Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 674: 33-42, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20549938

RESUMEN

Förster (or Fluorescence) resonance energy transfer (FRET) is a physical process in which energy is transferred nonradiatively from an excited fluorophore, serving as a donor, to another chromophore (acceptor). Among the techniques related to fluorescence microscopy, FRET is unique in providing signals sensitive to intra- and intermolecular distances in the 1-10 nm range. Because of its potency, FRET is increasingly used to visualize and quantify the dynamics of protein-protein interaction in living cells, with high spatio-temporal resolution. Here we describe the physical bases of FRET, detailing the principal methods applied: (1) measurement of signal intensity and (2) analysis of fluorescence lifetime (FLIM). Although several technical complications must be carefully considered, both methods can be applied fruitfully to specific fields. For example, FRET based on intensity detection is more suitable to follow biological phenomena at a finely tuned spatial and temporal scale. Furthermore, a specific fluorescence signal occurring close to the plasma membrane (< or = 100 nm) can be obtained using a total internal reflection fluorescence (TIRF) microscopy system. When performing FRET experiments, care must be also taken to the method chosen for labeling interacting proteins. Two principal tools can be applied: (1) fluorophore tagged antibodies; (2) recombinant fluorescent fusion proteins. The latter method essentially takes advantage of the discovery and use of spontaneously fluorescent proteins, like the green fluorescent protein (GFP). Until now, FRET has been widely used to analyze the structural characteristics of several proteins, including integrins and ion channels. More recently, this method has been applied to clarify the interaction dynamics of these classes of membrane proteins with cytosolic signaling proteins. We report two examples in which the interaction dynamics between integrins and ion channels have been studied with FRET methods. Using fluorescent antibodies and applying FRET-FLIM, the direct interaction of beta1 integrin with the receptor for Epidermal Growth Factor (EGF-R) has been proved in living endothelial cells. A different approach, based on TIRFM measurement of the FRET intensity of fluorescently labeled recombinant proteins, suggests that a direct interaction also occurs between integrins and the ether-a-go-go-related-gene 1 (hERG1) K+ channel.


Asunto(s)
Células Endoteliales/metabolismo , Receptores ErbB/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Integrina beta1/metabolismo , Animales , Anticuerpos/química , Células Endoteliales/química , Receptores ErbB/química , Canales de Potasio Éter-A-Go-Go/química , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Humanos , Integrina beta1/química , Microscopía Fluorescente/métodos , Proteínas Recombinantes de Fusión/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA