Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Microb Cell Fact ; 23(1): 110, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609906

RESUMEN

BACKGROUND: The wasabi receptor, also known as the Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel, is a potential target for development of repellents for insects, like the pine weevil (Hylobius abietis) feeding on conifer seedlings and causing damage in forestry. Heterologous expression of TRPA1 from pine weevil in the yeast Pichia pastoris can potentially provide protein for structural and functional studies. Here we take advantage of the Green Fluorescent Protein (GFP) tag to examine the various steps of heterologous expression, to get more insight in clone selection, expression and isolation of the intact purified protein. RESULTS: The sequence of HaTRPA1 is reported and GFP-tagged constructs were made of the full-length protein and a truncated version (Δ1-708 HaTRPA1), lacking the N-terminal ankyrin repeat domain. Clones were screened on GFP expression plates, induced in small liquid cultures and in fed-batch cultures, and evaluated by flow cytometry and fluorescence microscopy. The screening on plates successfully identifies low-expression clones, but fails to predict the ranking of the best performing clones in small-scale liquid cultures. The two constructs differ in their cellular localization. Δ1-708 HaTRPA1 is found in a ring at the perimeter of cell, whereas HaTRPA1 is forming highly fluorescent speckles in interior regions of the cell. The pattern is consistent in different clones of the same construct and persists in fed-batch culture. The expression of Δ1-708 HaTRPA1 decreases the viability more than HaTRPA1, and in fed-batch culture it is clear that intact cells first express Δ1-708 HaTRPA1 and then become damaged. Purifications show that both constructs suffer from degradation of the expressed protein, but especially the HaTRPA1 construct. CONCLUSIONS: The GFP tag makes it possible to follow expression by flow cytometry and fluorescence microscopy. Analyses of localization, cell viability and expression show that the former two parameters are specific for each of the two evaluated constructs, whereas the relative expression of the constructs varies with the cultivation method. High expression is not all that matters, so taking damaged cells into account, something that may be linked to protein degradation, is important when picking the most suitable construct, clone, and expression scheme.


Asunto(s)
Saccharomycetales , Gorgojos , Animales , Proteínas Fluorescentes Verdes/genética , Citometría de Flujo
2.
Microb Cell Fact ; 21(1): 106, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643562

RESUMEN

BACKGROUND: Capsaicinoids are produced by plants in the Capsicum genus and are the main reason for the pungency of chili pepper fruits. They are strong agonists of TRPV1 (the transient receptor potential cation channel subfamily V member 1) and used as active ingredients in pharmaceuticals for the treatment of pain. The use of bioengineered microorganisms in a fermentation process may be an efficient route for their preparation, as well as for the discovery of (bio-)synthetic capsaicinoids with improved or novel bioactivities. RESULTS: Saccharomyces cerevisiae was engineered to over-express a selection of amide-forming N-acyltransferase and CoA-ligase enzyme cascades using a combinatorial gene assembly method, and was screened for nonivamide production from supplemented vanillylamine and nonanoic acid. Data from this work demonstrate that Tyramine N-hydroxycinnamoyl transferase from Capsicum annuum (CaAT) was most efficient for nonivamide formation in yeast, outcompeting the other candidates including AT3 (Pun1) from Capsicum spp. The CoA-ligase partner with highest activity from the ones evaluated here were from Petunia hybrida (PhCL) and Spingomonas sp. Ibu-2 (IpfF). A yeast strain expressing CaAT and IpfF produced 10.6 mg L-1 nonivamide in a controlled bioreactor setup, demonstrating nonivamide biosynthesis by S. cerevisiae for the first time. CONCLUSIONS: Baker's yeast was engineered for production of nonivamide as a model capsaicinoid, by expressing N-acyltransferases and CoA-ligases of plant and bacterial origin. The constructed yeast platform holds potential for in vivo biocatalytic formation of capsaicinoids and could be a useful tool for the discovery of novel drugs.


Asunto(s)
Capsicum , Saccharomyces cerevisiae , Aciltransferasas/genética , Capsaicina/análogos & derivados , Capsicum/genética , Coenzima A , Frutas , Ligasas , Saccharomyces cerevisiae/genética
3.
Chembiochem ; 20(24): 2991-2995, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31243881

RESUMEN

A new method has been developed to enhance the antibacterial efficiency of traditional antibiotics. Chloramphenicol-imprinted polymer particles were decorated with boronic acid to improve their binding to both Gram-negative and -positive bacteria. The polymer particles have a high antibiotic loading and provide a slow release of the antibiotic payload to deactivate the target bacteria. The boronic acid modified polymer particles not only contribute to enhanced antibacterial efficiency, but also have the potential to act as scavengers to remove unused antibiotic from the environment.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Ácidos Borónicos/química , Viabilidad Microbiana/efectos de los fármacos , Nanopartículas/química , Polímeros/química , Polímeros/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología
4.
FEMS Yeast Res ; 18(1)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29315378

RESUMEN

One of the challenges of establishing an industrially competitive process to ferment lignocellulose to value-added products using Saccharomyces cerevisiae is to get efficient mixed sugar fermentations. Despite successful metabolic engineering strategies, the xylose assimilation rates of recombinant S. cerevisiae remain significantly lower than for the preferred carbon source, glucose. Previously, we established a panel of in vivo biosensor strains (TMB371X) where different promoters (HXT1/2/4p; SUC2p, CAT8p; TPS1p/2p, TEF4p) from the main sugar signaling pathways were coupled with the yEGFP3 gene, and observed that wild-type S. cerevisiae cannot sense extracellular xylose. Here, we expand upon these strains by adding a mutated galactose transporter (GAL2-N376F) with improved xylose affinity (TMB372X), and both the transporter and an oxidoreductase xylose pathway (TMB375X). On xylose, the TMB372X strains displayed population heterogeneities, which disappeared when carbon starvation was relieved by the addition of the xylose assimilation pathway (TMB375X). Furthermore, the signal in the TMB375X strains on high xylose (50 g/L) was very similar to the signal recorded on low glucose (≤5 g/L). This suggests that intracellular xylose triggers a similar signal to carbon limitation in cells that are actively metabolizing xylose, in turn causing the low assimilation rates.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Azúcares/metabolismo , Xilosa/metabolismo , Transporte Biológico , Técnicas Biosensibles , Genotipo , Glucosa/metabolismo , Ingeniería Metabólica , Mutación , Plásmidos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Microb Cell Fact ; 16(1): 3, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-28049528

RESUMEN

BACKGROUND: Whole-cell biocatalysis based on metabolically active baker's yeast with engineered transamination activity can be used to generate molecules carrying a chiral amine moiety. A prerequisite is though to express efficient ω-transaminases and to reach sufficient intracellular precursor levels. RESULTS: Herein, the efficiency of three different ω-transaminases originating from Capsicum chinense, Chromobacterium violaceum, and Ochrobactrum anthropi was compared for whole-cell catalyzed kinetic resolution of racemic 1-phenylethylamine to (R)-1-phenylethylamine. The gene from the most promising candidate, C. violaceum ω-transaminase (CV-TA), was expressed in a strain lacking pyruvate decarboxylase activity, which thereby accumulate the co-substrate pyruvate during glucose assimilation. However, the conversion increased only slightly under the applied reaction conditions. In parallel, the effect of increasing the intracellular pyridoxal-5'-phosphate (PLP) level by omission of thiamine during cultivation was investigated. It was found that without thiamine, PLP supplementation was redundant to keep high in vivo transamination activity. Furthermore, higher reaction rates were achieved using a strain containing several copies of CV-TA gene, highlighting the necessity to also increase the intracellular transaminase level. At last, this strain was also investigated for asymmetric whole-cell bioconversion of acetophenone to (S)-1-phenylethylamine using L-alanine as amine donor. Although functionality could be demonstrated, the activity was extremely low indicating that the native co-product removal system was unable to drive the reaction towards the amine under the applied reaction conditions. CONCLUSIONS: Altogether, our results demonstrate that (R)-1-phenylethylamine with >99% ee can be obtained via kinetic resolution at concentrations above 25 mM racemic substrate with glucose as sole co-substrate when combining appropriate genetic and process engineering approaches. Furthermore, the engineered yeast strain with highest transaminase activity was also shown to be operational as whole-cell catalyst for the production of (S)-1-phenylethylamine via asymmetric transamination of acetophenone, albeit with very low conversion.


Asunto(s)
Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Transaminasas/metabolismo , Capsicum/enzimología , Capsicum/genética , Chromobacterium/enzimología , Chromobacterium/genética , Ochrobactrum anthropi/enzimología , Ochrobactrum anthropi/genética , Fenetilaminas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estereoisomerismo , Transaminasas/biosíntesis , Transaminasas/genética
6.
Microb Cell Fact ; 15: 37, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26879378

RESUMEN

BACKGROUND: Saccharomyces cerevisiae can be engineered to perform a multitude of different chemical reactions that are not programmed in its original genetic code. It has a large potential to function as whole-cell biocatalyst for one-pot multistep synthesis of various organic molecules, and it may thus serve as a powerful alternative or complement to traditional organic synthetic routes for new chemical entities (NCEs). However, although the selectivity in many cases is high, the catalytic activity is often low which results in low space-time-yields. In the case for NADH-dependent heterologous reductive reactions, a possible constraint is the availability of cytosolic NADH, which may be limited due to competition with native oxidative enzymes that act to maintain redox homeostasis. In this study, the effect of increasing the availability of cytosolic NADH on the catalytic activity of engineered yeast for transamination-reduction coupled asymmetric one-pot conversion was investigated. RESULTS: A series of active whole-cell biocatalysts were constructed by over-expressing the (S)-selective ω-transaminase (VAMT) from Capsicum chinense together with the NADH-dependent (S)-selective alcohol dehydrogenase (SADH) originating from Rhodococcus erythropolis in strains with or without deletion of glycerol-3-phosphate dehydrogenases 1 and 2 (GPD1 and GPD2). The yeast strains were evaluated as catalysts for simultaneous: (a) kinetic resolution of the racemic mixture to (R)-1-phenylethylamine, and (b) reduction of the produced acetophenone to (S)-1-phenylethanol. For the gpd1Δgpd2Δ strain, cell metabolism was effectively used for the supply of both amine acceptors and the co-factor pyridoxal-5'-phosphate (PLP) for the ω-transaminase, as well as for regenerating NADH for the reduction. In contrast, there was nearly no formation of (S)-1-phenylethanol when using the control strain with intact GPDs and over-expressing the VAMT-SADH coupling. It was found that a gpd1Δgpd2Δ strain over-expressing SADH had a 3-fold higher reduction rate and a 3-fold lower glucose requirement than the strain with intact GPDs over-expressing SADH. CONCLUSIONS: Overall the results demonstrate that the deletion of the GPD1 and GPD2 genes significantly increases activity of the whole-cell biocatalyst, and at the same time reduces the co-substrate demand in a process configuration where only yeast and sugar is added to drive the reactions, i.e. without addition of external co-factors or prosthetic groups.


Asunto(s)
Ingeniería Metabólica/métodos , NAD/metabolismo , Oxidorreductasas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Transaminasas/metabolismo , Acetofenonas/metabolismo , Alcohol Deshidrogenasa/metabolismo , Benzaldehídos/metabolismo , Alcoholes Bencílicos/metabolismo , Biocatálisis , Glucosa/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Metaboloma , Fenetilaminas/metabolismo , Estereoisomerismo
7.
Yeast ; 32(1): 123-43, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25400136

RESUMEN

Flavours are biologically active molecules of large commercial interest in the food, cosmetics, detergent and pharmaceutical industries. The production of flavours can take place by either extraction from plant materials, chemical synthesis, biological conversion of precursor molecules or de novo biosynthesis. The latter alternatives are gaining importance through the rapidly growing fields of systems biology and metabolic engineering, giving efficient production hosts for the so-called 'bioflavours', which are natural flavour and/or fragrance compounds obtained with cell factories or enzymatic systems. Yeasts are potential production hosts for bioflavours. In this mini-review, we give an overview of bioflavour production in yeasts from the process-engineering perspective. Two specific examples, production of 2-phenylethanol and vanillin, are used to illustrate the process challenges and strategies used.


Asunto(s)
Aromatizantes/metabolismo , Ingeniería Metabólica , Levaduras/genética , Levaduras/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
BMC Biotechnol ; 14: 25, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24712445

RESUMEN

BACKGROUND: The conversion of vanillin to vanillylamine is a key step in the biosynthetic route towards capsaicinoids in pungent cultivars of Capsicum sp. The reaction has previously been annotated to be catalysed by PAMT (putative aminotransferase; [GenBank: AAC78480.1, Swiss-Prot: O82521]), however, the enzyme has previously not been biochemically characterised in vitro. RESULTS: The biochemical activity of the transaminase was confirmed by direct measurement of the reaction with purified recombinant enzyme. The enzyme accepted pyruvate, and oxaloacetate but not 2-oxoglutarate as co-substrate, which is in accordance with other characterised transaminases from the plant kingdom. The enzyme was also able to convert (S)-1-phenylethylamine into acetophenone with high stereo-selectivity. Additionally, it was shown to be active at a broad pH range. CONCLUSIONS: We suggest PAMT to be renamed to VAMT (vanillin aminotransferase, abbreviation used in this study) as formation of vanillin from vanillylamine could be demonstrated. Furthermore, due to high stereoselectivity and activity at physiological pH, VAMT is a suitable candidate for biocatalytic transamination in a recombinant whole-cell system.


Asunto(s)
Capsicum/enzimología , Proteínas de Plantas/metabolismo , Transaminasas/metabolismo , Benzaldehídos/metabolismo , Bencilaminas/metabolismo , Biocatálisis , Escherichia coli/metabolismo
9.
Microb Cell Fact ; 13: 118, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25266107

RESUMEN

BACKGROUND: One-pot multi-step biocatalysis is advantageous over step-by-step synthesis as it reduces the number of process operation units, leading to significant process intensification. Whole-cell biocatalysis with metabolically active cells is especially valuable since all enzymes can be co-expressed in the cell whose metabolism can be exploited for supply of co-substrates and co-factors. RESULTS: In this study, a heterologous enzymatic system consisting of ω-transaminase and ketone reductase was introduced in Saccharomyces cerevisiae, and evaluated for one-pot stereo-selective conversion of amines to alcohols. The system was applied for simultaneous kinetic resolution of racemic 1-phenylethylamine to (R)-1-phenylethylamine and reduction of the ketone intermediate to (R)-1-phenylethanol. Glucose was used as sole co-substrate for both the supply of amine acceptor and the regeneration of NADPH in the reduction step. CONCLUSIONS: The whole-cell biocatalyst was shown to sustain transaminase-reductase-catalyzed enantioselective conversion of amines to alcohols with glucose as co-substrate. The transamination catalyzed by recombinant vanillin aminotransferase from Capsicum chinense proved to be the rate-limiting step as a three-fold increase in transaminase gene copy number led to a two-fold increased conversion. The (R)-selective NADPH-dependent alcohol dehydrogenase from Lactobacillus kefir proved to be efficient in catalyzing the reduction of the acetophenone generated in the transamination reaction.


Asunto(s)
Capsicum/genética , Fenetilaminas/metabolismo , Alcohol Feniletílico/metabolismo , Proteínas de Plantas , Saccharomyces cerevisiae , Transaminasas , Capsicum/enzimología , Oxidación-Reducción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transaminasas/genética , Transaminasas/metabolismo
10.
Appl Microbiol Biotechnol ; 98(10): 4615-24, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24557569

RESUMEN

The potential of Saccharomyces cerevisiae for biocatalytic whole-cell transamination was investigated using the kinetic resolution of racemic 1-phenylethylamine (1-PEA) to (R)-1-PEA as a model reaction. As native yeast do not possess any ω-transaminase activity for the reaction, a recombinant yeast biocatalyst was constructed by overexpressing the gene coding for vanillin aminotransferase from Capsicum chinense. The yeast-based biocatalyst could use glucose as the sole co-substrate for the supply of amine acceptor via cell metabolism. In addition, the biocatalyst was functional without addition of the co-factor pyridoxal-5'-phosphate (PLP), which can be explained by a high inherent cellular capacity to sustain PLP-dependent reactions in living cells. In contrast, external PLP supplementation was required when cell viability was low, as it was the case when using pyruvate as a co-substrate. Overall, the results indicate a potential for engineered S. cerevisiae as a biocatalyst for whole-cell transamination and with glucose as the only co-substrate for the supply of amine acceptor and PLP.


Asunto(s)
Ingeniería Metabólica/métodos , Fenetilaminas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Transaminasas/metabolismo , Capsicum/enzimología , Capsicum/genética , Enzimas/genética , Enzimas/metabolismo , Glucosa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
11.
Microorganisms ; 12(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543676

RESUMEN

In Saccharomyces cerevisiae, pH homeostasis is reliant on ATP due to the use of proton-translocating ATPase (H+-ATPase) which constitutes a major drain within cellular ATP supply. Here, an exogenous proton-translocating pyrophosphatase (H+-PPase) from Arabidopsis thaliana, which uses inorganic pyrophosphate (PPi) rather than ATP, was evaluated for its effect on reducing the ATP burden. The H+-Ppase was localized to the vacuolar membrane or to the cell membrane, and their impact was studied under acetate stress at a low pH. Biosensors (pHluorin and mQueen-2m) were used to observe changes in intracellular pH (pHi) and ATP levels during growth on either glucose or xylose. A significant improvement of 35% in the growth rate at a pH of 3.7 and 6 g·L-1 acetic acid stress was observed in the vacuolar membrane H+-PPase strain compared to the parent strain. ATP levels were elevated in the same strain during anaerobic glucose and xylose fermentations. During anaerobic xylose fermentations, co-expression of pHluorin and a vacuolar membrane H+-PPase improved the growth characteristics by means of an improved growth rate (11.4%) and elongated logarithmic growth duration. Our study identified a potential method for improving productivity in the use of S. cerevisiae as a cell factory under the harsh conditions present in industry.

12.
Biotechnol Bioeng ; 110(3): 812-26, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23055296

RESUMEN

Despite traditionally regarded as identical, cells in a microbial cultivation present a distribution of phenotypic traits, forming a heterogeneous cell population. Moreover, the degree of heterogeneity is notably enhanced by changes in micro-environmental conditions. A major development in experimental single-cell studies has taken place in the last decades. It has however not been fully accompanied by similar contributions within data analysis and mathematical modeling. Indeed, literature reporting, for example, quantitative analyses of experimental single-cell observations and validation of model predictions for cell property distributions against experimental data is scarce. This study focuses on the experimental and mathematical description of the dynamics of cell size and cell cycle position distributions, of a population of Saccharomyces cerevisiae, in response to the substrate consumption observed during batch cultivation. The good agreement between the proposed multi-scale model (a population balance model [PBM] coupled to an unstructured model) and experimental data (both the overall physiology and cell size and cell cycle distributions) indicates that a mechanistic model is a suitable tool for describing the microbial population dynamics in a bioreactor. This study therefore contributes towards the understanding of the development of heterogeneous populations during microbial cultivations. More generally, it consists of a step towards a paradigm change in the study and description of cell cultivations, where average cell behaviors observed experimentally now are interpreted as a potential joint result of various co-existing single-cell behaviors, rather than a unique response common to all cells in the cultivation.


Asunto(s)
Ciclo Celular , Saccharomyces cerevisiae/fisiología , Tamaño de la Célula , Citometría de Flujo , Modelos Teóricos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo
13.
Methods Mol Biol ; 2674: 131-146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258965

RESUMEN

Bacterial proteases are important enzymes used in several technical applications where controlled cleavage of proteins is needed. They are challenging enzymes to express recombinantly as parts of the proteome can be hydrolyzed by their activity. The eukaryotic model organism Saccharomyces cerevisiae is potentially a good expression host as it tolerates several stress conditions and is known to better express insoluble proteins compared to bacterial systems. In this chapter we describe how the protease IdeS from Streptococcus pyogenes can be expressed in S. cerevisiae. The expression of IdeS was followed by constructing a fused protein with GFP and measuring the fluorescence with flow cytometry. The protease presence was confirmed with a Western blot assay and activity was measured with an in vitro assay. To reduce potentially toxic effect on the host cell, the growth and production phases were separated by using the inducible promoter GAL1p to control recombinant gene expression. The protocol provided may be adopted for other bacterial proteases through minor modifications of the fused protein.


Asunto(s)
Proteínas Bacterianas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Fluorescencia , Péptido Hidrolasas/metabolismo
14.
J Fungi (Basel) ; 9(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37367566

RESUMEN

The commercial production of bioethanol from lignocellulosic biomass such as wheat straw requires utilizing a microorganism that can withstand all the stressors encountered in the process while fermenting all the sugars in the biomass. Therefore, it is essential to develop tools for monitoring and controlling the cellular fitness during both cell propagation and sugar fermentation to ethanol. In the present study, on-line flow cytometry was adopted to assess the response of the biosensor TRX2p-yEGFP for redox imbalance in an industrial xylose-fermenting strain of Saccharomyces cerevisiae during cell propagation and the following fermentation of wheat-straw hydrolysate. Rapid and transient induction of the sensor was recorded upon exposure to furfural and wheat straw hydrolysate containing up to 3.8 g/L furfural. During the fermentation step, the induction rate of the sensor was also found to correlate to the initial ethanol production rate, highlighting the relevance of redox monitoring and the potential of the presented tool to assess the ethanol production rate in hydrolysates. Three different propagation strategies were also compared, and it was confirmed that pre-exposure to hydrolysate during propagation remains the most efficient method for high ethanol productivity in the following wheat-straw hydrolysate fermentations.

15.
Metab Eng Commun ; 17: e00224, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37415783

RESUMEN

Fatty acids are produced by eukaryotes like baker's yeast Saccharomyces cerevisiae mainly using a large multifunctional type I fatty acid synthase (FASI) where seven catalytic steps and a carrier domain are shared between one or two protein subunits. While this system may offer efficiency in catalysis, only a narrow range of fatty acids are produced. Prokaryotes, chloroplasts and mitochondria rely instead on a FAS type II (FASII) where each catalytic step is carried out by a monofunctional enzyme encoded by a separate gene. FASII is more flexible and capable of producing a wider range of fatty acid structures, such as the direct production of unsaturated fatty acids. An efficient FASII in the preferred industrial organism S. cerevisiae could provide a platform for developing sustainable production of specialized fatty acids. We functionally replaced either yeast FASI genes (FAS1 or FAS2) with a FASII consisting of nine genes from Escherichia coli (acpP, acpS and fab -A, -B, -D, -F, -G, -H, -Z) as well as three from Arabidopsis thaliana (MOD1, FATA1 and FATB). The genes were expressed from an autonomously replicating multicopy vector assembled using the Yeast Pathway Kit for in-vivo assembly in yeast. Two rounds of adaptation led to a strain with a maximum growth rate (µmax) of 0.19 h-1 without exogenous fatty acids, twice the growth rate previously reported for a comparable strain. Additional copies of the MOD1 or fabH genes resulted in cultures with higher final cell densities and three times higher lipid content compared to the control.

16.
Front Microbiol ; 14: 1152389, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125176

RESUMEN

The physiological effects of oxygen on Limosilactobacillus reuteri DSM 17938 during cultivation and the ensuing properties of the freeze-dried probiotic product was investigated. On-line flow cytometry and k-means clustering gating was used to follow growth and viability in real time during cultivation. The bacterium tolerated aeration at 500 mL/min, with a growth rate of 0.74 ± 0.13 h-1 which demonstrated that low levels of oxygen did not influence the growth kinetics of the bacterium. Modulation of the redox metabolism was, however, seen already at non-inhibitory oxygen levels by 1.5-fold higher production of acetate and 1.5-fold lower ethanol production. A significantly higher survival rate in the freeze-dried product was observed for cells cultivated in presence of oxygen compared to absence of oxygen (61.8% ± 2.4% vs. 11.5% ± 4.3%), coinciding with a higher degree of unsaturated fatty acids (UFA:SFA ratio of 10 for air sparged vs. 3.59 for N2 sparged conditions.). Oxygen also resulted in improved bile tolerance and boosted 5'nucleotidase activity (370 U/L vs. 240 U/L in N2 sparged conditions) but lower tolerance to acidic conditions compared bacteria grown under complete anaerobic conditions which survived up to 90 min of exposure at pH 2. Overall, our results indicate the controlled supply of oxygen during production may be used as means for probiotic activity optimization of L. reuteri DSM 17938.

17.
Microb Cell Fact ; 11: 94, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22799461

RESUMEN

BACKGROUND: Traditionally average values of the whole population are considered when analysing microbial cell cultivations. However, a typical microbial population in a bioreactor is heterogeneous in most phenotypes measurable at a single-cell level. There are indications that such heterogeneity may be unfavourable on the one hand (reduces yields and productivities), but also beneficial on the other hand (facilitates quick adaptation to new conditions--i.e. increases the robustness of the fermentation process). Understanding and control of microbial population heterogeneity is thus of major importance for improving microbial cell factory processes. RESULTS: In this work, a dual reporter system was developed and applied to map growth and cell fitness heterogeneities within budding yeast populations during aerobic cultivation in well-mixed bioreactors. The reporter strain, which was based on the expression of green fluorescent protein (GFP) under the control of the ribosomal protein RPL22a promoter, made it possible to distinguish cell growth phases by the level of fluorescence intensity. Furthermore, by exploiting the strong correlation of intracellular GFP level and cell membrane integrity it was possible to distinguish subpopulations with high and low cell membrane robustness and hence ability to withstand freeze-thaw stress. A strong inverse correlation between growth and cell membrane robustness was observed, which further supports the hypothesis that cellular resources are limited and need to be distributed as a trade-off between two functions: growth and robustness. In addition, the trade-off was shown to vary within the population, and the occurrence of two distinct subpopulations shifting between these two antagonistic modes of cell operation could be distinguished. CONCLUSIONS: The reporter strain enabled mapping of population heterogeneities in growth and cell membrane robustness towards freeze-thaw stress at different phases of cell cultivation. The described reporter system is a valuable tool for understanding the effect of environmental conditions on population heterogeneity of microbial cells and thereby to understand cell responses during industrial process-like conditions. It may be applied to identify more robust subpopulations, and for developing novel strategies for strain improvement and process design for more effective bioprocessing.


Asunto(s)
Saccharomyces cerevisiae/fisiología , Membrana Celular/genética , Membrana Celular/metabolismo , Fermentación , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Estrés Fisiológico
18.
Biotechnol Rep (Amst) ; 34: e00735, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35686015

RESUMEN

Transcription factor-based biosensors represent promising tools in the construction and evaluation of efficient cell factories for the sustainable production of fuels, chemicals and pharmaceuticals. They can notably be designed to follow the production of a target compound or to monitor key cellular properties, such as stress or starvation. In most cases, the biosensors are built with fluorescent protein (FP) genes as reporter genes because of the direct correlation between promoter activity and fluorescence level that can be measured using, for instance, flow cytometry or fluorometry. The expansion of available FPs offers the possibility of using several FPs - and biosensors - in parallel in one host, with simultaneous detection using multicolor flow cytometry. However, the technique is currently limited by the unavailability of combinations of FP whose genes can be successfully expressed in the host and whose fluorescence can be efficiently distinguished from each other. In the present study, the broad collection of available FPs was explored and four different FPs were successfully expressed in the yeast Saccharomyces cerevisiae: yEGFP, mEGFP, CyOFP1opt and mBeRFPopt. After studying their fluorescence signals, population heterogeneity and possible interactions, we recommend two original combinations of FPs for bi-color flow cytometry: mEGFP together with either CyOFP1opt or mBeRFPopt, as well as the combination of all three FPs mEGFP, CyOFP1opt and mBeRFPopt for tri-color flow cytometry. These combinations will allow to perform different types of bi-color or possibly tri-color flow cytometry and FACS experiments with yeast, such as phenotype evaluation, screening or sorting, by single-laser excitation with a standard 488 nm blue laser.

19.
Biotechnol Adv ; 59: 107989, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35623491

RESUMEN

Capsaicinoids are bioactive alkaloids produced by the chili pepper fruit and are known to be the most potent agonists of the human pain receptor TRPV1 (Transient Receptor Potential Cation Channel Subfamily V Member 1). They are currently produced by extraction from chili pepper fruit or by chemical synthesis. Transfer of the biosynthetic route to a microbial host could enable more efficient capsaicinoid production by fermentation and may also enable the use of synthetic biology to create a diversity of new compounds with potentially improved properties. This review summarises the current state of the art on the biosynthesis of capsaicinoid precursors in baker's yeast, Saccharomyces cerevisiae, and discusses bioengineering strategies for achieving total synthesis from sugar.


Asunto(s)
Capsicum , Saccharomyces cerevisiae , Capsaicina/análisis , Capsaicina/química , Capsaicina/farmacología , Capsicum/química , Frutas/química , Humanos , Saccharomyces cerevisiae/genética
20.
Sci Rep ; 11(1): 23567, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876641

RESUMEN

Optimisation of cultivation conditions in the industrial production of probiotics is crucial to reach a high-quality product with retained probiotic functionality. Flow cytometry-based descriptors of bacterial morphology may be used as markers to estimate physiological fitness during cultivation, and can be applied for online monitoring to avoid suboptimal growth. In the current study, the effects of temperature, initial pH and oxygen levels on cell growth and cell size distributions of Limosilactobacillus reuteri DSM 17938 were measured using multivariate flow cytometry. A pleomorphic behaviour was evident from the measurements of light scatter and pulse width distributions. A pattern of high growth yielding smaller cells and less heterogeneous populations could be observed. Analysis of pulse width distributions revealed significant morphological heterogeneities within the bacterial cell population under non-optimal growth conditions, and pointed towards low temperature, high initial pH, and high oxygen levels all being triggers for changes in morphology towards cell chain formation. However, cell size did not correlate to survivability after freeze-thaw or freeze-drying stress, indicating that it is not a key determinant for physical stress tolerance. The fact that L. reuteri morphology varies depending on cultivation conditions suggests that it can be used as marker for estimating physiological fitness and responses to its environment.


Asunto(s)
Limosilactobacillus reuteri/citología , Limosilactobacillus reuteri/crecimiento & desarrollo , Probióticos , Técnicas Bacteriológicas , Citometría de Flujo , Liofilización , Humanos , Concentración de Iones de Hidrógeno , Limosilactobacillus reuteri/fisiología , Microscopía Electrónica de Rastreo , Oxígeno , Fenotipo , Probióticos/aislamiento & purificación , Estrés Fisiológico , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA