Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Geophys Res Lett ; 47(14): e2020GL088662, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32999514

RESUMEN

Future changes in tropical cyclone properties are an important component of climate change impacts and risk for many tropical and midlatitude countries. In this study we assess the performance of a multimodel ensemble of climate models, at resolutions ranging from 250 to 25 km. We use a common experimental design including both atmosphere-only and coupled simulations run over the period 1950-2050, with two tracking algorithms applied uniformly across the models. There are overall improvements in tropical cyclone frequency, spatial distribution, and intensity in models at 25 km resolution, with several of them able to represent very intense storms. Projected tropical cyclone activity by 2050 generally declines in the South Indian Ocean, while changes in other ocean basins are more uncertain and sensitive to both tracking algorithm and imposed forcings. Coupled models with smaller biases suggest a slight increase in average TC 10 m wind speeds by 2050.

2.
Sci Data ; 11(1): 64, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212343

RESUMEN

ESPO-G6-R2 v1.0 is a set of statistically downscaled and bias-adjusted climate simulations based on the Coupled Model Intercomparison Project 6 (CMIP6) models. The dataset is composed of daily timeseries of three variables: daily maximum temperature, daily minimum temperature and daily precipitation. Data are available from 1950 to 2100 over North America. The simulation ensemble is comprised of 14 models driven by two emissions scenarios (SSP2-4.5 and SSP3-7.0). In this paper, we describe the workflow used for the bias-adjustment, which relies on the detrended quantile mapping method and the Regional Deterministic Reforecast System (RDRS) v2.1 reference dataset. Using the framework defined in the VALUE project, we show the improvements made by the bias-adjustment on marginal, temporal and multivariate aspects of the data. We also verify that the bias-adjusted climate data have similar climate change signal to the original climate model simulations. Finally, we provide guidance to users on how to use this dataset.

3.
Clim Serv ; 27: 100303, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35992962

RESUMEN

Predicting the variations in climate for the coming 1-10 years is of great interest for decision makers, as this time horizon coincides with the strategic planning of stakeholders from climate-vulnerable sectors such as agriculture. This study attempts to illustrate the potential value of decadal predictions in the development of climate services by establishing interactions and collaboration with stakeholders concerned with food production and security. Building on our experience from interacting with users and the increased understanding of their needs gathered over the years through our participation in various European activities and initiatives, we developed a decadal forecast product that provides tailored and user-friendly information about multi-year dry conditions for the coming five years over global wheat harvesting regions. This study revealed that the coproduction approach, where the interaction between the user and climate service provider is established at an early stage of forecast product development, is a fundamental step to successfully provide useful and ultimately actionable information to the interested stakeholders. The study also provides insights that shed light on the reasons for the delayed entry of decadal predictions in the climate services discourse and practice, obtained from surveying climate scientists and discussing with decadal prediction experts. Finally, it shows the key challenges that this new source of climate information still faces.

4.
Sci Adv ; 4(8): eaat6509, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30140742

RESUMEN

Using millennia-long climate model simulations, favorable environments for tropical cyclone formation are examined to determine whether the record number of tropical cyclones in the 2005 Atlantic season is close to the maximum possible number for the present climate of that basin. By estimating both the mean number of tropical cyclones and their possible year-to-year random variability, we find that the likelihood that the maximum number of storms in the Atlantic could be greater than the number of events observed during the 2005 season is less than 3.5%. Using a less restrictive comparison between simulated and observed climate with the internal variability accounted for, this probability increases to 9%; however, the estimated maximum possible number of tropical cyclones does not greatly exceed the 2005 total. Hence, the 2005 season can be used as a risk management benchmark for the maximum possible number of tropical cyclones in the Atlantic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA