RESUMEN
Cerebral cortex size differs dramatically between reptiles, birds, and mammals, owing to developmental differences in neuron production. In mammals, signaling pathways regulating neurogenesis have been identified, but genetic differences behind their evolution across amniotes remain unknown. We show that direct neurogenesis from radial glia cells, with limited neuron production, dominates the avian, reptilian, and mammalian paleocortex, whereas in the evolutionarily recent mammalian neocortex, most neurogenesis is indirect via basal progenitors. Gain- and loss-of-function experiments in mouse, chick, and snake embryos and in human cerebral organoids demonstrate that high Slit/Robo and low Dll1 signaling, via Jag1 and Jag2, are necessary and sufficient to drive direct neurogenesis. Attenuating Robo signaling and enhancing Dll1 in snakes and birds recapitulates the formation of basal progenitors and promotes indirect neurogenesis. Our study identifies modulation in activity levels of conserved signaling pathways as a primary mechanism driving the expansion and increased complexity of the mammalian neocortex during amniote evolution.
Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Animales , Proteínas de Unión al Calcio , Corteza Cerebral/metabolismo , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Proteína Jagged-2 , Mamíferos/embriología , Ratones , Ratones Endogámicos C57BL , Neocórtex/fisiología , Células-Madre Neurales , Neurogénesis/fisiología , Neuroglía/fisiología , Neuronas , Factor de Transcripción PAX6/metabolismo , Proteínas Represoras , Transducción de Señal , Serpientes/embriología , Proteínas RoundaboutRESUMEN
Evolution of the mammalian brain encompassed a remarkable increase in size of the cerebral cortex, which includes tangential and radial expansion. However, the mechanisms underlying these key features are still largely unknown. Here, we identified the DNA-associated protein Trnp1 as a regulator of cerebral cortex expansion in both of these dimensions. Gain- and loss-of-function experiments in the mouse cerebral cortex in vivo demonstrate that high Trnp1 levels promote neural stem cell self-renewal and tangential expansion. In contrast, lower levels promote radial expansion, with a potent increase of the number of intermediate progenitors and basal radial glial cells leading to folding of the otherwise smooth murine cerebral cortex. Remarkably, TRNP1 expression levels exhibit regional differences in the cerebral cortex of human fetuses, anticipating radial or tangential expansion. Thus, the dynamic regulation of Trnp1 is critical to control tangential and radial expansion of the cerebral cortex in mammals.
Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular , Corteza Cerebral/citología , Proteínas de Unión al ADN , Embrión de Mamíferos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Datos de Secuencia Molecular , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Activación TranscripcionalRESUMEN
Self-organizing three-dimensional cellular models derived from human pluripotent stem cells or primary tissue have great potential to provide insights into how the human nervous system develops, what makes it unique and how disorders of the nervous system arise, progress and could be treated. Here, to facilitate progress and improve communication with the scientific community and the public, we clarify and provide a basic framework for the nomenclature of human multicellular models of nervous system development and disease, including organoids, assembloids and transplants.
Asunto(s)
Consenso , Sistema Nervioso , Organoides , Terminología como Asunto , Humanos , Modelos Biológicos , Sistema Nervioso/citología , Sistema Nervioso/patología , Organoides/citología , Organoides/patología , Células Madre Pluripotentes/citologíaRESUMEN
Grey matter heterotopia (GMH) are neurodevelopmental disorders associated with abnormal cortical function and epilepsy. Subcortical band heterotopia (SBH) and periventricular nodular heterotopia (PVNH) are two well-recognized GMH subtypes in which neurons are misplaced, either forming nodules lining the ventricles in PVNH, or forming bands in the white matter in SBH. Although both PVNH and SBH are commonly associated with epilepsy, it is unclear whether these two GMH subtypes differ in terms of pathological consequences or, on the contrary, share common altered mechanisms. Here, we studied two robust preclinical models of SBH and PVNH, and performed a systematic comparative assessment of the physiological and morphological diversity of heterotopia neurons, as well as the dynamics of epileptiform activity and input connectivity. We uncovered a complex set of altered properties, including both common and distinct physiological and morphological features across heterotopia subtypes, and associated with specific dynamics of epileptiform activity. Taken together, these results suggest that pro-epileptic circuits in GMH are, at least in part, composed of neurons with distinct, subtype-specific, physiological and morphological properties depending on the heterotopia subtype. Our work supports the notion that GMH represent a complex set of disorders, associating both shared and diverging pathological consequences, and contributing to forming epileptogenic networks with specific properties. A deeper understanding of these properties may help to refine current GMH classification schemes by identifying morpho-electric signatures of GMH subtypes, to potentially inform new treatment strategies.
Asunto(s)
Vermis Cerebeloso , Epilepsia , Trastornos del Neurodesarrollo , Humanos , Sustancia Gris , NeuronasRESUMEN
The relationships between impaired cortical development and consequent malformations in neurodevelopmental disorders, as well as the genes implicated in these processes, are not fully elucidated to date. In this study, we report six novel cases of patients affected by BBSOAS (Boonstra-Bosch-Schaff optic atrophy syndrome), a newly emerging rare neurodevelopmental disorder, caused by loss-of-function mutations of the transcriptional regulator NR2F1. Young patients with NR2F1 haploinsufficiency display mild to moderate intellectual disability and show reproducible polymicrogyria-like brain malformations in the parietal and occipital cortex. Using a recently established BBSOAS mouse model, we found that Nr2f1 regionally controls long-term self-renewal of neural progenitor cells via modulation of cell cycle genes and key cortical development master genes, such as Pax6. In the human fetal cortex, distinct NR2F1 expression levels encompass gyri and sulci and correlate with local degrees of neurogenic activity. In addition, reduced NR2F1 levels in cerebral organoids affect neurogenesis and PAX6 expression. We propose NR2F1 as an area-specific regulator of mouse and human brain morphology and a novel causative gene of abnormal gyrification.
Asunto(s)
Factor de Transcripción COUP I/metabolismo , Neocórtex/embriología , Células-Madre Neurales/metabolismo , Lóbulo Occipital/embriología , Atrofias Ópticas Hereditarias/embriología , Lóbulo Parietal/embriología , Animales , Factor de Transcripción COUP I/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Neocórtex/patología , Células-Madre Neurales/patología , Lóbulo Occipital/patología , Atrofias Ópticas Hereditarias/genética , Atrofias Ópticas Hereditarias/patología , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Lóbulo Parietal/patologíaRESUMEN
The endocannabinoid (eCB) system, via the cannabinoid CB1 receptor, regulates neurodevelopment by controlling neural progenitor proliferation and neurogenesis. CB1 receptor signalling in vivo drives corticofugal deep layer projection neuron development through the regulation of BCL11B and SATB2 transcription factors. Here, we investigated the role of eCB signalling in mouse pluripotent embryonic stem cell-derived neuronal differentiation. Characterization of the eCB system revealed increased expression of eCB-metabolizing enzymes, eCB ligands and CB1 receptors during neuronal differentiation. CB1 receptor knockdown inhibited neuronal differentiation of deep layer neurons and increased upper layer neuron generation, and this phenotype was rescued by CB1 re-expression. Pharmacological regulation with CB1 receptor agonists or elevation of eCB tone with a monoacylglycerol lipase inhibitor promoted neuronal differentiation of deep layer neurons at the expense of upper layer neurons. Patch-clamp analyses revealed that enhancing cannabinoid signalling facilitated neuronal differentiation and functionality. Noteworthy, incubation with CB1 receptor agonists during human iPSC-derived cerebral organoid formation also promoted the expansion of BCL11B+ neurons. These findings unveil a cell-autonomous role of eCB signalling that, via the CB1 receptor, promotes mouse and human deep layer cortical neuron development.
Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Neuronas/metabolismo , Receptor Cannabinoide CB1/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Animales , Proliferación Celular/efectos de los fármacos , Cerebelo/crecimiento & desarrollo , Desarrollo Embrionario/genética , Endocannabinoides/agonistas , Endocannabinoides/genética , Endocannabinoides/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Organoides/crecimiento & desarrollo , Transducción de Señal/genéticaRESUMEN
Neuronal migration is a fundamental process that governs embryonic brain development. As such, mutations that affect essential neuronal migration processes lead to severe brain malformations, which can cause complex and heterogeneous developmental and neuronal migration disorders. Our fragmented knowledge about the aetiology of these disorders raises numerous issues. However, many of these can now be addressed through studies of in vivo and in vitro models that attempt to recapitulate human-specific mechanisms of cortical development. In this Review, we discuss the advantages and limitations of these model systems and suggest that a complementary approach, using combinations of in vivo and in vitro models, will broaden our knowledge of the molecular and cellular mechanisms that underlie defective neuronal positioning in the human cerebral cortex.
Asunto(s)
Movimiento Celular , Enfermedades del Sistema Nervioso Central/patología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Modelos Biológicos , Neuronas/patología , Animales , HumanosRESUMEN
During embryonic development, excitatory projection neurons migrate in the cerebral cortex giving rise to organised layers. Periventricular heterotopia (PH) is a group of aetiologically heterogeneous disorders in which a subpopulation of newborn projection neurons fails to initiate their radial migration to the cortex, ultimately resulting in bands or nodules of grey matter lining the lateral ventricles. Although a number of genes have been implicated in its cause, currently they only satisfactorily explain the pathogenesis of the condition for 50% of patients. Novel gene discovery is complicated by the extreme genetic heterogeneity recently described to underlie its cause. Here, we study the neurodevelopmental role of endothelin-converting enzyme-2 (ECE2) for which two biallelic variants have been identified in two separate patients with PH. Our results show that manipulation of ECE2 levels in human cerebral organoids and in the developing mouse cortex leads to ectopic localisation of neural progenitors and neurons. We uncover the role of ECE2 in neurogenesis, and mechanistically, we identify its involvement in the generation and secretion of extracellular matrix proteins in addition to cytoskeleton and adhesion.
Asunto(s)
Neurogénesis , Heterotopia Nodular Periventricular , Movimiento Celular/genética , Corteza Cerebral , Femenino , Humanos , Neurogénesis/genética , Neuronas , EmbarazoRESUMEN
Spastic paraplegia gene 11(SPG11)-linked hereditary spastic paraplegia is a complex monogenic neurodegenerative disease that in addition to spastic paraplegia is characterized by childhood onset cognitive impairment, thin corpus callosum and enlarged ventricles. We have previously shown impaired proliferation of SPG11 neural progenitor cells (NPCs). For the delineation of potential defect in SPG11 brain development we employ 2D culture systems and 3D human brain organoids derived from SPG11 patients' iPSC and controls. We reveal that an increased rate of asymmetric divisions of NPCs leads to proliferation defect, causing premature neurogenesis. Correspondingly, SPG11 organoids appeared smaller than controls and had larger ventricles as well as thinner germinal wall. Premature neurogenesis and organoid size were rescued by GSK3 inhibititors including the Food and Drug Administration-approved tideglusib. These findings shed light on the neurodevelopmental mechanisms underlying disease pathology.
Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Neurogénesis/genética , Proteínas/genética , Alelos , Biomarcadores , Corteza Cerebral/fisiopatología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/fisiopatología , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Genotipo , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Mutación , Organoides , Fenotipo , beta CateninaRESUMEN
Neocortex development depends on neural stem cell proliferation, cell differentiation, neurogenesis, and neuronal migration. Cytoskeletal regulation is critical for all these processes, but the underlying mechanisms are only poorly understood. We previously implicated the cytoskeletal regulator profilin1 in cerebellar granule neuron migration. Since we found profilin1 expressed throughout mouse neocortex development, we here tested the hypothesis that profilin1 is crucial for neocortex development. We found no evidence for impaired neuron migration or layering in the neocortex of profilin1 mutant mice. However, proliferative activity at basal positions was doubled in the mutant neocortex during mid-neurogenesis, with a drastic and specific increase in basal Pax6+ cells indicative for elevated numbers of basal radial glia (bRG). This was accompanied by transiently increased neurogenesis and associated with mild invaginations resembling rudimentary neocortex folds. Our data are in line with a model in which profilin1-dependent actin assembly controls division of apical radial glia (aRG) and thereby the fate of their progenies. Via this mechanism, profilin1 restricts cell delamination from the ventricular surface and, hence, bRG production and thereby controls neocortex development in mice. Our data support the radial cone hypothesis" claiming that elevated bRG number causes neocortex folds.
Asunto(s)
Actinas/metabolismo , Proliferación Celular/genética , Células Ependimogliales/citología , Neocórtex/embriología , Neurogénesis/genética , Profilinas/genética , Citoesqueleto de Actina , Animales , División Celular/genética , Ratones , Mutación , Células-Madre NeuralesRESUMEN
Conjugation of proteins to AMP (AMPylation) is a prevalent post-translational modification (PTM) in human cells, involved in the regulation of unfolded protein response and neural development. Here we present a tailored pronucleotide probe suitable for in situ imaging and chemical proteomics profiling of AMPylated proteins. Using straightforward strain-promoted azide-alkyne click chemistry, the probe provides stable fluorescence labelling in living cells.
Asunto(s)
Adenosina Monofosfato/química , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteoma/metabolismo , Alquinos/química , Azidas/química , Química Clic , Fluorescencia , Células HeLa , Humanos , Imagen Molecular , Proteínas/metabolismo , Proteoma/análisisRESUMEN
The COVID-19 outbreak has drastically changed practices inside hospitals, which include oncology routines. In oncology, malnutrition was and certainly still is a frequent problem associated with an increase in treatment-related toxicity, a reduced response to cancer treatment, an impaired quality of life, and a worse overall prognosis. Even in this situation of healthcare crisis, nutritional support in cancer care is an essential element. During the current COVID-19 pandemic, there is a concrete high risk to see a dramatic worsening of cancer patients' nutritional status, who are left without adequate clinical and nutritional support. The consequences are already reasonably foreseeable and will have a severe negative impact after the emergency. Therefore, we believe that it is essential to try to continue, as far as possible, the activity of clinical nutrition in oncology, by revolutionizing the setting and the approach to patients. For this purpose, the Clinical Nutrition and Dietetics Unit and the Medical Oncology Unit of our hospital, one of the largest community hospital in Lombardy that has been involved in the COVID-19 outbreak management since its inception, have reorganized the clinical routine activity in strict collaboration since the very beginning of the emergency, to better face up to the challenge, while preserving cancer patients' needs.
Asunto(s)
Infecciones por Coronavirus/epidemiología , Desnutrición/terapia , Neoplasias/terapia , Estado Nutricional/fisiología , Apoyo Nutricional , Neumonía Viral/epidemiología , Betacoronavirus , COVID-19 , Atención a la Salud , Hospitales , Humanos , Italia/epidemiología , Pandemias , Calidad de Vida , SARS-CoV-2RESUMEN
PURPOSE: The international guidelines recommend the use of supplemental parenteral nutrition (SPN) in cancer patients when they are malnourished and hypophagic and where enteral nutrition is not feasible. However, there are limited data on the short-term effects of SPN in this patient population. METHODS: The aim of this bicentric single-arm clinical trial (NCT02828150) was to evaluate the effects of early 7-day SPN on bioimpedance vectorial analysis (BIVA)-derived body composition, handgrip strength (HG), and serum prealbumin (PAB) in 131 hypophagic, hospitalized cancer patients at nutritional risk, with contraindications for enteral nutrition. RESULTS: One hundred eighteen patients (90.1%) completed the 7-day SPN support regimen and 102 of them (86.4%) were in advanced disease stage. SPN induced a significant improvement of phase angle (PhA, + 0.25 [95% CI 0.11, 0.39]; p = 0.001), standardized phase angle (SPA, + 0.33 [95% CI 0.13, 0.53]; p = 0.002), HG (+ 2.1 kg -95% CI 1.30, 2.81]; p < 0.001), and PAB (+ 3.8 mg/dL [95% CI 2.1, 5.6]; p < 0.001). In multivariable analysis, the effects on BIVA parameters were more pronounced in patients (N = 90, 76.3%) in whom estimated protein and calorie requirements were both satisfied (adjusted difference: PhA, + 0.39 [95% CI 0.04, 0.73]; p = 0.030; SPA, + 0.62 [95% CI 0.16, 1.09]; p = 0.009). No significant changes in hydration status were detected and no severe metabolic or other complications occurred. CONCLUSIONS: Early 7-day SPN resulted in improved body composition, HG and PAB levels in hypophagic, and hospitalized cancer patients at nutritional risk in the absence of any relevant clinical complications. Further trials, aimed at verifying the efficacy of this early nutritional intervention on mid- and long-term primary clinical endpoints in specific cancer types, are warranted.
Asunto(s)
Composición Corporal/fisiología , Suplementos Dietéticos , Fuerza Muscular/fisiología , Neoplasias/dietoterapia , Nutrición Parenteral/métodos , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/patología , Necesidades NutricionalesRESUMEN
BACKGROUND: Neurogenesis in the brain of adult mammals occurs throughout life in two locations: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. RNA interference mechanisms have emerged as critical regulators of neuronal differentiation. However, to date, little is known about its function in adult neurogenesis. RESULTS: Here we show that the RNA interference machinery regulates Doublecortin levels and is associated with chromatin in differentiating adult neural progenitors. Deletion of Dicer causes abnormal higher levels of Doublecortin. The microRNA pathway plays an important role in Doublecortin regulation. In particular miRNA-128 overexpression can reduce Doublecortin levels in differentiating adult neural progenitors. CONCLUSIONS: We conclude that the RNA interference components play an important role, even through chromatin association, in regulating neuron-specific gene expression programs.
Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Expresión Génica/fisiología , Hipocampo/metabolismo , MicroARNs/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuropéptidos/metabolismo , Interferencia de ARN/fisiología , Ribonucleasa III/metabolismo , Animales , Cromatina/metabolismo , ARN Helicasas DEAD-box/genética , Proteínas de Dominio Doblecortina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ribonucleasa III/genéticaRESUMEN
The present review summarises evidences and provides recommendations for the screening and management of malnutrition in systemic sclerosis (SSc). This complication is frequently under-estimated when assessing patients and this may lead to an impaired estimation of prognosis. The presence of malnutrition is indicated by anthropometric and biohumoral changes reflecting protein stores (low serum prealbumin) and influenced by organ involvement in SSc (skin and the gastrointestinal tract). Patients at high risk of malnutrition or with low prealbumin levels have shown increased mortality risk and, therefore, a nutritional assessment is mandatory in every SSc patient. This screening is especially important as malnutrition represents a potentially modifiable risk factor with nutritional interventions. The pillars of nutritional treatment are also discussed.
Asunto(s)
Desnutrición/diagnóstico , Desnutrición/terapia , Estado Nutricional , Esclerodermia Sistémica/complicaciones , Humanos , Desnutrición/etiología , Desnutrición/mortalidad , Desnutrición/fisiopatología , Evaluación Nutricional , Valor Predictivo de las Pruebas , Prevalencia , Factores de Riesgo , Esclerodermia Sistémica/diagnóstico , Esclerodermia Sistémica/mortalidad , Esclerodermia Sistémica/fisiopatología , Resultado del TratamientoRESUMEN
Cellular crosstalk is an essential process influenced by numerous factors, including secreted vesicles that transfer nucleic acids, lipids, and proteins between cells. Extracellular vesicles (EVs) have been the center of many studies focusing on neurodegenerative disorders, but whether EVs display cell-type-specific features for cellular crosstalk during neurodevelopment is unknown. Here, using human-induced pluripotent stem cell-derived cerebral organoids, neural progenitors, neurons, and astrocytes, we identify heterogeneity in EV protein content and dynamics in a cell-type-specific and time-dependent manner. Our results support the trafficking of key molecules via EVs in neurodevelopment, such as the transcription factor YAP1, and their localization to differing cell compartments depending on the EV recipient cell type. This study sheds new light on the biology of EVs during human brain development.
Asunto(s)
Encéfalo , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Neuronas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Astrocitos/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Organoides/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Transporte de Proteínas , Factores de Transcripción/metabolismoRESUMEN
Glucocorticoids are important for proper organ maturation, and their levels are tightly regulated during development. Here, we use human cerebral organoids and mice to study the cell-type-specific effects of glucocorticoids on neurogenesis. We show that glucocorticoids increase a specific type of basal progenitors (co-expressing PAX6 and EOMES) that has been shown to contribute to cortical expansion in gyrified species. This effect is mediated via the transcription factor ZBTB16 and leads to increased production of neurons. A phenome-wide Mendelian randomization analysis of an enhancer variant that moderates glucocorticoid-induced ZBTB16 levels reveals causal relationships with higher educational attainment and altered brain structure. The relationship with postnatal cognition is also supported by data from a prospective pregnancy cohort study. This work provides a cellular and molecular pathway for the effects of glucocorticoids on human neurogenesis that relates to lasting postnatal phenotypes.
Asunto(s)
Corteza Cerebral , Glucocorticoides , Neurogénesis , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Humanos , Animales , Ratones , Glucocorticoides/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Femenino , Proteína de la Leucemia Promielocítica con Dedos de Zinc/metabolismo , Embarazo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Organoides/efectos de los fármacos , Organoides/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , MasculinoRESUMEN
Periventricular neuronal heterotopia (PH) is one of the most common forms of cortical malformation in the human cortex. We show that human neuronal progenitor cells (hNPCs) derived from PH patients with a DCHS1 or FAT4 mutation as well as isogenic lines had altered migratory dynamics when grafted in the mouse brain. The affected migration was linked to altered autophagy as observed in vivo with an electron microscopic analysis of grafted hNPCs, a Western blot analysis of cortical organoids, and time-lapse imaging of hNPCs in the presence of bafilomycin A1. We further show that deficits in autophagy resulted in the accumulation of paxillin, a focal adhesion protein involved in cell migration. Strikingly, a single-cell RNA-seq analysis of hNPCs revealed similar expression levels of autophagy-related genes. Bolstering AMPK-dependent autophagy by metformin, an FDA-approved drug, promoted migration of PH patients-derived hNPCs. Our data indicate that transcription-independent homeostatic modifications in autophagy contributed to the defective migratory behavior of hNPCs in vivo and suggest that modulating autophagy in hNPCs might rescue neuronal migration deficits in some forms of PH.
RESUMEN
Disruption in neurogenesis and neuronal migration can influence the assembly of cortical circuits, affecting the excitatory-inhibitory balance and resulting in neurodevelopmental and neuropsychiatric disorders. Using ventral cerebral organoids and dorsoventral cerebral assembloids with mutations in the extracellular matrix gene LGALS3BP, we show that extracellular vesicles released into the extracellular environment regulate the molecular differentiation of neurons, resulting in alterations in migratory dynamics. To investigate how extracellular vesicles affect neuronal specification and migration dynamics, we collected extracellular vesicles from ventral cerebral organoids carrying a mutation in LGALS3BP, previously identified in individuals with cortical malformations and neuropsychiatric disorders. These results revealed differences in protein composition and changes in dorsoventral patterning. Proteins associated with cell fate decision, neuronal migration, and extracellular matrix composition were altered in mutant extracellular vesicles. Moreover, we show that treatment with extracellular vesicles changes the transcriptomic profile in neural progenitor cells. Our results indicate that neuronal molecular differentiation can be influenced by extracellular vesicles.
Asunto(s)
Vesículas Extracelulares , Neuronas , Humanos , Neuronas/metabolismo , Interneuronas , Neurogénesis , Diferenciación Celular/genéticaRESUMEN
Cystatin B (CSTB) is a small protease inhibitor protein being involved in cell proliferation and neuronal differentiation. Loss-of-function mutations in CSTB gene cause progressive myoclonic epilepsy 1 (EPM1). We previously demonstrated that CSTB is locally synthesized in synaptic nerve terminals from rat brain and secreted into the media, indicating its role in synaptic plasticity. In this work, we have further investigated the involvement of CSTB in synaptic plasticity, using synaptosomes from human cerebral organoids (hCOs) as well as from rodents' brain. Our data demonstrate that CSTB is released from synaptosomes in two ways: (i) as a soluble protein and (ii) in extracellular vesicles-mediated pathway. Synaptosomes isolated from hCOs are enriched in pre-synaptic proteins and contain CSTB at all developmental stages analyzed. CSTB presence in the synaptic territories was also confirmed by immunostaining on human neurons in vitro. To investigate if the depletion of CSTB affects synaptic plasticity, we characterized the synaptosomes from EPM1 hCOs. We found that the levels of presynaptic proteins and of an initiation factor linked to local protein synthesis were both reduced in EPM1 hCOs and that the extracellular vesicles trafficking pathway was impaired. Moreover, EPM1 neurons displayed anomalous morphology with longer and more branched neurites bearing higher number of intersections and nodes, suggesting connectivity alterations. In conclusion, our data strengthen the idea that CSTB plays a critical role in the synapse physiology and reveal that pathologically low levels of CSTB may affect synaptic plasticity, leading to synaptopathy and altered neuronal morphology.