (RLmin) value reaches up to -61.2 dB with an effective absorption bandwidth (EAB) of 3.2 GHz at 3 mm, and the EAB can cover 5.3 GHz with a thickness of merely 2 mm when 1.3 mL of tetrabutyl titanate (TBT) and 700 °C pyrolysis temperature are optimized, respectively. Delightedly, the mixing ratio is only 10 wt %, outperforming that of the most-related composites. The heterogeneous interfaces in TCNFs-TiO2 are beneficial for the interfacial polarization relaxation. Besides, the hybrids are enriched with numerous pores to favor the lightweight absorbers. The desirable design in the microstructure can provide a promising route in wide-band and lightweight microwave absorbents.

10.
RSC Adv ; 9(59): 34547-34558, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-35529985

RESUMEN

Al-doped ZnO (AZO) nanowires, nanobelts and nanoplane-cone nanostructures have been successfully synthesized. The structural, photoluminescence (PL) and field emission (FE) properties of AZO nanowires have been characterized. The dependence of the PL properties of AZO nanostructures versus excitation laser power in the range from 1 to 12 mW and temperature in the range of 10-273 K was discussed. The PL measurement results demonstrated that the ultraviolet emission came from a near band edge emission, and two peaks in visible light region were due to deep-level emission. Moreover, the AZO nanowires have a relatively stronger ultraviolet emission than other kinds of samples. The FE measurements indicate that the turn-on field for the nanoplane-cone structure is 2.52 V µm-1, which is smaller than 4.42 V µm-1 for nanowires and 5.28 V µm-1 for nanobelts. In addition, the nonlinear absorption properties of AZO nanowires were measured using a femtosecond Z-scan technique. The effect of morphology on the nonlinear optical absorption properties of AZO nanowires was studied. From the results, the AZO nanowires show reverse saturable absorption (RSA) behavior. Furthermore, the results show that the order of magnitude of the nonlinear absorption coefficient for AZO nanowires is ∼10-2 cm3 GW-2. Our results show that AZO films are a promising candidate in further optoelectronic device applications.

11.
Environ Sci Pollut Res Int ; 23(18): 18672-83, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27312896

RESUMEN

Soil organic carbon (SOC) is one of the most important soil properties affecting many other soil and environmental properties and processes. In order to understand and manage SOC effectively, it is important to identify the scale-specific main factors affecting SOC distributions, which in this study occurred in a watershed on the Loess Plateau. Two transects were selected that passed along the upper slopes on each side of the main gully of the Liudaogou watershed. Transect 1 (3411-m length) had 27 sampling sites at 131-m intervals; transect 2 (3597 m length) had 30 sampling sites at 124-m intervals. The two transects were chosen in order to compare landscape patterns of differing complexity that were in close proximity, which reduced the effects of factors that would be caused by different locations. The landscape of transect 1 was more complex due to the greater diversity in cultivation. Multivariate empirical mode decomposition (MEMD) decomposed the total variation in SOC and five selected environmental factors into four intrinsic mode functions (IMFs) and a residual according to the scale of occurrence. Scale-specific correlation analysis was used to identify significant relationships between SOC and the environmental factors. The dominant scales were those that were the largest contributors to the total SOC variance; for transect 1, this was the IMF 1 (scale of 403 m), whereas for transect 2, it was the medium scale of the IMF 2 (scale of 688 m). For both transects, vegetation properties (vegetation cover and aboveground biomass) were the main factors affecting SOC distributions at their respective dominant scales. At each scale, the main effective factors could be identified although at the larger scales, their contributions to the overall variance were almost negligible. The distributions of SOC and the factors affecting it were found to be scale dependent. The results of this study highlighted the suitability of the MEMD method in revealing the main scale-specific factors that affect SOC distributions, which is necessary in understanding and managing this important soil property.


Asunto(s)
Carbono/análisis , Suelo/química , Biomasa , China , Desarrollo de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA