Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 357(9): e2400271, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38864840

RESUMEN

Among ruthenium complexes studied as anticancer metallodrugs, NKP-1339, NAMI-A, RM175, and RAPTA-C have already entered clinical trials due to their potent antitumor activity demonstrated in preclinical studies and reduced toxicity in comparison with platinum drugs. Considering the advantages of ruthenium-based anticancer drugs and the cytostatic activity of organometallic complexes with triazole- and coumarin-derived ligands, we set out to synthesize Ru(II) complexes of coumarin-1,2,3,-triazole hybrids (L) with the general formula [Ru(L)(p-cymene)(Cl)]ClO4. The molecular structure of the complex [Ru(2a)(p-cymene)(Cl)]ClO4 (2aRu) was determined by single-crystal X-ray diffraction, which confirmed the coordination of the ligand to the central ruthenium(II) cation by bidentate mode of coordination. Coordination with Ru(II) resulted in the enhancement of cytostatic activity in HepG2 hepatocellular carcinoma cells and PANC-1 pancreatic cancer cells. Coumarin derivative 2a positively regulated the expression and activity of c-Myc and NPM1 in RKO colon carcinoma cells, while the Ru(II) half-sandwich complex 2cRu induced downregulation of AKT and ERK signaling in PANC-1 cells concomitant with reduced intracellular levels of reactive oxygen species. Altogether, our findings indicated that coumarin-modified half-sandwich Ru(II) complexes held potential as anticancer agents against gastrointestinal malignancies.


Asunto(s)
Antineoplásicos , Proliferación Celular , Complejos de Coordinación , Cumarinas , Rutenio , Humanos , Cumarinas/farmacología , Cumarinas/síntesis química , Cumarinas/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Rutenio/química , Rutenio/farmacología , Relación Estructura-Actividad , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Células Hep G2 , Relación Dosis-Respuesta a Droga
2.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37629086

RESUMEN

Despite the advancements in targeted therapy for BRAFV600E-mutated metastatic colorectal cancer (mCRC), the development of resistance to BRAFV600E inhibition limits the response rate and durability of the treatment. Better understanding of the resistance mechanisms to BRAF inhibitors will facilitate the design of novel pharmacological strategies for BRAF-mutated mCRC. The aim of this study was to identify novel protein candidates involved in acquired resistance to BRAFV600E inhibitor vemurafenib in BRAFV600E-mutated colon cancer cells using an integrated proteomics approach. Bioinformatic analysis of obtained proteomics data indicated actin-cytoskeleton linker protein ezrin as a highly ranked protein significantly associated with vemurafenib resistance whose overexpression in the resistant cells was additionally confirmed at the gene and protein level. Ezrin inhibition by NSC305787 increased anti-proliferative and pro-apoptotic effects of vemurafenib in the resistant cells in an additive manner, which was accompanied by downregulation of CD44 expression and inhibition of AKT/c-Myc activities. We also detected an increased ezrin expression in vemurafenib-resistant melanoma cells harbouring the BRAFV600E mutation. Importantly, ezrin inhibition potentiated anti-proliferative and pro-apoptotic effects of vemurafenib in the resistant melanoma cells in a synergistic manner. Altogether, our study suggests a role of ezrin in acquired resistance to vemurafenib in colon cancer and melanoma cells carrying the BRAFV600E mutation and supports further pre-clinical and clinical studies to explore the benefits of combined BRAF inhibitors and actin-targeting drugs as a potential therapeutic approach for BRAFV600E-mutated cancers.


Asunto(s)
Neoplasias del Colon , Melanoma , Humanos , Vemurafenib/farmacología , Actinas , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Proteínas de Microfilamentos , Inhibidores de Proteínas Quinasas , Melanoma/tratamiento farmacológico , Melanoma/genética
3.
Biology (Basel) ; 12(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37106808

RESUMEN

Patients with metastatic colorectal cancer (mCRC) carrying BRAFV600E mutation have worse response to chemotherapy and poor prognosis. The BRAFV600E inhibitor vemurafenib has shown modest efficacy as monotherapy in BRAF-mutated mCRC due to the development of resistance. The aim of this study was to conduct a comparative proteomics profiling of the secretome from vemurafenib-sensitive vs. -resistant colon cancer cells harboring BRAFV600E mutation in order to identify specific secretory features potentially associated with changes in the resistant cells' phenotype. Towards this aim, we employed two complementary proteomics approaches including two-dimensional gel electrophoresis coupled with MALDI-TOF/TOF mass spectrometry and label-free quantitative LC-MS/MS analysis. Obtained results pointed to aberrant regulation of DNA replication and endoplasmic reticulum stress as the major secretome features associated with chemoresistant phenotype. Accordingly, two proteins implicated in these processes including RPA1 and HSPA5/GRP78 were discussed in more details in the context of biological networks and their importance as potential secretome targets for further functional and clinical evaluation. Expression patterns of RPA1 and HSPA5/GRP78 in tumor tissues from colon cancer patients were also found in additional in silico analyses to be associated with BRAFV600E mutation status, which opens the possibility to extrapolate our findings and their clinical implication to other solid tumors harboring BRAFV600E mutation, such as melanoma.

4.
Biomol Concepts ; 11(1): 153-171, 2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33099516

RESUMEN

Couples with infertility issues have been assisted by in vitro fertilization reproduction technologies with high success rates of 50-80%. However, complications associated with ovarian stimulation remain, such as ovarian hyperstimulation. Oocyte quality is a significant factor impacting the outcome of in vitro fertilization procedures, but other processes are also critical for fertilization success. Increasing evidence points to aberrant inflammation as one of these critical processes reflected in molecular changes, including glycosylation of proteins. Here we report results from a MALDI-TOF-MS-based glycomic profiling of the total IgG and total proteome N-glycomes isolated from the follicular fluid obtained from patients undergoing fertilization through either (1) assisted reproduction by modified natural cycle or (2) controlled ovarian stimulation (GnRH antagonist, GnRH Ant) protocols. Significant inflammatory-related differences between analyzed N-glycomes were observed from samples and correlated with the ovarian stimulation protocol used in patients.


Asunto(s)
Líquido Folicular/metabolismo , Glicómica/métodos , Inmunoglobulina G/análisis , Proteómica/métodos , Adulto , Femenino , Fertilización In Vitro , Humanos , Espectrometría de Masas , Inducción de la Ovulación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA