Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genome Res ; 30(7): 1060-1072, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32718982

RESUMEN

Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.


Asunto(s)
ARN Largo no Codificante/fisiología , Procesos de Crecimiento Celular/genética , Movimiento Celular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Canales de Potasio KCNQ/metabolismo , Anotación de Secuencia Molecular , Oligonucleótidos Antisentido , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño
2.
Mol Cancer ; 16(1): 38, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28202042

RESUMEN

BACKGROUND: Homeobox genes are master regulators of cell fate during embryonic development and their expression is altered in cancer. By regulating the balance between cell proliferation and differentiation, they maintain homeostasis of normal tissues. Here, we screened the expression of homeobox genes in mammary stem cells to establish their role in stem cells transformation in breast cancer. METHODS: Using a Homeobox Genes PCR array, we screened 83 homeobox genes in normal cancer breast stem/progenitor cells isolated by flow cytometry. The candidate gene HOXC8 epigenetic regulation was studied by DNA methylation and miRNA expression analyses. Self-renewal and differentiation of HOXC8-overexpressing or knockdown cells were assessed by flow cytometry and mammosphere, 3D matrigel and soft agar assays. Clinical relevance of in vitro findings were validated by bioinformatics analysis of patient datasets from TCGA and METABRIC studies. RESULTS: In this study we demonstrate altered expression of homeobox genes in breast cancer stem/progenitor cells. HOXC8 was consistently downregulated in stem/progenitor cells of all breast molecular subtypes, thus representing an interesting tumour suppressor candidate. We show that downregulated expression of HOXC8 is associated with DNA methylation at the gene promoter and expression of miR196 family members. Functional studies demonstrated that HOXC8 gain of function induces a decrease in the CD44+/CD24-/low cancer stem cell population and proportion of chemoresistant cells, with a concomitant increase in CD24+ differentiated cells. Increased HOXC8 levels also decrease the ability of cancer cells to form mammospheres and to grow in anchorage-independent conditions. Furthermore, loss of HOXC8 in non-tumorigenic mammary epithelial cells expands the cancer stem/progenitor cells pool, increases stem cell self-renewal, prevents differentiation induced by retinoic acid and induces a transformed phenotype. CONCLUSIONS: Taken together, our study points to an important role of homeobox genes in breast cancer stem/progenitor cell function and establishes HOXC8 as a suppressor of stemness and transformation in the mammary gland lineage.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , Células Madre Neoplásicas/citología , Neoplasias de la Mama/genética , Diferenciación Celular , Línea Celular Tumoral , Metilación de ADN , Regulación hacia Abajo , Resistencia a Antineoplásicos , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Células Madre Neoplásicas/metabolismo , Regiones Promotoras Genéticas
3.
Dev Biol ; 396(2): 214-23, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25446536

RESUMEN

During limb development Pax3 positive myoblasts delaminate from the hypaxial dermomyotome of limb level somites and migrate into the limb bud where they form the dorsal and ventral muscle masses. Only then do they begin to differentiate and express markers of myogenic commitment and determination such as Myf5 and MyoD. However the signals regulating this process remain poorly characterised. We show that FGF18, which is expressed in the distal mesenchyme of the limb bud, induces premature expression of both Myf5 and MyoD and that blocking FGF signalling also inhibits endogenous MyoD expression. This expression is mediated by ERK MAP kinase but not PI3K signalling. We also show that retinoic acid (RA) can inhibit the myogenic activity of FGF18 and that blocking RA signalling allows premature induction of MyoD by FGF18 at HH19. We propose a model where interactions between FGF18 in the distal limb and retinoic acid in the proximal limb regulate the timing of myogenic gene expression during limb bud development.


Asunto(s)
Diferenciación Celular/fisiología , Extremidades/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Biológicos , Mioblastos/fisiología , Tretinoina/metabolismo , Animales , Embrión de Pollo , Cartilla de ADN/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación in Situ , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Fosforilación
4.
Stem Cell Res Ther ; 15(1): 128, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693576

RESUMEN

BACKGROUND: Testicular germ cell tumours (TGCTs) represent a clinical challenge; they are most prevalent in young individuals and are triggered by molecular mechanisms that are not fully understood. The origin of TGCTs can be traced back to primordial germ cells that fail to mature during embryonic development. These cells express high levels of pluripotency factors, including the transcription factor NANOG which is highly expressed in TGCTs. Gain or amplification of the NANOG locus is common in advanced tumours, suggesting a key role for this master regulator of pluripotency in TGCT stemness and malignancy. METHODS: In this study, we analysed the expression of microRNAs (miRNAs) that are regulated by NANOG in TGCTs via integrated bioinformatic analyses of data from The Cancer Genome Atlas and NANOG chromatin immunoprecipitation in human embryonic stem cells. Through gain-of-function experiments, MIR9-2 was further investigated as a novel tumour suppressor regulated by NANOG. After transfection with MIR9-2 mimics, TGCT cells were analysed for cell proliferation, invasion, sensitivity to cisplatin, and gene expression signatures by RNA sequencing. RESULTS: For the first time, we identified 86 miRNAs regulated by NANOG in TGCTs. Among these, 37 miRNAs were differentially expressed in NANOG-high tumours, and they clustered TGCTs according to their subtypes. Binding of NANOG within 2 kb upstream of the MIR9-2 locus was associated with a negative regulation. Low expression of MIR9-2 was associated with tumour progression and MIR9-2-5p was found to play a role in the control of tumour stemness. A gain of function of MIR9-2-5p was associated with reduced proliferation, invasion, and sensitivity to cisplatin in both embryonal carcinoma and seminoma tumours. MIR9-2-5p expression in TGCT cells significantly reduced the expression of genes regulating pluripotency and cell division, consistent with its functional effect on reducing cancer stemness. CONCLUSIONS: This study provides new molecular insights into the role of NANOG as a key determinant of pluripotency in TGCTs through the regulation of MIR9-2-5p, a novel epigenetic modulator of cancer stemness. Our data also highlight the potential negative feedback mediated by MIR9-2-5p on NANOG expression, which could be exploited as a therapeutic strategy for the treatment of TGCTs.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs , Proteína Homeótica Nanog , Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Humanos , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/metabolismo , Neoplasias de Células Germinales y Embrionarias/patología , Neoplasias Testiculares/patología , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/genética , Masculino , Línea Celular Tumoral , Proliferación Celular/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Cisplatino/farmacología
5.
Methods Mol Biol ; 2649: 21-54, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258856

RESUMEN

Experiments involving metagenomics data are become increasingly commonplace. Processing such data requires a unique set of considerations. Quality control of metagenomics data is critical to extracting pertinent insights. In this chapter, we outline some considerations in terms of study design and other confounding factors that can often only be realized at the point of data analysis.In this chapter, we outline some basic principles of quality control in metagenomics, including overall reproducibility and some good practices to follow. The general quality control of sequencing data is then outlined, and we introduce ways to process this data by using bash scripts and developing pipelines in Snakemake (Python).A significant part of quality control in metagenomics is in analyzing the data to ensure you can spot relationships between variables and to identify when they might be confounded. This chapter provides a walkthrough of analyzing some microbiome data (in the R statistical language) and demonstrates a few days to identify overall differences and similarities in microbiome data. The chapter is concluded by discussing remarks about considering taxonomic results in the context of the study and interrogating sequence alignments using the command line.


Asunto(s)
Metagenómica , Microbiota , Reproducibilidad de los Resultados , Metagenómica/métodos , Biología Computacional/métodos , Proyectos de Investigación
6.
PLoS One ; 18(3): e0272174, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36920900

RESUMEN

Cholesteatoma is a rare progressive disease of the middle ear. Most cases are sporadic, but some patients report a positive family history. Identifying functionally important gene variants associated with this disease has the potential to uncover the molecular basis of cholesteatoma pathology with implications for disease prevention, surveillance, or management. We performed an observational WES study of 21 individuals treated for cholesteatoma who were recruited from ten multiply affected families. These family studies were complemented with gene-level mutational burden analysis. We also applied functional enrichment analyses to identify shared properties and pathways for candidate genes and their products. Filtered data collected from pairs and trios of participants within the ten families revealed 398 rare, loss of function (LOF) variants co-segregating with cholesteatoma in 389 genes. We identified six genes DENND2C, DNAH7, NBEAL1, NEB, PRRC2C, and SHC2, for which we found LOF variants in two or more families. The parallel gene-level analysis of mutation burden identified a significant mutation burden for the genes in the DNAH gene family, which encode products involved in ciliary structure. Functional enrichment analyses identified common pathways for the candidate genes which included GTPase regulator activity, calcium ion binding, and degradation of the extracellular matrix. The number of candidate genes identified and the locus heterogeneity that we describe within and between multiply affected families suggest that the genetic architecture for familial cholesteatoma is complex.


Asunto(s)
Exoma , Modalidades de Fisioterapia , Humanos , Secuenciación del Exoma , Linaje , Exoma/genética , Predisposición Genética a la Enfermedad
7.
Curr Oncol ; 30(1): 157-170, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36661662

RESUMEN

Clinical management of prostate cancer is challenging because of its highly variable natural history and so there is a need for improved predictors of outcome in non-metastatic men at the time of diagnosis. In this study we calculated the model score from the leading clinical multivariable model, PREDICT prostate, and the poor prognosis DESNT molecular subtype, in a combined expression and clinical dataset that were taken from malignant tissue at prostatectomy (n = 359). Both PREDICT score (p < 0.0001, IQR HR = 1.59) and DESNT score (p < 0.0001, IQR HR = 2.08) were significant predictors for time to biochemical recurrence. A joint model combining the continuous PREDICT and DESNT score (p < 0.0001, IQR HR = 1.53 and 1.79, respectively) produced a significantly improved predictor than either model alone (p < 0.001). An increased probability of mortality after diagnosis, as estimated by PREDICT, was characterised by upregulation of cell-cycle related pathways and the downregulation of metabolism and cholesterol biosynthesis. The DESNT molecular subtype has distinct biological characteristics to those associated with the PREDICT model. We conclude that the inclusion of biological information alongside current clinical prognostic tools has the potential to improve the ability to choose the optimal treatment pathway for a patient.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/diagnóstico , Resultado del Tratamiento , Pronóstico , Antígeno Prostático Específico
8.
Life (Basel) ; 11(11)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34833048

RESUMEN

The Prostate Urine Risk (PUR) biomarker is a four-group classifier for predicting outcome in patients prior to biopsy and for men on active surveillance. The four categories correspond to the probabilities of the presence of normal tissue (PUR-1), D'Amico low-risk (PUR-2), intermediate-risk (PUR-3), and high-risk (PUR-4) prostate cancer. In the current study we investigate how the PUR-4 status is linked to Gleason grade, prostate volume, and tumor volume as assessed from biopsy (n = 215) and prostatectomy (n = 9) samples. For biopsy data PUR-4 status alone was linked to Gleason Grade group (GG) (Spearman's, ρ = 0.58, p < 0.001 trend). To assess the impact of tumor volume each GG was dichotomized into Small and Large volume cancers relative to median volume. For GG1 (Gleason Pattern 3 + 3) cancers volume had no impact on PUR-4 status. In contrast for GG2 (3 + 4) and GG3 (4 + 3) cancers PUR-4 levels increased in large volume cancers with statistical significance observed for GG2 (p = 0.005; Games-Howell). These data indicated that PUR-4 status is linked to the presence of Gleason Pattern 4. To test this observation tumor burden and Gleason Pattern were assessed in nine surgically removed and sectioned prostates allowing reconstruction of 3D maps. PUR-4 was not correlated with Gleason Pattern 3 amount, total tumor volume or prostate size. A strong correlation was observed between amount of Gleason Pattern 4 tumor and PUR-4 signature (r = 0.71, p = 0.034, Pearson's). These observations shed light on the biological significance of the PUR biomarker and support its use as a non-invasive means of assessing the presence of clinically significant prostate cancer.

9.
Nat Commun ; 11(1): 168, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924754

RESUMEN

Variations in transcription start site (TSS) selection reflect diversity of preinitiation complexes and can impact on post-transcriptional RNA fates. Most metazoan polymerase II-transcribed genes carry canonical initiation with pyrimidine/purine (YR) dinucleotide, while translation machinery-associated genes carry polypyrimidine initiator (5'-TOP or TCT). By addressing the developmental regulation of TSS selection in zebrafish we uncovered a class of dual-initiation promoters in thousands of genes, including snoRNA host genes. 5'-TOP/TCT initiation is intertwined with canonical initiation and used divergently in hundreds of dual-initiation promoters during maternal to zygotic transition. Dual-initiation in snoRNA host genes selectively generates host and snoRNA with often different spatio-temporal expression. Dual-initiation promoters are pervasive in human and fruit fly, reflecting evolutionary conservation. We propose that dual-initiation on shared promoters represents a composite promoter architecture, which can function both coordinately and divergently to diversify RNAs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética , Animales , Secuencia de Bases , Drosophila/genética , Drosophila/crecimiento & desarrollo , Humanos , ARN/genética , ARN/fisiología , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/fisiología , ARN no Traducido/genética , ARN no Traducido/fisiología , Elementos Reguladores de la Transcripción , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Cigoto
10.
Endocr Relat Cancer ; 22(3): R107-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25870249

RESUMEN

Prostate cancer (PCa) is the most common malignancy affecting men in the western world. Although radical prostatectomy and radiation therapy can successfully treat PCa in the majority of patients, up to ~30% will experience local recurrence or metastatic disease. Prostate carcinogenesis and progression is typically an androgen-dependent process. For this reason, therapies for recurrent PCa target androgen biosynthesis and androgen receptor function. Such androgen deprivation therapies (ADT) are effective initially, but the duration of response is typically ≤24 months. Although ADT and taxane-based chemotherapy have delivered survival benefits, metastatic PCa remains incurable. Therefore, it is essential to establish the cellular and molecular mechanisms that enable localized PCas to invade and disseminate. It has long been accepted that metastases require angiogenesis. In the present review, we examine the essential role for angiogenesis in PCa metastases, and we focus in particular on the current understanding of the regulation of vascular endothelial growth factor (VEGF) in localized and metastatic PCa. We highlight recent advances in understanding the role of VEGF in regulating the interaction of cancer cells with tumor-associated immune cells during the metastatic process of PCa. We summarize the established mechanisms of transcriptional and post-transcriptional regulation of VEGF in PCa cells and outline the molecular insights obtained from preclinical animal models of PCa. Finally, we summarize the current state of anti-angiogenesis therapies for PCa and consider how existing therapies impact VEGF signaling.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Humanos , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA