Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Anim Ecol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867406

RESUMEN

Climate change is impacting ecosystems worldwide, and the Mediterranean Sea is no exception. Extreme climatic events, such as marine heat waves (MHWs), are increasing in frequency, extent and intensity during the last decades, which has been associated with an increase in mass mortality events for multiple species. Coralligenous assemblages, where the octocoral Paramuricea clavata lives, are strongly affected by MHWs. The Medes Islands Marine Reserve (NW Mediterranean) was considered a climate refugia for P. clavata, as their populations were showing some resilience to these changing conditions. In this study, we assessed the impacts of the MHWs that occurred between 2016 and 2022 in seven shallow populations of the octocoral P. clavata from a Mediterranean Marine Protected Area. The years that the mortality rates increased significantly were associated with the ones with strong MHWs, 2022 being the one with higher mortalities. In 2022, with 50 MHW days, the proportion of total affected colonies was almost 70%, with a proportion of the injured surface of almost 40%, reaching levels never attained in our study site since the monitoring was started. We also found spatial variability between the monitored populations. Whereas few of them showed low levels of mortality, others lost around 75% of their biomass. The significant impacts documented here raise concerns about the future of shallow P. clavata populations across the Mediterranean, suggesting that the resilience of this species may not be maintained to sustain these populations face the ongoing warming trends.


El canvi climatic està impactant els ecosistemes arreu del planeta, i el Mar Mediterrani no n'és una excepció. Els esdeveniments climàtics extrems, com ara les onades de calor marines, estan augmentant en freqüència, extensió i intensitat en les darreres dècades, i estan sent associades a un increment dels esdeveniments de mortalitat massiva de múltiples espècies. El coral·ligen, on hi viu l'octocorall Paramuricea clavata, està altament afectat per les onades de calor marines. La Reserva Marina de les Illes Medes (NO del Mediterrani) es considerava un refugi climàtic per aquesta espècie, degut a que les seves poblacions mostraven certa resiliència a les condicions canviants. En aquest estudi hem avaluat els impactes de les onades de calor marines succeïdes entre els anys 2016 i 2022 a set poblacions someres de l'octocorall P. clavata, en una Àrea Marina Protegida del Mediterrani. Els anys en els quals les taxes de mortalitat van incrementar significativament s'associen amb els anys amb fortes onades de calor marines, sent el 2022 l'any amb la mortalitat més elevada. Al 2022, amb 50 dies d'onada de calor, la proporció total de colònies afectades va ser prop del 70%, amb un percentatge de superfície afectada de gairebé el 40%, arribant a valors mai observats en el lloc d'estudi des de que es va iniciar el seguiment d'aquestes poblacions. També hem observat variabilitat espacial entre les poblacions mostrejades. Mentre que algunes d'elles han mostrat poca mortalitat, altres han perdut al voltant del 75% de la seva biomassa. Els impactes documentats en aquest estudi mostren un futur preocupant de les poblacions someres de P. clavata arreu del Mediterrani, i això suggereix que la resiliència d'aquesta espècie podria no ser suficient per mantenir les seves poblacions en l'escenari d'escalfament que es preveu.

2.
Ecol Lett ; 26(7): 1186-1199, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37158011

RESUMEN

Escalating climatic and anthropogenic pressures expose ecosystems worldwide to increasingly stochastic environments. Yet, our ability to forecast the responses of natural populations to this increased environmental stochasticity is impeded by a limited understanding of how exposure to stochastic environments shapes demographic resilience. Here, we test the association between local environmental stochasticity and the resilience attributes (e.g. resistance, recovery) of 2242 natural populations across 369 animal and plant species. Contrary to the assumption that past exposure to frequent environmental shifts confers a greater ability to cope with current and future global change, we illustrate how recent environmental stochasticity regimes from the past 50 years do not predict the inherent resistance or recovery potential of natural populations. Instead, demographic resilience is strongly predicted by the phylogenetic relatedness among species, with survival and developmental investments shaping their responses to environmental stochasticity. Accordingly, our findings suggest that demographic resilience is a consequence of evolutionary processes and/or deep-time environmental regimes, rather than recent-past experiences.


Asunto(s)
Ecosistema , Plantas , Animales , Filogenia , Procesos Estocásticos , Dinámica Poblacional
3.
Ecol Lett ; 25(1): 240-251, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34784650

RESUMEN

Maintaining the resilience of natural populations, their ability to resist and recover from disturbance, is crucial to prevent biodiversity loss. However, the lack of appropriate data and quantitative tools has hampered our understanding of the factors determining resilience on a global scale. Here, we quantified the temporal trends of two key components of resilience-resistance and recovery-in >2000 population time-series of >1000 vertebrate species globally. We show that the number of threats to which a population is exposed is the main driver of resilience decline in vertebrate populations. Such declines are driven by a non-uniform loss of different components of resilience (i.e. resistance and recovery). Increased anthropogenic threats accelerating resilience loss through a decline in the recovery ability-but not resistance-of vertebrate populations. These findings suggest we may be underestimating the impacts of global change, highlighting the need to account for the multiple components of resilience in global biodiversity assessments.


Asunto(s)
Biodiversidad , Vertebrados , Animales , Conservación de los Recursos Naturales , Ecosistema
4.
Ecol Lett ; 25(6): 1566-1579, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35334148

RESUMEN

Accelerating rates of biodiversity loss underscore the need to understand how species achieve resilience-the ability to resist and recover from a/biotic disturbances. Yet, the factors determining the resilience of species remain poorly understood, due to disagreements on its definition and the lack of large-scale analyses. Here, we investigate how the life history of 910 natural populations of animals and plants predicts their intrinsic ability to be resilient. We show that demographic resilience can be achieved through different combinations of compensation, resistance and recovery after a disturbance. We demonstrate that these resilience components are highly correlated with life history traits related to the species' pace of life and reproductive strategy. Species with longer generation times require longer recovery times post-disturbance, whilst those with greater reproductive capacity have greater resistance and compensation. Our findings highlight the key role of life history traits to understand species resilience, improving our ability to predict how natural populations cope with disturbance regimes.


Asunto(s)
Biodiversidad , Rasgos de la Historia de Vida , Animales , Demografía , Plantas , Reproducción
5.
Glob Chang Biol ; 28(19): 5708-5725, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35848527

RESUMEN

Climate change is causing an increase in the frequency and intensity of marine heatwaves (MHWs) and mass mortality events (MMEs) of marine organisms are one of their main ecological impacts. Here, we show that during the 2015-2019 period, the Mediterranean Sea has experienced exceptional thermal conditions resulting in the onset of five consecutive years of widespread MMEs across the basin. These MMEs affected thousands of kilometers of coastline from the surface to 45 m, across a range of marine habitats and taxa (50 taxa across 8 phyla). Significant relationships were found between the incidence of MMEs and the heat exposure associated with MHWs observed both at the surface and across depths. Our findings reveal that the Mediterranean Sea is experiencing an acceleration of the ecological impacts of MHWs which poses an unprecedented threat to its ecosystems' health and functioning. Overall, we show that increasing the resolution of empirical observation is critical to enhancing our ability to more effectively understand and manage the consequences of climate change.


Asunto(s)
Organismos Acuáticos , Ecosistema , Cambio Climático , Mar Mediterráneo
6.
Proc Biol Sci ; 288(1955): 20210851, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34284628

RESUMEN

Patterns of ageing across the tree of life are much more diverse than previously thought. Yet, we still do not adequately understand how, why and where across the tree of life a particular pattern of ageing will evolve. An ability to predict ageing patterns requires a firmer understanding of how and why different ecological and evolutionary factors alter the sensitivity of fitness to age-related changes in mortality and reproduction. From this understanding, we can ask why and where selection gradients might not decline with age. Here, we begin by summarizing the recent breadth of literature that is unearthing, empirically and theoretically, the mechanisms that drive variation in patters of senescence. We focus on the relevance of two key parameters, population structure and reproductive value, as key to understanding selection gradients, and therefore senescence. We discuss how growth form, individual trade-offs, stage structure and social interactions may all facilitate differing distributions of these two key parameters than those predicted by classical theory. We argue that these four key aspects can help us understand why patterns of negligible and negative senescence can actually be explained under the same evolutionary framework as classical senescence.


Asunto(s)
Evolución Biológica , Reproducción , Interacción Social
7.
Sci Data ; 10(1): 335, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264011

RESUMEN

Despite exponential growth in ecological data availability, broader interoperability amongst datasets is needed to unlock the potential of open access. Our understanding of the interface of demography and functional traits is well-positioned to benefit from such interoperability. Here, we introduce MOSAIC, an open-access trait database that unlocks the demographic potential stored in the COMADRE, COMPADRE, and PADRINO open-access databases. MOSAIC data were digitised and curated through a combination of existing datasets and new trait records sourced from primary literature. In its first release, MOSAIC (v. 1.0.0) includes 14 trait fields for 300 animal and plant species: biomass, height, growth determination, regeneration, sexual dimorphism, mating system, hermaphrodism, sequential hermaphrodism, dispersal capacity, type of dispersal, mode of dispersal, dispersal classes, volancy, and aquatic habitat dependency. MOSAIC includes species-level phylogenies for 1,359 species and population-specific climate data. We identify how database integration can improve our understanding of traits well-quantified in existing repositories and those that are poorly quantified (e.g., growth determination, modularity). MOSAIC highlights emerging challenges associated with standardising databases and demographic measures.


Asunto(s)
Ecosistema , Plantas , Animales , Clima , Conservación de los Recursos Naturales , Filogenia
8.
Sci Adv ; 9(35): eadi4029, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37647404

RESUMEN

The metabolome is the biochemical basis of plant form and function, but we know little about its macroecological variation across the plant kingdom. Here, we used the plant functional trait concept to interpret leaf metabolome variation among 457 tropical and 339 temperate plant species. Distilling metabolite chemistry into five metabolic functional traits reveals that plants vary on two major axes of leaf metabolic specialization-a leaf chemical defense spectrum and an expression of leaf longevity. Axes are similar for tropical and temperate species, with many trait combinations being viable. However, metabolic traits vary orthogonally to life-history strategies described by widely used functional traits. The metabolome thus expands the functional trait concept by providing additional axes of metabolic specialization for examining plant form and function.


Asunto(s)
Longevidad , Metaboloma , Fenotipo , Hojas de la Planta
9.
Ecol Evol ; 11(11): 7069-7079, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34141276

RESUMEN

Mutual reinforcement between abiotic and biotic factors can drive small populations into a catastrophic downward spiral to extinction-a process known as the "extinction vortex." However, empirical studies investigating extinction dynamics in relation to species' traits have been lacking.We assembled a database of 35 vertebrate populations monitored to extirpation over a period of at least ten years, represented by 32 different species, including 25 birds, five mammals, and two reptiles. We supplemented these population time series with species-specific mean adult body size to investigate whether this key intrinsic trait affects the dynamics of populations declining toward extinction.We performed three analyses to quantify the effects of adult body size on three characteristics of population dynamics: time to extinction, population growth rate, and residual variability in population growth rate.Our results provide support for the existence of extinction vortex dynamics in extirpated populations. We show that populations typically decline nonlinearly to extinction, while both the rate of population decline and variability in population growth rate increase as extinction is approached. Our results also suggest that smaller-bodied species are particularly prone to the extinction vortex, with larger increases in rates of population decline and population growth rate variability when compared to larger-bodied species.Our results reaffirm and extend our understanding of extinction dynamics in real-life extirpated populations. In particular, we suggest that smaller-bodied species may be at greater risk of rapid collapse to extinction than larger-bodied species, and thus, management of smaller-bodied species should focus on maintaining higher population abundances as a priority.

10.
Sci Adv ; 7(13)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33771870

RESUMEN

Although one-quarter of plant and vertebrate species are threatened with extinction, little is known about the potential effect of extinctions on the global diversity of ecological strategies. Using trait and phylogenetic information for more than 75,000 species of vascular plants, mammals, birds, reptiles, amphibians, and freshwater fish, we characterized the global functional spectra of each of these groups. Mapping extinction risk within these spectra showed that larger species with slower pace of life are universally threatened. Simulated extinction scenarios exposed extensive internal reorganizations in the global functional spectra, which were larger than expected by chance for all groups, and particularly severe for mammals and amphibians. Considering the disproportionate importance of the largest species for ecological processes, our results emphasize the importance of actions to prevent the extinction of the megabiota.

11.
PLoS One ; 16(12): e0260163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34890389

RESUMEN

Conferences are ideal platforms for studying gender gaps in science because they are important cultural events that reflect barriers to women in academia. Here, we explored women's participation in ecology conferences by analyzing female representation, behavior, and personal experience at the 1st Meeting of the Iberian Society of Ecology (SIBECOL). The conference had 722 attendees, 576 contributions, and 27 scientific sessions. The gender of attendees and presenters was balanced (48/52% women/men), yet only 29% of the contributions had a woman as last author. Moreover, men presented most of the keynote talks (67%) and convened most of the sessions. Our results also showed that only 32% of the questions were asked by women, yet the number of questions raised by women increased when the speaker or the convener was a woman. Finally, the post-conference survey revealed that attendees had a good experience and did not perceive the event as a threatening context for women. Yet, differences in the responses between genders suggest that women tended to have a worse experience than their male counterparts. Although our results showed clear gender biases, most of the participants of the conference failed to detect it. Overall, we highlight the challenge of increasing women's scientific leadership, visibility and interaction in scientific conferences and we suggest several recommendations for creating inclusive meetings, thereby promoting equal opportunities for all participants.


Asunto(s)
Ecología/métodos , Conducta , Femenino , Humanos , Liderazgo , Masculino , Percepción , Sexismo
12.
Trends Ecol Evol ; 35(9): 776-786, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32482368

RESUMEN

In the current global biodiversity crisis, the development of tools to define, quantify, compare, and predict resilience is essential for understanding the responses of species to global change. However, disparate interpretations of resilience have hampered the development of a common currency to quantify and compare resilience across natural systems. Most resilience frameworks focus on upper levels of biological organization, especially ecosystems or communities, which complicates measurements of resilience using empirical data. Surprisingly, there is no quantifiable definition of resilience at the demographic level. We introduce a framework of demographic resilience that draws on existing concepts from community and population ecology, as well as an accompanying set of metrics that are comparable across species.


Asunto(s)
Ecología , Ecosistema , Biodiversidad , Demografía
13.
Mar Environ Res ; 153: 104826, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31703945

RESUMEN

Macroalgal communities have an essential role in the shallow benthic habitats of temperate seas, where changes in their composition can resonate through entire coastal ecosystems. As all major ecosystems on Earth, algal beds have already been affected by multiple disturbances. Passive conservation tools, such as marine protected areas or No-take zones, have the potential to reduce some of the anthropogenic impacts by limiting human activity. However, without a good knowledge of the natural community dynamics, it is not easy to discern between changes fruit of the intrinsic variability of biological communities and the ones caused by human-related stressors. In this study, we evaluated the natural variability of macroalgal communities' composition inside and outside a Mediterranean No-Take marine reserve during 15 years. We described their temporal dynamics considering their main drivers and we tested the effect of protection in seaweed beds. We did not find differences either in the composition of the macroalgal assemblages or the total algal cover between protected and non-protected locations over the fifteen years of study. Nevertheless, we observed a positive effect of the protection increasing the cover of some specific species, such as the canopy-forming Treptacantha elegans. Our results highlight the importance of obtaining long-term data in ecological studies to better understand the natural variability of marine communities. Accordingly, a robust understanding of the community dynamics would help us to avoid misinterpretations between 'impacted' or 'in-recovery' communities when recovery times are longer than the study periods.

14.
Mar Environ Res ; 145: 147-154, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30862382

RESUMEN

Understanding how no-take zones (NTZs) shape the population dynamics of key herbivores is crucial for the conservation and management of temperate benthic communities. Here, we examine the recovery patterns of sea urchin populations following a high-intensity storm under contrasting protection regimes in the NW Mediterranean Sea. We found significant differences in the recovery trends of Paracentrotus lividus abundance and biomass in the five years following the storm. The P. lividus populations outside the NTZ recovered faster than the populations inside the NTZ, revealing that predation was the main factor controlling the sea urchin populations inside the NTZ during the study period. Arbacia lixula reached the highest abundance and biomass values ever observed outside the NTZ in 2016. Our findings reveal that predation can control the establishment of new sea urchin populations and emphasize top-down control in NTZs, confirming the important role of fully protected areas in the structure of benthic communities.


Asunto(s)
Arbacia , Paracentrotus , Animales , Mar Mediterráneo , Dinámica Poblacional , Conducta Predatoria , Erizos de Mar
15.
PLoS One ; 13(1): e0191346, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29329336

RESUMEN

Dispersal and recruitment are fundamental processes for population recovery following disturbances in sessile species. While both processes are well understood for many terrestrial species, they still remain poorly resolved for some macroalgal species. Here we experimentally investigated the effective dispersal and recruit survival of a mesophotic Mediterranean fucoid, Cystoseira zosteroides. In three isolated populations, four sets of settlement collectors were placed at increasing distances (from 0 to 10 m) and different orientations (North, South, East and West). We observed that effective dispersal was restricted to populations' vicinity, with an average of 6.43 m and not further than 13.33 m, following a Weibull distribution. During their first year of life, survival was up to 50%, but it was lower underneath the adult canopy, suggesting a negative density-dependence. To put our results in a broader context we compared the effective dispersal of other fucoid and kelp species reported in the literature, which confirmed the low dispersal ability of brown algae, in particular for fucoids, with an effective dispersal of few meters. Given the importance of recruitment for the persistence and recovery of populations after disturbances, these results underline the vulnerability of C. zosteroides and other fucoid species to escalating threats.


Asunto(s)
Bosques , Phaeophyceae/fisiología , Dispersión de las Plantas , Conservación de los Recursos Naturales , Ecosistema , Phaeophyceae/crecimiento & desarrollo , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA