Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240254

RESUMEN

Traumatic brain injury (TBI) remains one of the leading causes of death and disability in young adults worldwide. Despite growing evidence and advances in our knowledge regarding the multifaceted pathophysiology of TBI, the underlying mechanisms, though, are still to be fully elucidated. Whereas initial brain insult involves acute and irreversible primary damage to the brain, the processes of subsequent secondary brain injury progress gradually over months to years, providing a window of opportunity for therapeutic interventions. To date, extensive research has been focused on the identification of druggable targets involved in these processes. Despite several decades of successful pre-clinical studies and very promising results, when transferred to clinics, these drugs showed, at best, modest beneficial effects, but more often, an absence of effects or even very harsh side effects in TBI patients. This reality has highlighted the need for novel approaches that will be able to respond to the complexity of the TBI and tackle TBI pathological processes on multiple levels. Recent evidence strongly indicates that nutritional interventions may provide a unique opportunity to enhance the repair processes after TBI. Dietary (poly)phenols, a big class of compounds abundantly found in fruits and vegetables, have emerged in the past few years as promising agents to be used in TBI settings due to their proven pleiotropic effects. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by a state-of-the-art summary of the studies that have evaluated the efficacy of (poly)phenols administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. The current limitations on our knowledge concerning (poly)phenol effects in TBI in the pre-clinical studies are also discussed.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Neoplasias Encefálicas , Animales , Fenoles/uso terapéutico , Encéfalo/patología , Modelos Animales , Neoplasias Encefálicas/patología
2.
Hum Mol Genet ; 28(13): 2174-2188, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30816415

RESUMEN

The understanding of the natural history of Alzheimer's disease (AD) and temporal trajectories of in vivo molecular mechanisms requires longitudinal approaches. A behavioral and multimodal imaging study was performed at 4/8/12 and 16 months of age in a triple transgenic mouse model of AD (3xTg-AD). Behavioral assessment included the open field and novel object recognition tests. Molecular characterization evaluated hippocampal levels of amyloid ß (Aß) and hyperphosphorylated tau. Magnetic resonance imaging (MRI) included assessment of hippocampal structural integrity, blood-brain barrier (BBB) permeability and neurospectroscopy to determine levels of the endogenous neuroprotector taurine. Longitudinal brain amyloid accumulation was assessed using 11C Pittsburgh compound B positron emission tomography (PET), and neuroinflammation/microglia activation was investigated using 11C-PK1195. We found altered locomotor activity at months 4/8 and 16 months and recognition memory impairment at all time points. Substantial early reduction of hippocampal volume started at month 4 and progressed over 8/12 and 16 months. Hippocampal taurine levels were significantly decreased in the hippocampus at months 4/8 and 16. No differences were found for amyloid and neuroinflammation with PET, and BBB was disrupted only at month 16. In summary, 3xTg-AD mice showed exploratory and recognition memory impairments, early hippocampal structural loss, increased Aß and hyperphosphorylated tau and decreased levels of taurine. In sum, the 3xTg-AD animal model mimics pathological and neurobehavioral features of AD, with early-onset recognition memory loss and MRI-documented hippocampal damage. The early-onset profile suggests temporal windows and opportunities for therapeutic intervention, targeting endogenous neuroprotectors such as taurine.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Hipocampo/metabolismo , Taurina/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Biomarcadores , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Hipocampo/diagnóstico por imagen , Inflamación/genética , Inflamación/metabolismo , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Imagen Molecular , Imagen Multimodal , Presenilina-1/genética , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Food Funct ; 15(15): 7812-7827, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38967492

RESUMEN

Circulating metabolites resulting from colonic metabolism of dietary (poly)phenols are highly abundant in the bloodstream, though still marginally explored, particularly concerning their brain accessibility. Our goal is to disclose (poly)phenol metabolites' blood-brain barrier (BBB) transport, in vivo and in vitro, as well as their role at BBB level. For three selected metabolites, benzene-1,2-diol-3-sulfate/benzene-1,3-diol-2-sulfate (pyrogallol-sulfate - Pyr-sulf), benzene-1,3-diol-6-sulfate (phloroglucinol-sulfate - Phlo-sulf), and phenol-3-sulfate (resorcinol-sulfate - Res-sulf), BBB transport was assessed in human brain microvascular endothelial cells (HBMEC). Their potential in modulating in vitro BBB properties at circulating concentrations was also studied. Metabolites' fate towards the brain, liver, kidney, urine, and blood was disclosed in Wistar rats upon injection. Transport kinetics in HBMEC highlighted different BBB permeability rates, where Pyr-sulf emerged as the most in vitro BBB permeable metabolite. Pyr-sulf was also the most potent regarding BBB properties improvement, namely increased beta(ß)-catenin membrane expression and reduction of zonula occludens-1 membrane gaps. Whereas no differences were observed for transferrin, increased expression of caveolin-1 upon Pyr-sulf and Res-sulf treatments was found. Pyr-sulf was also capable of modulating gene and protein expression of some solute carrier transporters. Notably, each of the injected metabolites exhibited a unique tissue distribution in vivo, with the remarkable ability to almost immediately reach the brain.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Células Endoteliales , Ratas Wistar , Barrera Hematoencefálica/metabolismo , Animales , Humanos , Ratas , Encéfalo/metabolismo , Masculino , Células Endoteliales/metabolismo , Transporte Biológico , Polifenoles/metabolismo , Peso Molecular
4.
Mol Nutr Food Res ; 66(21): e2100959, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34964254

RESUMEN

SCOPE: Diets rich in (poly)phenols have been associated with positive effects on neurodegenerative disorders, such as Parkinson's disease (PD). Several low-molecular weight (poly)phenol metabolites (LMWPM) are found in the plasma after consumption of (poly)phenol-rich food. It is expected that LMWPM, upon reaching the brain, may have beneficial effects against both oxidative stress and neuroinflammation, and possibly attenuate cell death mechanisms relate to the loss of dopaminergic neurons in PD. METHODS AND RESULTS: This study investigates the neuroprotective potential of two blood-brain barrier permeant LMWPM, catechol-O-sulfate (cat-sulf), and pyrogallol-O-sulfate (pyr-sulf), in a human 3D cell model of PD. Neurospheroids were generated from LUHMES neuronal precursor cells and challenged by 1-methyl-4-phenylpyridinium (MPP+ ) to induce neuronal stress. LMWPM pretreatments were differently neuroprotective towards MPP+ insult, presenting distinct effects on the neuronal transcriptome. Particularly, cat-sulf pretreatment appeared to boost counter-regulatory defense mechanisms (preconditioning). When MPP+ is applied, both LMWPM positively modulated glutathione metabolism and heat-shock response, as also favorably shifting the balance of pro/anti-apoptotic proteins. CONCLUSIONS: Our findings point to the potential of LMWPM to trigger molecular mechanisms that help dopaminergic neurons to cope with a subsequent toxic insult. They are promising molecules to be further explored in the context of preventing and attenuating parkinsonian neurodegeneration.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Fenol/metabolismo , Neuroprotección , 1-Metil-4-fenilpiridinio/toxicidad , 1-Metil-4-fenilpiridinio/metabolismo , Neuronas Dopaminérgicas , Sulfatos/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo
5.
Brain Plast ; 6(2): 193-214, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33782650

RESUMEN

The world of (poly)phenols arising from dietary sources has been significantly amplified with the discovery of low molecular weight (LMW) (poly)phenol metabolites resulting from phase I and phase II metabolism and microbiota transformations. These metabolites, which are known to reach human circulation have been studied to further explore their interesting properties, especially regarding neuroprotection. Nevertheless, once in circulation, their distribution to target tissues, such as the brain, relies on their ability to cross the blood-brain barrier (BBB), one of the most controlled barriers present in humans. This represents a key step of an underexplored journey towards the brain. Present review highlights the main findings related to the ability of LMW (poly)phenol metabolites to reach the brain, considering different studies: in silico, in vitro, and in vivo. The mechanisms associated with the transport of these LMW (poly)phenol metabolites across the BBB and possible transporters will be discussed. Overall, the transport of these LMW (poly)phenol metabolites is crucial to elucidate which compounds may exert direct neuroprotective effects, so it is imperative to continue dissecting their potential to cross the BBB and the mechanisms behind their permeation.

6.
Mol Neurobiol ; 58(7): 3043-3060, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33606195

RESUMEN

The concept 'the retina as a window to the brain' has been increasingly explored in Alzheimer´s disease (AD) in recent years, since some patients present visual alterations before the first symptoms of dementia. The retina is an extension of the brain and can be assessed by noninvasive methods. However, assessing the retina for AD diagnosis is still a matter of debate. Using the triple transgenic mouse model of AD (3xTg-AD; males), this study was undertaken to investigate whether the retina and brain (hippocampus and cortex) undergo similar molecular and cellular changes during the early stages (4 and 8 months) of the pathology, and if the retina can anticipate the alterations occurring in the brain. We assessed amyloid-beta (Aß) and hyperphosphorylated tau (p-tau) levels, barrier integrity, cell death, neurotransmitter levels, and glial changes. Overall, the retina, hippocampus, and cortex of 3xTg-AD are not significantly affected at these early stages. However, we detected a few differential changes in the retina and brain regions, and particularly a different profile in microglia branching in the retina and hippocampus, only at 4 months, where the number and length of the processes decreased in the retina and increased in the hippocampus. In summary, at the early stages of pathology, the retina, hippocampus, and cortex are not significantly affected but already present some molecular and cellular alterations. The retina did not mirror the changes detected in the brain, and these observations should be taking into account when using the retina as a potential diagnostic tool for AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Retina/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Diferenciación Celular/fisiología , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Técnicas de Cultivo de Órganos , Retina/patología
7.
J Agric Food Chem ; 68(7): 1790-1807, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31241945

RESUMEN

Age-associated pathophysiological changes such as neurodegenerative diseases are multifactorial conditions with increasing incidence and no existing cure. The possibility of altering the progression and development of these multifactorial diseases through diet is an attractive approach with increasing supporting data. Epidemiological and clinical studies have highlighted the health potential of diets rich in fruits and vegetables. Such food sources are rich in (poly)phenols, natural compounds increasingly associated with health benefits, having the potential to prevent or retard the development of various diseases. However, absorption and the blood concentration of (poly)phenols is very low when compared with their corresponding (poly)phenolic metabolites. Therefore, these serum-bioavailable metabolites are much more promising candidates to overcome cellular barriers and reach target tissues, such as the brain. Bearing this in mind, it will be reviewed that the molecular mechanisms underlying (poly)phenolic metabolites effects, range from 0.1 to <50 µM and their role on neuroinflammation, a central hallmark in neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas/dietoterapia , Enfermedades Neurodegenerativas/inmunología , Extractos Vegetales/metabolismo , Polifenoles/metabolismo , Animales , Frutas/química , Frutas/metabolismo , Humanos , Peso Molecular , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Extractos Vegetales/química , Polifenoles/química , Verduras/química , Verduras/metabolismo
8.
Mol Neurobiol ; 56(8): 5416-5435, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30612332

RESUMEN

Alzheimer's disease is the most frequent cause of dementia worldwide, representing a global health challenge, with a massive impact on the quality of life of Alzheimer's disease patients and their relatives. The diagnosis of Alzheimer's disease constitutes a real challenge, because the symptoms manifest years after the first degenerative changes occurring in the brain and the diagnosis is based on invasive and/or expensive techniques. Therefore, there is an urgent need to identify new reliable biomarkers to detect Alzheimer's disease at an early stage. Taking into account the evidence for visual deficits in Alzheimer's disease patients, sometimes even before the appearance of the first disease symptoms, and that the retina is an extension of the brain, the concept of the retina as a window to look into the brain or a mirror of the brain has received increasing interest in recent years. However, only a few studies have assessed the changes occurring in the retina and the brain at the same time points. Unlike previous reviews on this subject, which are mainly focused on brain changes, we organized this review by comprehensively summarizing findings related with structural, functional, cellular, and molecular parameters in the retina reported in both Alzheimer's disease patients and animal models. Moreover, we separated the studies that assessed only the retina, and those that assessed both the retina and brain, which are few but allow establishing correlations between the retina and brain. This review also highlights some inconsistent results in the literature as well as relevant missing gaps in this field.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Retina/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Animales , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Humanos , Modelos Biológicos , Retina/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA