Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Physiol Rev ; 91(2): 555-602, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21527732

RESUMEN

Axons are generally considered as reliable transmission cables in which stable propagation occurs once an action potential is generated. Axon dysfunction occupies a central position in many inherited and acquired neurological disorders that affect both peripheral and central neurons. Recent findings suggest that the functional and computational repertoire of the axon is much richer than traditionally thought. Beyond classical axonal propagation, intrinsic voltage-gated ionic currents together with the geometrical properties of the axon determine several complex operations that not only control signal processing in brain circuits but also neuronal timing and synaptic efficacy. Recent evidence for the implication of these forms of axonal computation in the short-term dynamics of neuronal communication is discussed. Finally, we review how neuronal activity regulates both axon morphology and axonal function on a long-term time scale during development and adulthood.


Asunto(s)
Axones/fisiología , Potenciales de Acción/fisiología , Animales , Axones/patología , Proliferación Celular , Canalopatías/patología , Fenómenos Electrofisiológicos , Humanos , Canales Iónicos/fisiología , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología
2.
Cereb Cortex ; 25(8): 2282-94, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24610121

RESUMEN

Axon properties, including action potential initiation and modulation, depend on both AIS integrity and the regulation of ion channel expression in the AIS. Alteration of the axon initial segment (AIS) has been implicated in neurodegenerative, psychiatric, and brain trauma diseases, thus identification of the physiological mechanisms that regulate the AIS is required to understand and circumvent AIS alterations in pathological conditions. Here, we show that the purinergic P2X7 receptor and its agonist, adenosine triphosphate (ATP), modulate both structural proteins and ion channel density at the AIS in cultured neurons and brain slices. In cultured hippocampal neurons, an increment of extracellular ATP concentration or P2X7-green fluorescent protein (GFP) expression reduced the density of ankyrin G and voltage-gated sodium channels at the AIS. This effect is mediated by P2X7-regulated calcium influx and calpain activation, and impaired by P2X7 inhibition with Brilliant Blue G (BBG), or P2X7 suppression. Electrophysiological studies in brain slices showed that P2X7-GFP transfection decreased both sodium current amplitude and intrinsic neuronal excitability, while P2X7 inhibition had the opposite effect. Finally, inhibition of P2X7 with BBG prevented AIS disruption after ischemia/reperfusion in rats. In conclusion, our study demonstrates an involvement of P2X7 receptors in the regulation of AIS mediated neuronal excitability in physiological and pathological conditions.


Asunto(s)
Adenosina Trifosfato/metabolismo , Axones/fisiología , Isquemia Encefálica/fisiopatología , Encéfalo/fisiopatología , Receptores Purinérgicos P2X7/metabolismo , Animales , Ancirinas/metabolismo , Axones/patología , Bencenosulfonatos/farmacología , Encéfalo/patología , Isquemia Encefálica/patología , Calcio/metabolismo , Calpaína/metabolismo , Hipoxia de la Célula/fisiología , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Antagonistas del Receptor Purinérgico P2X/farmacología , Ratas Wistar , Técnicas de Cultivo de Tejidos , Canales de Sodio Activados por Voltaje/metabolismo
3.
Eur J Neurosci ; 41(3): 293-304, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25394682

RESUMEN

Synaptic transmission usually depends on action potentials (APs) in an all-or-none (digital) fashion. Recent studies indicate, however, that subthreshold presynaptic depolarization may facilitate spike-evoked transmission, thus creating an analog modulation of spike-evoked synaptic transmission, also called analog-digital (AD) synaptic facilitation. Yet, the underlying mechanisms behind this facilitation remain unclear. We show here that AD facilitation at rat CA3-CA3 synapses is time-dependent and requires long presynaptic depolarization (5-10 s) for its induction. This depolarization-induced AD facilitation (d-ADF) is blocked by the specific Kv1.1 channel blocker dendrotoxin-K. Using fast voltage-imaging of the axon, we show that somatic depolarization used for induction of d-ADF broadened the AP in the axon through inactivation of Kv1.1 channels. Somatic depolarization enhanced spike-evoked calcium signals in presynaptic terminals, but not basal calcium. In conclusion, axonal Kv1.1 channels determine glutamate release in CA3 neurons in a time-dependent manner through the control of the presynaptic spike waveform.


Asunto(s)
Potenciales de Acción/fisiología , Región CA3 Hipocampal/fisiología , Canal de Potasio Kv.1.1/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Región CA3 Hipocampal/efectos de los fármacos , Calcio/metabolismo , Quelantes del Calcio/farmacología , Ácido Egtácico/farmacología , Ácido Glutámico/metabolismo , Canal de Potasio Kv.1.1/antagonistas & inhibidores , Modelos Neurológicos , Técnicas de Placa-Clamp , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ratas Wistar , Sodio/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Tiempo , Técnicas de Cultivo de Tejidos
4.
Cell Mol Life Sci ; 70(1): 105-20, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22763697

RESUMEN

Neuronal action potentials are generated through voltage-gated sodium channels, which are tethered by ankyrinG at the membrane of the axon initial segment (AIS). Despite the importance of the AIS in the control of neuronal excitability, the cellular and molecular mechanisms regulating sodium channel expression at the AIS remain elusive. Our results show that GSK3α/ß and ß-catenin phosphorylated by GSK3 (S33/37/T41) are localized at the AIS and are new components of this essential neuronal domain. Pharmacological inhibition of GSK3 or ß-catenin knockdown with shRNAs decreased the levels of phosphorylated-ß-catenin, ankyrinG, and voltage-gated sodium channels at the AIS, both "in vitro" and "in vivo", therefore diminishing neuronal excitability as evaluated via sodium current amplitude and action potential number. Thus, our results suggest a mechanism for the modulation of neuronal excitability through the control of sodium channel density by GSK3 and ß-catenin at the AIS.


Asunto(s)
Axones/metabolismo , Glucógeno Sintasa Quinasa 3/fisiología , Canales de Sodio Activados por Voltaje/metabolismo , beta Catenina/fisiología , Potenciales de Acción , Animales , Ancirinas/metabolismo , Axones/fisiología , Glucógeno Sintasa Quinasa 3/análisis , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Ratones , Microtúbulos/metabolismo , Fosforilación , Interferencia de ARN , Canales de Sodio Activados por Voltaje/fisiología , beta Catenina/análisis , beta Catenina/antagonistas & inhibidores
5.
Neuron ; 56(6): 1048-60, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18093526

RESUMEN

In the cortex, synaptic latencies display small variations ( approximately 1-2 ms) that are generally considered to be negligible. We show here that the synaptic latency at monosynaptically connected pairs of L5 and CA3 pyramidal neurons is determined by the presynaptic release probability (Pr): synaptic latency being inversely correlated with the amplitude of the postsynaptic current and sensitive to manipulations of Pr. Changes in synaptic latency were also observed when Pr was physiologically regulated in short- and long-term synaptic plasticity. Paired-pulse depression and facilitation were respectively associated with increased and decreased synaptic latencies. Similarly, latencies were prolonged following induction of presynaptic LTD and reduced after LTP induction. We show using the dynamic-clamp technique that the observed covariation in latency and synaptic strength is a synergistic combination that significantly affects postsynaptic spiking. In conclusion, amplitude-related variation in latency represents a putative code for short- and long-term synaptic dynamics in cortical networks.


Asunto(s)
Plasticidad Neuronal/fisiología , Neuronas/fisiología , Dinámicas no Lineales , Tiempo de Reacción/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Animales Recién Nacidos , Corteza Cerebral/citología , Simulación por Computador , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Masculino , Modelos Neurológicos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/efectos de la radiación , Técnicas de Placa-Clamp , Quinoxalinas/farmacología , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/efectos de la radiación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/efectos de la radiación
6.
J Physiol ; 589(Pt 15): 3753-73, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21624967

RESUMEN

Hyperpolarization-activated cyclic nucleotide modulated current (I(h)) sets resonance frequency within the θ-range (5­12 Hz) in pyramidal neurons. However, its precise contribution to the temporal fidelity of spike generation in response to stimulation of excitatory or inhibitory synapses remains unclear. In conditions where pharmacological blockade of I(h) does not affect synaptic transmission, we show that postsynaptic h-channels improve spike time precision in CA1 pyramidal neurons through two main mechanisms. I(h) enhances precision of excitatory postsynaptic potential (EPSP)--spike coupling because I(h) reduces peak EPSP duration. I(h) improves the precision of rebound spiking following inhibitory postsynaptic potentials (IPSPs) in CA1 pyramidal neurons and sets pacemaker activity in stratum oriens interneurons because I(h) accelerates the decay of both IPSPs and after-hyperpolarizing potentials (AHPs). The contribution of h-channels to intrinsic resonance and EPSP waveform was comparatively much smaller in CA3 pyramidal neurons. Our results indicate that the elementary mechanisms by which postsynaptic h-channels control fidelity of spike timing at the scale of individual neurons may account for the decreased theta-activity observed in hippocampal and neocortical networks when h-channel activity is pharmacologically reduced.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Neocórtex/fisiología , Neuronas/fisiología , Canales de Potasio/fisiología , Células Piramidales/fisiología , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Estimulación Eléctrica/métodos , Electrofisiología/métodos , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Neocórtex/efectos de los fármacos , Neuronas/efectos de los fármacos , Canales de Potasio/metabolismo , Células Piramidales/efectos de los fármacos , Pirimidinas/farmacología , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
7.
Biochem Biophys Res Commun ; 411(2): 329-34, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21726526

RESUMEN

Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca(++) depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca(++) could bind the Nav1.1 C-terminal region with micromolar affinity.


Asunto(s)
Encéfalo/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Sodio/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Encéfalo/citología , Células HEK293 , Humanos , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.1 , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Ratas , Canales de Sodio/genética , Espectrometría de Fluorescencia , Técnicas del Sistema de Dos Híbridos
8.
Nat Commun ; 6: 10163, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26657943

RESUMEN

In the mammalian brain, synaptic transmission usually depends on presynaptic action potentials (APs) in an all-or-none (or digital) manner. Recent studies suggest, however, that subthreshold depolarization in the presynaptic cell facilitates spike-evoked transmission, thus creating an analogue modulation of a digital process (or analogue-digital (AD) modulation). At most synapses, this process is slow and not ideally suited for the fast dynamics of neural networks. We show here that transmission at CA3-CA3 and L5-L5 synapses can be enhanced by brief presynaptic hyperpolarization such as an inhibitory postsynaptic potential (IPSP). Using dual soma-axon patch recordings and live imaging, we find that this hyperpolarization-induced AD facilitation (h-ADF) is due to the recovery from inactivation of Nav channels controlling AP amplitude in the axon. Incorporated in a network model, h-ADF promotes both pyramidal cell synchrony and gamma oscillations. In conclusion, cortical excitatory synapses in local circuits display hyperpolarization-induced facilitation of spike-evoked synaptic transmission that promotes network synchrony.


Asunto(s)
Axones/fisiología , Potenciales de la Membrana/fisiología , Terminales Presinápticos , Canales de Sodio/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/fisiología , Calcio/metabolismo , Simulación por Computador , Femenino , Masculino , Modelos Biológicos , Red Nerviosa/fisiología , Neuronas , Ratas
9.
Toxicon ; 92: 14-23, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25240295

RESUMEN

We have purified the AaTX1 peptide from the Androctonus australis (Aa) scorpion venom, previously cloned and sequenced by Legros and collaborators in a venom gland cDNA library from Aa scorpion. AaTX1 belongs to the α-Ktx15 scorpion toxins family (αKTx15-4). Characterized members of this family share high sequence similarity and were found to block preferentially IA-type voltage-dependent K(+) currents in rat cerebellum granular cells in an irreversible way. In the current work, we studied the effects of native AaTX1 (nAaTX1) using whole-cell patch-clamp recordings of IA current in substantia nigra pars compacta dopaminergic neurons. At 250 nM, AaTX1 induces 90% decrease in IA current amplitude. Its activity was found to be comparable to that of rAmmTX3 (αKTx15-3), which differs by only one conserved (R/K) amino acid in the 19th position suggesting that the difference between R19 and K19 in AaTX1 and AmmTX3, respectively, may not be critical for the toxins' effects. Molecular docking of both toxins with Kv4.3 channel is in agreement with experimental data and suggests the implication of the functional dyade K27-Y36 in toxin-channel interactions. Since AaTX1 is not highly abundant in Aa venom, it was synthesized as well as AmmTX3. Synthetic peptides, native AaTX1 and rAmmTX3 peptides showed qualitatively the same pharmacological activity. Overall, these data identify a new biologically active toxin that belongs to a family of peptides active on Kv4.3 channel.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Neuropéptidos/biosíntesis , Neuropéptidos/genética , Neuropéptidos/toxicidad , Venenos de Escorpión/química , Canales de Potasio Shal/metabolismo , Secuencia de Aminoácidos , Animales , Biblioteca de Genes , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Neuropéptidos/análisis , Técnicas de Placa-Clamp , Análisis de Secuencia de ADN , Homología de Secuencia , Sustancia Negra/citología
10.
Nat Protoc ; 3(10): 1559-68, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18802437

RESUMEN

Analysis of synaptic transmission, synaptic plasticity, axonal processing, synaptic timing or electrical coupling requires the simultaneous recording of both the pre- and postsynaptic compartments. Paired-recording technique of monosynaptically connected neurons is also an appropriate technique to probe the function of small molecules (calcium buffers, peptides or small proteins) at presynaptic terminals that are too small to allow direct whole-cell patch-clamp recording. We describe here a protocol for obtaining, in acute and cultured slices, synaptically connected pairs of cortical and hippocampal neurons, with a reasonably high probability. The protocol includes four main stages (acute/cultured slice preparation, visualization, recording and analysis) and can be completed in approximately 4 h.


Asunto(s)
Encéfalo/fisiología , Electrofisiología/métodos , Neuronas/metabolismo , Potenciales Sinápticos/fisiología , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos/métodos , Animales , Ratones , Ratas
11.
J Physiol ; 577(Pt 1): 141-54, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16931548

RESUMEN

Brain sodium channels (NaChs) are regulated by various neurotransmitters such as acetylcholine, serotonin and dopamine. However, it is not known whether NaCh activity is regulated by glutamate, the principal brain neurotransmitter. We show here that activation of metabotropic glutamate receptor (mGluR) subtype 1 regulates fast transient (I(NaT)) and persistent Na(+) currents (I(NaP)) in cortical pyramidal neurons. A selective agonist of group I mGluR, (S)-3,5-dihydroxyphenylglycine (DHPG), reduced action potential amplitude and decreased I(NaT). This reduction was blocked when DHPG was applied in the presence of selective mGluR1 antagonists. The DHPG-induced reduction of the current was accompanied by a shift of both the inactivation curve of I(NaT) and the activation curve of I(NaP). These effects were dependent on the activation of PKC. The respective role of these two regulatory processes on neuronal excitability was determined by simulating transient and persistent Na(+) conductances (G(NaT) and G(NaP)) with fast dynamic-clamp techniques. The facilitated activation of G(NaP) increased excitability near the threshold, but, when combined with the down-regulation of G(NaT), repetitive firing was strongly decreased. Consistent with this finding, the mGluR1 antagonist LY367385 increased neuronal excitability when glutamatergic synaptic activity was stimulated with high external K(+). We conclude that mGluR1-dependent regulation of Na(+) current depresses neuronal excitability, which thus might constitute a novel mechanism of homeostatic regulation acting during intense glutamatergic synaptic activity.


Asunto(s)
Activación del Canal Iónico/fisiología , Neocórtex/fisiología , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Canales de Sodio/fisiología , Sodio/metabolismo , Potenciales de Acción/fisiología , Animales , Células Cultivadas , Ratas , Ratas Wistar , Tiempo de Reacción/fisiología
12.
J Physiol ; 549(Pt 1): 21-36, 2003 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12651919

RESUMEN

During postnatal development, profound changes take place in the excitability of nerve cells, including modification in the distribution and properties of receptor-operated channels and changes in the density and nature of voltage-gated channels. We studied here the firing properties of abducens motoneurons (aMns) in transverse brainstem slices from postnatal day (P) 1-13 rats. Recordings were made from aMNs in the whole-cell configuration of the patch-clamp technique. Two main types of aMn could be distinguished according to their firing profile during prolonged depolarizations. Both types were identified as aMns by their fluorescence following retrograde labelling with the lipophilic carbocyanine DiI in the rectus lateralis muscle. The first type (BaMns) exhibited a burst of action potentials (APs) followed by an adaptation of discharge and were encountered in approximately 70 % of aMns. Their discharge profile resembled that of adult aMns and was encountered in all aMns after P9. BaMns exhibited a hyperpolarization-induced rebound potential that was blocked by low concentrations of Ni2+ or by Ca2+-free external solution. This current had the properties of the T-type current. Action potentials of BaMns showed a complex afterhyperpolarization (AHP). An inward rectification was evidenced following hyperpolarization and was blocked by external application of caesium or ZD7288, indicating the presence of the hyperpolarization-activated cationic current (IH). Blocking the IH current almost doubled the input resistance of BaMns. The second class of aMns (DaMns) displayed a delayed excitation that was mediated by A-type K+ currents and was observed only between P4 and P9. DaMns exhibited immature characteristics: an action potential with a simple AHP, a linear current-voltage relation and a large input resistance. The number of aMns remained unchanged when both types were present (P5-P6) and later in development when only BaMns were encountered (P19), suggesting that DaMns mature into BaMns during postnatal development. We conclude that aMns display profound reorganization in their intrinsic excitability during postnatal development.


Asunto(s)
Nervio Abducens/crecimiento & desarrollo , Nervio Abducens/fisiología , Canales de Calcio Tipo T/fisiología , Neuronas Motoras/fisiología , Canales de Potasio/fisiología , Nervio Abducens/citología , Potenciales de Acción/fisiología , Animales , Cationes/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar
13.
Science ; 300(5628): 2091-4, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12829783

RESUMEN

The sorting of sodium channels to axons and the formation of clusters are of primary importance for neuronal electrogenesis. Here, we showed that the cytoplasmic loop connecting domains II and III of the Nav1 subunit contains a determinant conferring compartmentalization in the axonal initial segment of rat hippocampal neurons. Expression of a soluble Nav1.2II-III linker protein led to the disorganization of endogenous sodium channels. The motif was sufficient to redirect a somatodendritic potassium channel to the axonal initial segment, a process involving association with ankyrin G. Thus, this motif may play a fundamental role in controlling electrical excitability during development and plasticity.


Asunto(s)
Axones/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Sodio/química , Canales de Sodio/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Ancirinas/metabolismo , Membrana Celular/metabolismo , Canales de Potasio de Tipo Rectificador Tardío , Hipocampo/citología , Humanos , Activación del Canal Iónico , Datos de Secuencia Molecular , Mutación , Canal de Sodio Activado por Voltaje NAV1.2 , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Canales de Sodio/genética , Transfección
14.
Biochem Biophys Res Commun ; 291(3): 640-8, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11855838

RESUMEN

Maurotoxin (MTX) is a 34-mer scorpion toxin cross-linked by four disulfide bridges that acts on both Ca(2+)-activated (SK) and voltage-gated (Kv) K(+) channels. A 38-mer chimera of MTX, Tsk-MTX, has been synthesized by the solid-phase method. It encompasses residues from 1 to 6 of Tsk at N-terminal, and residues from 3 to 34 of MTX at C-terminal. As established by enzyme cleavage, Tsk-MTX displays half-cystine pairings of the type C1-C5, C2-C6, C3-C7 and C4-C8 which, contrary to MTX, correspond to a disulfide bridge pattern common to known scorpion toxins. The 3-D structure of Tsk-MTX, solved by (1)H NMR, demonstrates that it adopts the alpha/beta scaffold of scorpion toxins. In vivo, Tsk-MTX is lethal by intracerebroventricular injection in mice (LD(50) value of 0.2 microg/mouse). In vitro, Tsk-MTX is as potent as MTX, or Tsk, to interact with apamin-sensitive SK channels of rat brain synaptosomes (IC(50) value of 2.5 nM). It also blocks voltage-gated K(+) channels expressed in Xenopus oocytes, but is inactive on rat Kv1.3 contrary to MTX.


Asunto(s)
Neurotoxinas , Venenos de Escorpión , Secuencia de Aminoácidos , Animales , Disulfuros/química , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Neurotoxinas/química , Neurotoxinas/farmacología , Resonancia Magnética Nuclear Biomolecular , Oocitos/metabolismo , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Estructura Secundaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/síntesis química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacología , Venenos de Escorpión/síntesis química , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Homología de Secuencia de Aminoácido , Xenopus
15.
Biochem J ; 361(Pt 2): 409-16, 2002 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11772414

RESUMEN

Maurotoxin (MTX) is a 34-mer scorpion toxin cross-linked by four disulphide bridges that acts on various K(+) channels, including the voltage-gated Shaker B subtype. In the present study, we have investigated over 80 h: (1) the time-course of folding of synthetic MTX (sMTX) by CD analysis; (2) the kinetics of disulphide bridge formation by MS; and (3) the potency of MTX in blocking Shaker B currents during the combined process of its in vitro folding and oxidation. From the CD data, we show that stable secondary structures of sMTX evolve sequentially over time, with the appearance of the alpha-helix within 5 h, followed by the formation of the beta-sheet within 22 h. Using MS analysis, the sMTX intermediates were also found to appear sequentially from the least (one-disulphide-bridged sMTX) to the most oxidized species (native-like, four-disulphide-bridged sMTX). The time course of formation of secondary structures coincides mainly with the occurrence of one-disulphide-bridged sMTX for the alpha-helix and two- or three-disulphide-bridged sMTX for the beta-sheet. On-line electrophysiological recordings, which measure sMTX blocking efficacy on K(+) currents during its folding and oxidation, were performed on Shaker B channels expressed in Xenopus oocytes. Unexpectedly, the results demonstrate that sMTX is highly potent at the initial stage of oxidation, whereas its blocking activity can be transiently and dramatically reduced at later stages during the course of folding/oxidation before it reaches full bioactivity. These data suggest that formation of disulphide bridges can both physically stabilize and alter the bioactive three-dimensional structure of sMTX.


Asunto(s)
Canales de Potasio/efectos de los fármacos , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Animales , Dicroismo Circular , Disulfuros/química , Técnicas In Vitro , Cinética , Oxidación-Reducción , Pliegue de Proteína , Estructura Secundaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrofotometría Ultravioleta , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA