Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuroimage ; 300: 120858, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39317273

RESUMEN

Diffusion magnetic resonance imaging (dMRI) allows non-invasive assessment of brain tissue microstructure. Current model-based tissue microstructure reconstruction techniques require a large number of diffusion gradients, which is not clinically feasible due to imaging time constraints, and this has limited the use of tissue microstructure information in clinical settings. Recently, approaches based on deep learning (DL) have achieved promising tissue microstructure reconstruction results using clinically feasible dMRI. However, it remains unclear whether the subtle tissue changes associated with disease or age are properly preserved with DL approaches and whether DL reconstruction results can benefit clinical applications. Here, we provide the first evidence that DL approaches to tissue microstructure reconstruction yield reliable brain tissue microstructure analysis based on clinically feasible dMRI scans. Specifically, we reconstructed tissue microstructure from four different brain dMRI datasets with only 12 diffusion gradients, a clinically feasible protocol, and the neurite orientation dispersion and density imaging (NODDI) and spherical mean technique (SMT) models were considered. With these results we show that disease-related and age-dependent alterations of brain tissue were accurately identified. These findings demonstrate that DL tissue microstructure reconstruction can accurately quantify microstructural alterations in the brain based on clinically feasible dMRI.


Asunto(s)
Encéfalo , Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Adulto , Masculino , Femenino , Persona de Mediana Edad , Anciano , Procesamiento de Imagen Asistido por Computador/métodos , Adulto Joven
2.
J Biomech Eng ; 145(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37432674

RESUMEN

Strain energy and kinetic energy in the human brain were estimated by magnetic resonance elastography (MRE) during harmonic excitation of the head, and compared to characterize the effect of loading direction and frequency on brain deformation. In brain MRE, shear waves are induced by external vibration of the skull and imaged by a modified MR imaging sequence; the resulting harmonic displacement fields are typically "inverted" to estimate mechanical properties, like stiffness or damping. However, measurements of tissue motion from MRE also illuminate key features of the response of the brain to skull loading. In this study, harmonic excitation was applied in two different directions and at five different frequencies from 20 to 90 Hz. Lateral loading induced primarily left-right head motion and rotation in the axial plane; occipital loading induced anterior-posterior head motion and rotation in the sagittal plane. The ratio of strain energy to kinetic energy (SE/KE) depended strongly on both direction and frequency. The ratio of SE/KE was approximately four times larger for lateral excitation than for occipital excitation and was largest at the lowest excitation frequencies studied. These results are consistent with clinical observations that suggest lateral impacts are more likely to cause injury than occipital or frontal impacts, and also with observations that the brain has low-frequency (∼10 Hz) natural modes of oscillation. The SE/KE ratio from brain MRE is potentially a simple and powerful dimensionless metric of brain vulnerability to deformation and injury.


Asunto(s)
Encéfalo , Diagnóstico por Imagen de Elasticidad , Humanos , Encéfalo/diagnóstico por imagen , Cráneo/diagnóstico por imagen , Cráneo/fisiología , Movimiento (Física) , Cabeza , Imagen por Resonancia Magnética , Diagnóstico por Imagen de Elasticidad/métodos
3.
Artículo en Inglés | MEDLINE | ID: mdl-37994358

RESUMEN

Computational models of the human head are promising tools for estimating the impact-induced response of the brain, and thus play an important role in the prediction of traumatic brain injury. The basic constituents of these models (i.e., model geometry, material properties, and boundary conditions) are often associated with significant uncertainty and variability. As a result, uncertainty quantification (UQ), which involves quantification of the effect of this uncertainty and variability on the simulated response, becomes critical to ensure reliability of model predictions. Modern biofidelic head model simulations are associated with very high computational cost and high-dimensional inputs and outputs, which limits the applicability of traditional UQ methods on these systems. In this study, a two-stage, data-driven manifold learning-based framework is proposed for UQ of computational head models. This framework is demonstrated on a 2D subject-specific head model, where the goal is to quantify uncertainty in the simulated strain fields (i.e., output), given variability in the material properties of different brain substructures (i.e., input). In the first stage, a data-driven method based on multi-dimensional Gaussian kernel-density estimation and diffusion maps is used to generate realizations of the input random vector directly from the available data. Computational simulations of a small number of realizations provide input-output pairs for training data-driven surrogate models in the second stage. The surrogate models employ nonlinear dimensionality reduction using Grassmannian diffusion maps, Gaussian process regression to create a low-cost mapping between the input random vector and the reduced solution space, and geometric harmonics models for mapping between the reduced space and the Grassmann manifold. It is demonstrated that the surrogate models provide highly accurate approximations of the computational model while significantly reducing the computational cost. Monte Carlo simulations of the surrogate models are used for uncertainty propagation. UQ of the strain fields highlights significant spatial variation in model uncertainty, and reveals key differences in uncertainty among commonly used strain-based brain injury predictor variables.

4.
Neuroimage ; 243: 118569, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34506916

RESUMEN

In magnetic resonance (MR) imaging, a lack of standardization in acquisition often causes pulse sequence-based contrast variations in MR images from site to site, which impedes consistent measurements in automatic analyses. In this paper, we propose an unsupervised MR image harmonization approach, CALAMITI (Contrast Anatomy Learning and Analysis for MR Intensity Translation and Integration), which aims to alleviate contrast variations in multi-site MR imaging. Designed using information bottleneck theory, CALAMITI learns a globally disentangled latent space containing both anatomical and contrast information, which permits harmonization. In contrast to supervised harmonization methods, our approach does not need a sample population to be imaged across sites. Unlike traditional unsupervised harmonization approaches which often suffer from geometry shifts, CALAMITI better preserves anatomy by design. The proposed method is also able to adapt to a new testing site with a straightforward fine-tuning process. Experiments on MR images acquired from ten sites show that CALAMITI achieves superior performance compared with other harmonization approaches.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Teoría de la Información
5.
Neuroimage ; 218: 116819, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32438049

RESUMEN

The cerebellum plays a central role in sensory input, voluntary motor action, and many neuropsychological functions and is involved in many brain diseases and neurological disorders. Cerebellar parcellation from magnetic resonance images provides a way to study regional cerebellar atrophy and also provides an anatomical map for functional imaging. In a recent comparison, a multi-atlas approach proved to be superior to other parcellation methods including some based on convolutional neural networks (CNNs) which have a considerable speed advantage. In this work, we developed an alternative CNN design for cerebellar parcellation, yielding a method that achieves the leading performance to date. The proposed method was evaluated on multiple data sets to show its broad applicability, and a Singularity container has been made publicly available.


Asunto(s)
Cerebelo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Neuroimagen/métodos , Humanos , Imagen por Resonancia Magnética/métodos
6.
Neuroimage ; 220: 117062, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32592850

RESUMEN

Some cross-sectional studies suggest reduced cerebellar volumes with aging, but there have been few longitudinal studies of age changes in cerebellar subregions in cognitively healthy older adults. In this work, 2,023 magnetic resonance (MR) images of 822 cognitively normal participants from the Baltimore Longitudinal Study of Aging (BLSA) were analyzed. Participants ranged in age from 50 to 95 years (mean 70.7 years) at the baseline assessment. Follow-up intervals were 1-9 years (mean 3.7 years) for participants with two or more visits. We used a recently developed cerebellum parcellation algorithm based on convolutional neural networks to divide the cerebellum into 28 subregions. Linear mixed effects models were applied to the volume of each cerebellar subregion to investigate cross-sectional and longitudinal age effects, as well as effects of sex and their interactions, after adjusting for intracranial volume. Our findings suggest spatially varying atrophy patterns across the cerebellum with respect to age and sex both cross-sectionally and longitudinally.


Asunto(s)
Envejecimiento/fisiología , Cerebelo/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos/fisiología
7.
Neuroimage ; 183: 150-172, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30099076

RESUMEN

The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Ataxia Cerebelosa/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Niño , Estudios de Cohortes , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Masculino , Neuroimagen/normas
8.
Neuroimage ; 158: 430-440, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28669906

RESUMEN

Automatic segmentation of the thalamus can be used to measure differences and track changes in thalamic volume that may occur due to disease, injury or normal aging. An automatic thalamus segmentation algorithm incorporating features from diffusion tensor imaging (DTI) and thalamus priors constructed from multiple atlases is proposed. Multiple atlases with corresponding manual thalamus segmentations are registered to the target image and averaged to generate the thalamus prior. At each voxel in a region of interest around the thalamus, a multidimensional feature vector that includes the thalamus prior as well as a set of DTI features, including fractional anisotropy, mean diffusivity, and fiber orientation is formed. A random forest is trained to classify each voxel as belonging to the thalamus or background within the region of interest. Using a leave-one-out cross-validation on nine subjects, the proposed algorithm achieves a mean Dice score of 0.878 and 0.890 for the left and right thalami, respectively, which are higher Dice scores than the three state-of-art methods we compared to. We demonstrate the utility of the method with a pilot study exploring the difference in the thalamus fraction between 21 multiple sclerosis (MS) patients and 21 age-matched healthy controls. The left and right thalamic volumes (normalized by intracranial volumes) are larger in healthy controls by 7.6% and 7.3% respectively, compared to MS patients (though neither result is statistically significant).


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Interpretación de Imagen Asistida por Computador/métodos , Esclerosis Múltiple/patología , Tálamo/patología , Adulto , Estudios de Cohortes , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Proyectos Piloto
9.
Neuroimage ; 148: 77-102, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087490

RESUMEN

In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: (1) the sharing of a rich data set; (2) collaboration and comparison of the various avenues of research being pursued in the community; and (3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website2 as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters.


Asunto(s)
Esclerosis Múltiple/diagnóstico por imagen , Adulto , Algoritmos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Sustancia Blanca/diagnóstico por imagen
10.
Neuroimage ; 138: 197-210, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27184203

RESUMEN

Whole brain segmentation and cortical surface reconstruction are two essential techniques for investigating the human brain. Spatial inconsistences, which can hinder further integrated analyses of brain structure, can result due to these two tasks typically being conducted independently of each other. FreeSurfer obtains self-consistent whole brain segmentations and cortical surfaces. It starts with subcortical segmentation, then carries out cortical surface reconstruction, and ends with cortical segmentation and labeling. However, this "segmentation to surface to parcellation" strategy has shown limitations in various cohorts such as older populations with large ventricles. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. A modification called MaCRUISE(+) is designed to perform well when white matter lesions are present. Comparing to the benchmarks CRUISE and FreeSurfer, the surface accuracy of MaCRUISE and MaCRUISE(+) is validated using two independent datasets with expertly placed cortical landmarks. A third independent dataset with expertly delineated volumetric labels is employed to compare segmentation performance. Finally, 200MR volumetric images from an older adult sample are used to assess the robustness of MaCRUISE and FreeSurfer. The advantages of MaCRUISE are: (1) MaCRUISE constructs self-consistent voxelwise segmentations and cortical surfaces, while MaCRUISE(+) is robust to white matter pathology. (2) MaCRUISE achieves more accurate whole brain segmentations than independently conducting the multi-atlas segmentation. (3) MaCRUISE is comparable in accuracy to FreeSurfer (when FreeSurfer does not exhibit global failures) while achieving greater robustness across an older adult population. MaCRUISE has been made freely available in open source.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Técnica de Sustracción , Adulto , Algoritmos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
Neuroimage ; 127: 435-444, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26408861

RESUMEN

The cerebellum plays an important role in both motor control and cognitive function. Cerebellar function is topographically organized and diseases that affect specific parts of the cerebellum are associated with specific patterns of symptoms. Accordingly, delineation and quantification of cerebellar sub-regions from magnetic resonance images are important in the study of cerebellar atrophy and associated functional losses. This paper describes an automated cerebellar lobule segmentation method based on a graph cut segmentation framework. Results from multi-atlas labeling and tissue classification contribute to the region terms in the graph cut energy function and boundary classification contributes to the boundary term in the energy function. A cerebellar parcellation is achieved by minimizing the energy function using the α-expansion technique. The proposed method was evaluated using a leave-one-out cross-validation on 15 subjects including both healthy controls and patients with cerebellar diseases. Based on reported Dice coefficients, the proposed method outperforms two state-of-the-art methods. The proposed method was then applied to 77 subjects to study the region-specific cerebellar structural differences in three spinocerebellar ataxia (SCA) genetic subtypes. Quantitative analysis of the lobule volumes shows distinct patterns of volume changes associated with different SCA subtypes consistent with known patterns of atrophy in these genetic subtypes.


Asunto(s)
Cerebelo/patología , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Ataxias Espinocerebelosas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reconocimiento de Normas Patrones Automatizadas/métodos
12.
Neuroimage ; 119: 152-63, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26142272

RESUMEN

Spatial normalization of positron emission tomography (PET) images is essential for population studies, yet the current state of the art in PET-to-PET registration is limited to the application of conventional deformable registration methods that were developed for structural images. A method is presented for the spatial normalization of PET images that improves their anatomical alignment over the state of the art. The approach works by correcting the deformable registration result using a model that is learned from training data having both PET and structural images. In particular, viewing the structural registration of training data as ground truth, correction factors are learned by using a generalized ridge regression at each voxel given the PET intensities and voxel locations in a population-based PET template. The trained model can then be used to obtain more accurate registration of PET images to the PET template without the use of a structural image. A cross validation evaluation on 79 subjects shows that the proposed method yields more accurate alignment of the PET images compared to deformable PET-to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with ground truth segmentations.


Asunto(s)
Artefactos , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Anciano , Anciano de 80 o más Años , Compuestos de Anilina , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Reproducibilidad de los Resultados , Tiazoles
13.
Hum Brain Mapp ; 35(7): 3385-401, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24382742

RESUMEN

Cortical atrophy has been reported in a number of diseases, such as multiple sclerosis and Alzheimer's disease, that are also associated with white matter (WM) lesions. However, most cortical reconstruction techniques do not account for these pathologies, thereby requiring additional processing to correct for the effect of WM lesions. In this work, we introduce CRUISE(+), an automated process for cortical reconstruction from magnetic resonance brain images with WM lesions. The process extends previously well validated methods to allow for multichannel input images and to accommodate for the presence of WM lesions. We provide new validation data and tools for measuring the accuracy of cortical reconstruction methods on healthy brains as well as brains with multiple sclerosis lesions. Using this data, we validate the accuracy of CRUISE(+) and compare it to another state-of-the-art cortical reconstruction tool. Our results demonstrate that CRUISE(+) has superior performance in the cortical regions near WM lesions, and similar performance in other regions.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/patología , Procesamiento de Imagen Asistido por Computador , Leucoencefalopatías/patología , Adulto , Atrofia , Progresión de la Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Programas Informáticos
14.
Neuroimage Rep ; 4(1)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38370461

RESUMEN

Clinical magnetic resonance images (MRIs) lack a standard intensity scale due to differences in scanner hardware and the pulse sequences used to acquire the images. When MRIs are used for quantification, as in the evaluation of white matter lesions (WMLs) in multiple sclerosis, this lack of intensity standardization becomes a critical problem affecting both the staging and tracking of the disease and its treatment. This paper presents a study of harmonization on WML segmentation consistency, which is evaluated using an object detection classification scheme that incorporates manual delineations from both the original and harmonized MRIs. A cohort of ten people scanned on two different imaging platforms was studied. An expert rater, blinded to the image source, manually delineated WMLs on images from both scanners before and after harmonization. It was found that there is closer agreement in both global and per-lesion WML volume and spatial distribution after harmonization, demonstrating the importance of image harmonization prior to the creation of manual delineations. These results could lead to better truth models in both the development and evaluation of automated lesion segmentation algorithms.

15.
Mil Med ; 189(Suppl 3): 608-617, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38739497

RESUMEN

INTRODUCTION: Computational head injury models are promising tools for understanding and predicting traumatic brain injuries. However, most available head injury models are "average" models that employ a single set of head geometry (e.g., 50th-percentile U.S. male) without considering variability in these parameters across the human population. A significant variability of head shapes exists in U.S. Army soldiers, evident from the Anthropometric Survey of U.S. Army Personnel (ANSUR II). The objective of this study is to elucidate the effects of head shape on the predicted risk of traumatic brain injury from computational head injury models. MATERIALS AND METHODS: Magnetic resonance imaging scans of 25 human subjects are collected. These images are registered to the standard MNI152 brain atlas, and the resulting transformation matrix components (called head shape parameters) are used to quantify head shapes of the subjects. A generative machine learning model is used to generate 25 additional head shape parameter datasets to augment our database. Head injury models are developed for these head shapes, and a rapid injurious head rotation event is simulated to obtain several brain injury predictor variables (BIPVs): Peak cumulative maximum principal strain (CMPS), average CMPS, and the volume fraction of brain exceeding an injurious CMPS threshold. A Gaussian process regression model is trained between head shape parameters and BIPVs, which is then used to study the relative sensitivity of the various BIPVs on individual head shape parameters. We distinguish head shape parameters into 2 types: Scaling components ${T_{xx}}$, ${T_{yy}}$, and ${T_{zz}}$ that capture the breadth, length, and height of the head, respectively, and shearing components (${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$) that capture the relative skewness of the head shape. RESULTS: An overall positive correlation is evident between scaling components and BIPVs. Notably, a very high, positive correlation is seen between the BIPVs and the head volume. As an example, a 57% increase in peak CMPS was noted between the smallest and the largest investigated head volume parameters. The variation in shearing components ${T_{xy}},{T_{xz}},{T_{yx}},{T_{yz}},{T_{zx}}$, and ${T_{zy}}$ on average does not cause notable changes in the BIPVs. From the Gaussian process regression model, all 3 BIPVs showed an increasing trend with each of the 3 scaling components, but the BIPVs are found to be most sensitive to the height dimension of the head. From the Sobol sensitivity analysis, the ${T_{zz}}$ scaling parameter contributes nearly 60% to the total variance in peak and average CMPS; ${T_{yy}}$ contributes approximately 20%, whereas ${T_{xx}}$ contributes less than 5%. The remaining contribution is from the 6 shearing components. Unlike peak and average CMPS, the VF-CMPS BIPV is associated with relatively evenly distributed Sobol indices across the 3 scaling parameters. Furthermore, the contribution of shearing components on the total variance in this case is negligible. CONCLUSIONS: Head shape has a considerable influence on the injury predictions of computational head injury models. Available "average" head injury models based on a 50th-percentile U.S. male are likely associated with considerable uncertainty. In general, larger head sizes correspond to greater BIPV magnitudes, which point to potentially a greater injury risk under rapid neck rotation for people with larger heads.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Cabeza , Aprendizaje Automático , Imagen por Resonancia Magnética , Humanos , Masculino , Imagen por Resonancia Magnética/métodos , Cabeza/anatomía & histología , Cabeza/diagnóstico por imagen , Femenino , Adulto , Distribución Normal , Personal Militar/estadística & datos numéricos
16.
Neuroimage ; 83: 1051-62, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23927903

RESUMEN

Spinal cord segmentation is an important step in the analysis of neurological diseases such as multiple sclerosis. Several studies have shown correlations between disease progression and metrics relating to spinal cord atrophy and shape changes. Current practices primarily involve segmenting the spinal cord manually or semi-automatically, which can be inconsistent and time-consuming for large datasets. An automatic method that segments the spinal cord and cerebrospinal fluid from magnetic resonance images is presented. The method uses a deformable atlas and topology constraints to produce results that are robust to noise and artifacts. The method is designed to be easily extended to new data with different modalities, resolutions, and fields of view. Validation was performed on two distinct datasets. The first consists of magnetization transfer-prepared T2*-weighted gradient-echo MRI centered only on the cervical vertebrae (C1-C5). The second consists of T1-weighted MRI that covers both the cervical and portions of the thoracic vertebrae (C1-T4). Results were found to be highly accurate in comparison to manual segmentations. A pilot study was carried out to demonstrate the potential utility of this new method for research and clinical studies of multiple sclerosis.


Asunto(s)
Algoritmos , Atlas como Asunto , Procesamiento de Imagen Asistido por Computador/métodos , Médula Espinal/anatomía & histología , Humanos , Imagen por Resonancia Magnética
17.
J Med Imaging (Bellingham) ; 10(6): 064001, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38074632

RESUMEN

Purpose: Recent advances in magnetic resonance (MR) scanner quality and the rapidly improving nature of facial recognition software have necessitated the introduction of MR defacing algorithms to protect patient privacy. As a result, there are a number of MR defacing algorithms available to the neuroimaging community, with several appearing in just the last 5 years. While some qualities of these defacing algorithms, such as patient identifiability, have been explored in the previous works, the potential impact of defacing on neuroimage processing has yet to be explored. Approach: We qualitatively evaluate eight MR defacing algorithms on 179 subjects from the OASIS-3 cohort and 21 subjects from the Kirby-21 dataset. We also evaluate the effects of defacing on two neuroimaging pipelines-SLANT and FreeSurfer-by comparing the segmentation consistency between the original and defaced images. Results: Defacing can alter brain segmentation and even lead to catastrophic failures, which are more frequent with some algorithms, such as Quickshear, MRI_Deface, and FSL_deface. Compared to FreeSurfer, SLANT is less affected by defacing. On outputs that pass the quality check, the effects of defacing are less pronounced than those of rescanning, as measured by the Dice similarity coefficient. Conclusions: The effects of defacing are noticeable and should not be disregarded. Extra attention, in particular, should be paid to the possibility of catastrophic failures. It is crucial to adopt a robust defacing algorithm and perform a thorough quality check before releasing defaced datasets. To improve the reliability of analysis in scenarios involving defaced MRIs, it is encouraged to include multiple brain segmentation pipelines.

18.
Magn Reson Imaging ; 98: 155-163, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36702167

RESUMEN

To reduce scan time, magnetic resonance (MR) images are often acquired using 2D multi-slice protocols with thick slices that may also have gaps between them. The resulting image volumes have lower resolution in the through-plane direction than in the in-plane direction, and the through-plane resolution is in part characterized by the protocol's slice profile which acts as a through-plane point spread function (PSF). Although super-resolution (SR) has been shown to improve the visualization and down-stream processing of 2D multi-slice MR acquisitions, previous algorithms are usually unaware of the true slice profile, which may lead to sub-optimal SR performance. In this work, we present an algorithm to estimate the slice profile of a 2D multi-slice acquisition given only its own image volume without any external training data. We assume that an anatomical image is isotropic in the sense that, after accounting for a correctly estimated slice profile, the image patches along different orientations have the same probability distribution. Our proposed algorithm uses a modified generative adversarial network (GAN) where the generator network estimates the slice profile to reduce the resolution of the in-plane direction, and the discriminator network determines whether a direction is generated or real low resolution. The proposed algorithm, ESPRESO, which stands for "estimating the slice profile for resolution enhancement of a single image only", was tested with a state-of-the-art internally supervised SR algorithm. Specifically, ESPRESO is used to create training data for this SR algorithm, and results show improvements when ESPRESO is used over commonly-used PSFs.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Cintigrafía , Procesamiento de Imagen Asistido por Computador
19.
medRxiv ; 2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37293070

RESUMEN

Purpose: Recent advances in magnetic resonance (MR) scanner quality and the rapidly improving nature of facial recognition software have necessitated the introduction of MR defacing algorithms to protect patient privacy. As a result, there are a number of MR defacing algorithms available to the neuroimaging community, with several appearing in just the last five years. While some qualities of these defacing algorithms, such as patient identifiability, have been explored in previous works, the potential impact of defacing on neuroimage processing has yet to be explored. Approach: We qualitatively evaluate eight MR defacing algorithms on 179 subjects from the OASIS-3 cohort and the 21 subjects from the Kirby-21 dataset. We also evaluate the effects of defacing on two neuroimaging pipelines-SLANT and FreeSurfer-by comparing the segmentation consistency between the original and defaced images. Results: Defacing can alter brain segmentation and even lead to catastrophic failures, which are more frequent with some algorithms such as Quickshear, MRI_Deface, and FSL_deface. Compared to FreeSurfer, SLANT is less affected by defacing. On outputs that pass the quality check, the effects of defacing are less pronounced than those of rescanning, as measured by the Dice similarity coefficient. Conclusions: The effects of defacing are noticeable and should not be disregarded. Extra attention, in particular, should be paid to the possibility of catastrophic failures. It is crucial to adopt a robust defacing algorithm and perform a thorough quality check before releasing defaced datasets. To improve the reliability of analysis in scenarios involving defaced MRIs, it's encouraged to include multiple brain segmentation pipelines.

20.
Biomed Opt Express ; 14(5): 1874-1893, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37206119

RESUMEN

Retinal layer thickness is an important bio-marker for people with multiple sclerosis (PwMS). In clinical practice, retinal layer thickness changes in optical coherence tomography (OCT) are widely used for monitoring multiple sclerosis (MS) progression. Recent developments in automated retinal layer segmentation algorithms allow cohort-level retina thinning to be observed in a large study of PwMS. However, variability in these results make it difficult to identify patient-level trends; this prevents patient specific disease monitoring and treatment planning using OCT. Deep learning based retinal layer segmentation algorithms have achieved state-of-the-art accuracy, but the segmentation is performed on each individual scan without utilizing longitudinal information, which can be important in reducing segmentation error and reveal subtle changes in retinal layers. In this paper, we propose a longitudinal OCT segmentation network which achieves more accurate and consistent layer thickness measurements for PwMS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA