RESUMEN
In this issue of Molecular Cell, Vaisvila et al.1 report a tour de force functional characterization of a large and highly diverse set of polynucleotide cytosine deaminase (PCD) enzymes, which is already propelling new biotechnology applications.
Asunto(s)
Biotecnología , Citosina DesaminasaRESUMEN
Human APOBEC3H and homologous single-stranded DNA cytosine deaminases are unique to mammals. These DNA-editing enzymes function in innate immunity by restricting the replication of viruses and transposons. APOBEC3H also contributes to cancer mutagenesis. Here, we address the fundamental nature of RNA in regulating human APOBEC3H activities. APOBEC3H co-purifies with RNA as an inactive protein, and RNase A treatment enables strong DNA deaminase activity. RNA-binding-defective mutants demonstrate clear separation of function by becoming DNA hypermutators. Biochemical and crystallographic data demonstrate a mechanism in which double-stranded RNA mediates enzyme dimerization. Additionally, APOBEC3H separation-of-function mutants show that RNA binding is required for cytoplasmic localization, packaging into HIV-1 particles, and antiviral activity. Overall, these results support a model in which structured RNA negatively regulates the potentially harmful DNA deamination activity of APOBEC3H while, at the same time, positively regulating its antiviral activity.
Asunto(s)
Aminohidrolasas/metabolismo , Dimerización , VIH-1/crecimiento & desarrollo , Ensamble de Virus/genética , Aminohidrolasas/genética , Línea Celular Tumoral , Cristalografía por Rayos X , Citosina Desaminasa/metabolismo , Células HEK293 , Células HeLa , Humanos , Estructura Secundaria de Proteína , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleasa Pancreática/metabolismoRESUMEN
A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Mutación , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Línea Celular , ADN/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Citosina/metabolismoRESUMEN
Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination assay. This assay offers a single-step set-up and real-time fluorescent read-out, and it is capable of providing insights into enzyme kinetics. The assay also offers a high-sensitivity and easily scalable method for identifying APOBEC3 inhibitors. This assay serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit and possesses the versatility to be readily adapted into a high-throughput format for inhibitor discovery.
Asunto(s)
Citidina Desaminasa , ADN , Humanos , Desaminación , Citidina Desaminasa/metabolismo , ADN/metabolismo , ADN/química , Cinética , Desaminasas APOBEC/metabolismo , Inhibidores Enzimáticos/farmacologíaRESUMEN
Spontaneous deamination of DNA cytosine and adenine into uracil and hypoxanthine, respectively, causes C to T and A to G transition mutations if left unrepaired. Endonuclease Q (EndoQ) initiates the repair of these premutagenic DNA lesions in prokaryotes by cleaving the phosphodiester backbone 5' of either uracil or hypoxanthine bases or an apurinic/apyrimidinic (AP) lesion generated by the excision of these damaged bases. To understand how EndoQ achieves selectivity toward these structurally diverse substrates without cleaving undamaged DNA, we determined the crystal structures of Pyrococcus furiosus EndoQ bound to DNA substrates containing uracil, hypoxanthine, or an AP lesion. The structures show that substrate engagement by EndoQ depends both on a highly distorted conformation of the DNA backbone, in which the target nucleotide is extruded out of the helix, and direct hydrogen bonds with the deaminated bases. A concerted swing motion of the zinc-binding and C-terminal helical domains of EndoQ toward its catalytic domain allows the enzyme to clamp down on a sharply bent DNA substrate, shaping a deep active-site pocket that accommodates the extruded deaminated base. Within this pocket, uracil and hypoxanthine bases interact with distinct sets of amino acid residues, with positioning mediated by an essential magnesium ion. The EndoQ-DNA complex structures reveal a unique mode of damaged DNA recognition and provide mechanistic insights into the initial step of DNA damage repair by the alternative excision repair pathway. Furthermore, we demonstrate that the unique activity of EndoQ is useful for studying DNA deamination and repair in mammalian systems.
Asunto(s)
Proteínas Arqueales/química , ADN de Archaea/química , Endonucleasas/química , Pyrococcus furiosus/enzimología , Proteínas Arqueales/genética , Dominio Catalítico , ADN de Archaea/genética , Desaminación , Endonucleasas/genética , Pyrococcus furiosus/genéticaRESUMEN
Although the APOBEC3 family of single-stranded DNA cytosine deaminases is well-known for its antiviral factors, these enzymes are rapidly gaining attention as prominent sources of mutation in cancer. APOBEC3's signature single-base substitutions, C-to-T and C-to-G in TCA and TCT motifs, are evident in over 70% of human malignancies and dominate the mutational landscape of numerous individual tumors. Recent murine studies have established cause-and-effect relationships, with both human APOBEC3A and APOBEC3B proving capable of promoting tumor formation in vivo. Here, we investigate the molecular mechanism of APOBEC3A-driven tumor development using the murine Fah liver complementation and regeneration system. First, we show that APOBEC3A alone is capable of driving tumor development (without Tp53 knockdown as utilized in prior studies). Second, we show that the catalytic glutamic acid residue of APOBEC3A (E72) is required for tumor formation. Third, we show that an APOBEC3A separation-of-function mutant with compromised DNA deamination activity and wildtype RNA-editing activity is defective in promoting tumor formation. Collectively, these results demonstrate that APOBEC3A is a "master driver" that fuels tumor formation through a DNA deamination-dependent mechanism.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/genética , Desaminación , Neoplasias Hepáticas/genética , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/metabolismo , Antígenos de Histocompatibilidad Menor/genéticaRESUMEN
Pinned and mobile ferroelastic domain walls are detected in response to mechanical stress in a Mn3+ complex with two-step thermal switching between the spin triplet and spin quintet forms. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy on [MnIII(3,5-diCl-sal2(323))]BPh4 reveal three distinct symmetry-breaking phase transitions in the polar space group series Cc â Pc â P1 â P1(1/2). The transition mechanisms involve coupling between structural and spin state order parameters, and the three transitions are Landau tricritical, first order, and first order, respectively. The two first-order phase transitions also show changes in magnetic properties and spin state ordering in the Jahn-Teller-active Mn3+ complex. On the basis of the change in symmetry from that of the parent structure, Cc, the triclinic phases are also ferroelastic, which has been confirmed by resonant ultrasound spectroscopy. Measurements of magnetoelectric coupling revealed significant changes in electric polarization at both the Pc â P1 and P1 â P1(1/2) transitions, with opposite signs. All these phases are polar, while P1 is also chiral. Remanent electric polarization was detected when applying a pulsed magnetic field of 60 T in the P1â P1(1/2) region of bistability at 90 K. Thus, we showcase here a rare example of multifunctionality in a spin crossover material where the strain and polarization tensors and structural and spin state order parameters are strongly coupled.
RESUMEN
A MnIII spin crossover complex with atypical two-step hysteretic thermal switching at 74â K and 84â K shows rich structural-magnetic interplay and magnetic-field-induced spin state switching below 14â T with an onset below 5â T. The spin states, structures, and the nature of the phase transitions are elucidated via X-ray and magnetization measurements. An unusual intermediate phase containing four individual sites, where 1 / 4 are in a pure low spin state, is observed. The splitting of equivalent sites in the high temperature phase into four inequivalent sites is due to a structural reorganization involving a primary and a secondary symmetry-breaking order parameter that induces a crystal system change from orthorhombicâmonoclinic and a cell doubling. Further cooling leads to a reconstructive phase transition and a monoclinic low-temperature phase with two inequivalent low-spin sites. The coupling between the order parameters is identified in the framework of Landau theory.
RESUMEN
A major concern of CRISPR and related genome engineering technologies is off-target mutagenesis from prolonged exposure to Cas9 and related editing enzymes. To help mitigate this concern we added a loxP site to the 3'-LTR of an HIV-based lentiviral vector capable of expressing Cas9/gRNA complexes in a wide variety of mammalian cell types. Transduction of susceptible target cells yields an integrated provirus that expresses the desired Cas9/gRNA complex. The reverse transcription process also results in duplication of the 3'-LTR such that the integrated provirus becomes flanked by loxP sites (floxed). Subsequent expression of Cre recombinase results in loxP-to-loxP site-specific recombination that deletes the Cas9/gRNA payload and effectively prevents additional Cas9-mediated mutations. This construct also expresses a gRNA with a single transcription termination sequence, which results in higher expression levels and more efficient genome engineering as evidenced by disruption of the SAMHD1 gene. This hit-and-run CRISPR approach was validated by recreating a natural APOBEC3B deletion and by disrupting the mismatch repair gene MSH2. This hit-and-run strategy may have broad utility in many areas and especially those where cell types are difficult to engineer by transient delivery of ribonucleoprotein complexes.
Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Edición Génica/métodos , Integrasas/genética , Lentivirus/genética , ARN Guía de Kinetoplastida/genética , Recombinación Genética , Emparejamiento Base , Secuencia de Bases , Proteína 9 Asociada a CRISPR/metabolismo , Citidina Desaminasa/deficiencia , Citidina Desaminasa/genética , Exones , Eliminación de Gen , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Integrasas/metabolismo , Intrones , Lentivirus/metabolismo , Células MCF-7 , Antígenos de Histocompatibilidad Menor/genética , Proteína 2 Homóloga a MutS/deficiencia , Proteína 2 Homóloga a MutS/genética , ARN Guía de Kinetoplastida/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/deficiencia , Proteína 1 que Contiene Dominios SAM y HD/genéticaRESUMEN
Domain wall motion is detected for the first time during the transition to a ferroelastic and spin state ordered phase of a spin crossover complex. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy (RUS) revealed two distinct symmetry-breaking phase transitions in the mononuclear Mn3+ compound [Mn(3,5-diBr-sal2 (323))]BPh4 , 1. The first at 250â K, involves the space group change CcâPc and is thermodynamically continuous, while the second, PcâP1 at 85â K, is discontinuous and related to spin crossover and spin state ordering. Stress-induced domain wall mobility was interpreted on the basis of a steep increase in acoustic loss immediately below the the Pc-P1 transition.
RESUMEN
HIV-1 replication in CD4-positive T lymphocytes requires counteraction of multiple different innate antiviral mechanisms. Macrophage cells are also thought to provide a reservoir for HIV-1 replication but less is known in this cell type about virus restriction and counteraction mechanisms. Many studies have combined to demonstrate roles for APOBEC3D, APOBEC3F, APOBEC3G and APOBEC3H in HIV-1 restriction and mutation in CD4-positive T lymphocytes, whereas the APOBEC enzymes involved in HIV-1 restriction in macrophages have yet to be delineated fully. We show that multiple APOBEC3 genes including APOBEC3G are expressed in myeloid cell lines such as THP-1. Vif-deficient HIV-1 produced from THP-1 is less infectious than Vif-proficient virus, and proviral DNA resulting from such Vif-deficient infections shows strong G to A mutation biases in the dinucleotide motif preferred by APOBEC3G. Moreover, Vif mutant viruses with selective sensitivity to APOBEC3G show Vif null-like infectivity levels and similarly strong APOBEC3G-biased mutation spectra. Importantly, APOBEC3G-null THP-1 cells yield Vif-deficient particles with significantly improved infectivities and proviral DNA with background levels of G to A hypermutation. These studies combine to indicate that APOBEC3G is the main HIV-1 restricting APOBEC3 family member in THP-1 cells.
Asunto(s)
Desaminasa APOBEC-3G/metabolismo , Infecciones por VIH/enzimología , VIH-1/fisiología , Desaminasa APOBEC-3G/genética , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Mutación , Células Mieloides , Células THP-1 , Replicación Viral , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismoRESUMEN
APOBEC3B (A3B) is a prominent source of mutation in many cancers. To date, it has been difficult to capture the native protein-DNA interactions that confer A3B's substrate specificity by crystallography due to the highly dynamic nature of wild-type A3B active site. We use computational tools to restore a recent crystal structure of a DNA-bound A3B C-terminal domain mutant construct to its wild type sequence, and run molecular dynamics simulations to study its substrate recognition mechanisms. Analysis of these simulations reveal dynamics of the native A3Bctd-oligonucleotide interactions, including the experimentally inaccessible loop 1-oligonucleotide interactions. A second series of simulations in which the target cytosine nucleotide was computationally mutated from a deoxyribose to a ribose show a change in sugar ring pucker, leading to a rearrangement of the binding site and revealing a potential intermediate in the binding pathway. Finally, apo simulations of A3B, starting from the DNA-bound open state, experience a rapid and consistent closure of the binding site, reaching conformations incompatible with substrate binding. This study reveals a more realistic and dynamic view of the wild type A3B binding site and provides novel insights for structure-guided design efforts for A3B.
Asunto(s)
Citidina Desaminasa/metabolismo , Oligonucleótidos/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Citidina Desaminasa/química , ADN/química , ADN/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Oligonucleótidos/química , Unión Proteica , ARN/química , ARN/metabolismo , Especificidad por SustratoRESUMEN
Several mutations are required for cancer development, and genome sequencing has revealed that many cancers, including breast cancer, have somatic mutation spectra dominated by C-to-T transitions. Most of these mutations occur at hydrolytically disfavoured non-methylated cytosines throughout the genome, and are sometimes clustered. Here we show that the DNA cytosine deaminase APOBEC3B is a probable source of these mutations. APOBEC3B messenger RNA is upregulated in most primary breast tumours and breast cancer cell lines. Tumours that express high levels of APOBEC3B have twice as many mutations as those that express low levels and are more likely to have mutations in TP53. Endogenous APOBEC3B protein is predominantly nuclear and the only detectable source of DNA C-to-U editing activity in breast cancer cell-line extracts. Knockdown experiments show that endogenous APOBEC3B correlates with increased levels of genomic uracil, increased mutation frequencies, and C-to-T transitions. Furthermore, induced APOBEC3B overexpression causes cell cycle deviations, cell death, DNA fragmentation, γ-H2AX accumulation and C-to-T mutations. Our data suggest a model in which APOBEC3B-catalysed deamination provides a chronic source of DNA damage in breast cancers that could select TP53 inactivation and explain how some tumours evolve rapidly and manifest heterogeneity.
Asunto(s)
Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Citidina Desaminasa/metabolismo , Mutagénesis , Mutación Puntual , Secuencia de Bases , Biocatálisis , Neoplasias de la Mama/patología , Muerte Celular , Línea Celular Tumoral , Citidina Desaminasa/genética , Daño del ADN/genética , Fragmentación del ADN , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Desaminación , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Antígenos de Histocompatibilidad Menor , Mutagénesis/genética , Fenotipo , Mutación Puntual/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Uracilo/metabolismoRESUMEN
Polar and highly mobile domain walls in SrTiO_{3} move under electric and elastic fields. Two vastly different timescales dominate their dynamical behavior. The previously observed fast changes lead to anomalies near 40 K where the elastic moduli soften and the polarity of the walls becomes strong. Keeping the sample under isothermal conditions leads to a new and unexpected phenomenon: The softening vanishes over timescales of days while the piezoelectricity of the sample remains unchanged. The hardening follows glass dynamics below an onset at T^{*}≈40 K. The timescale of the hardening is strongly temperature dependent and can be followed experimentally down to 34 K when the relaxation is not completed within two days. The relaxation time of a stretched exponential decay increases exponentially with the decreasing temperature. This relaxation process follows similar dynamics after zero-field cooling and after applying or removing an electric field. The sluggish behavior is attributed to collective interactions of domain patterns following overdamped glass dynamics rather than ballistic dynamics.
RESUMEN
The driving forces for the phase transitions of ABX3 hybrid organic-inorganic perovskites have been limited to the octahedral tilting, order-disorder, and displacement. Now, a complex structural phase transition has been explored in a HOIP, [CH3 NH3 ][Mn(N3 )3 ], based on structural characterizations and abâ initio lattice dynamics calculations. This unusual first-order phase transition between two ordered phases at about 265â K is primarily driven by changes in the collective atomic vibrations of the whole lattice, along with concurrent molecular displacements and an unusual octahedral tilting. A significant entropy difference (4.35â J K-1 mol-1 ) is observed between the low- and high-temperature structures induced by such atomic vibrations, which plays a main role in driving the transition. This finding offers an alternative pathway for designing new ferroic phase transitions and related physical properties in HOIPs and other hybrid crystals.
RESUMEN
UNLABELLED: Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) DNA cytosine deaminases can be incorporated into progeny virions and inhibit lentiviral replication. On the other hand, viral infectivity factor (Vif) of lentiviruses antagonizes A3-mediated antiviral activities by degrading A3 proteins. It is known that domestic cat (Felis catus) APOBEC3Z3 (A3Z3), the ortholog of human APOBEC3H, potently suppresses the infectivity of vif-defective feline immunodeficiency virus (FIV). Although a recent report has shown that domestic cat encodes 7 haplotypes (hap I to hap VII) of A3Z3, the relevance of A3Z3 polymorphism in domestic cats with FIV Vif has not yet been addressed. In this study, we demonstrated that these feline A3Z3 variants suppress vif-defective FIV infectivity. We also revealed that codon 65 of feline A3Z3 is a positively selected site and that A3Z3 hap V is subject to positive selection during evolution. It is particularly noteworthy that feline A3Z3 hap V is resistant to FIV Vif-mediated degradation and still inhibits vif-proficient viral infection. Moreover, the side chain size, but not the hydrophobicity, of the amino acid at position 65 determines the resistance to FIV Vif-mediated degradation. Furthermore, phylogenetic analyses have led to the inference that feline A3Z3 hap V emerged approximately 60,000 years ago. Taken together, these findings suggest that feline A3Z3 hap V may have been selected for escape from an ancestral FIV. This is the first evidence for an evolutionary "arms race" between the domestic cat and its cognate lentivirus. IMPORTANCE: Gene diversity and selective pressure are intriguing topics in the field of evolutionary biology. A direct interaction between a cellular protein and a viral protein can precipitate an evolutionary arms race between host and virus. One example is primate APOBEC3G, which potently restricts the replication of primate lentiviruses (e.g., human immunodeficiency virus type 1 [HIV-1] and simian immunodeficiency virus [SIV]) if its activity is not counteracted by the viral Vif protein. Here we investigate the ability of 7 naturally occurring variants of feline APOBEC3, APOBEC3Z3 (A3Z3), to inhibit FIV replication. Interestingly, one feline A3Z3 variant is dominant, restrictive, and naturally resistant to FIV Vif-mediated degradation. Phylogenetic analyses revealed that the ancestral change that generated this variant could have been caused by positive Darwinian selection, presumably due to an ancestral FIV infection. The experimental-phylogenetic investigation sheds light on the evolutionary history of the domestic cat, which was likely influenced by lentiviral infection.
Asunto(s)
Citidina Desaminasa/metabolismo , Interacciones Huésped-Patógeno , Inmunidad Innata , Virus de la Inmunodeficiencia Felina/inmunología , Virus de la Inmunodeficiencia Felina/fisiología , Replicación Viral , Animales , Gatos , Citidina Desaminasa/genética , Evolución Molecular , Productos del Gen vif/deficiencia , Selección GenéticaRESUMEN
Functional and deep sequencing studies have combined to demonstrate the involvement of APOBEC3B in cancer mutagenesis. APOBEC3B is a single-stranded DNA cytosine deaminase that functions normally as a nuclear-localized restriction factor of DNA-based pathogens. However, it is overexpressed in cancer cells and elicits an intrinsic preference for 5'-TC motifs in single-stranded DNA, which is the most frequently mutated dinucleotide in breast, head/neck, lung, bladder, cervical, and several other tumor types. In many cases, APOBEC3B mutagenesis accounts for the majority of both dispersed and clustered (kataegis) cytosine mutations. Here, we report the first structures of the APOBEC3B catalytic domain in multiple crystal forms. These structures reveal a tightly closed active site conformation and suggest that substrate accessibility is regulated by adjacent flexible loops. Residues important for catalysis are identified by mutation analyses, and the results provide insights into the mechanism of target site selection. We also report a nucleotide (dCMP)-bound crystal structure that informs a multistep model for binding single-stranded DNA. Overall, these high resolution crystal structures provide a framework for further mechanistic studies and the development of novel anti-cancer drugs to inhibit this enzyme, dampen tumor evolution, and minimize adverse outcomes such as drug resistance and metastasis.
Asunto(s)
Citidina Desaminasa/química , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Humanos , Antígenos de Histocompatibilidad Menor , Modelos Moleculares , Conformación Proteica , SolubilidadRESUMEN
APOBEC3A (A3A) is a myeloid lineage-specific DNA cytosine deaminase with a role in innate immunity to foreign DNA. Previous studies have shown that heterologously expressed A3A is genotoxic, suggesting that monocytes may have a mechanism to regulate this enzyme. Indeed, we observed no significant cytotoxicity when interferon was used to induce the expression of endogenous A3A in CD14(+)-enriched primary cells or the monocytic cell line THP-1. In contrast, doxycycline-induced A3A in HEK293 cells caused major cytotoxicity at protein levels lower than those observed when CD14(+) cells were stimulated with interferon. Immunofluorescent microscopy of interferon-stimulated CD14(+) and THP-1 cells revealed that endogenous A3A is cytoplasmic, in stark contrast to stably or transiently transfected A3A, which has a cell-wide localization. A3A constructs engineered to be cytoplasmic are also nontoxic in HEK293 cells. These data combine to suggest that monocytic cells use a cytoplasmic retention mechanism to control A3A and avert genotoxicity during innate immune responses.
Asunto(s)
Citidina Desaminasa/fisiología , Citoplasma/enzimología , Daño del ADN , Proteínas/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular , Expresión Génica , Células HEK293 , Histonas/metabolismo , Humanos , Inmunidad Innata , Receptores de Lipopolisacáridos/metabolismo , Monocitos/enzimología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismoRESUMEN
Kidney stones have a prevalence rate of > 10% in some countries. There has been a significant increase in surgery to treat kidney stones over the last 10 years, and it is crucial that such techniques are as effective as possible, while limiting complications. A selection of kidney stones with different chemical and structural properties were subjected to compression. Under compression, they emit acoustic signals called crackling noise. The variability of the crackling noise was surprisingly great comparing weddellite, cystine and uric acid stones. Two types of signals were found in all stones. At high energies of the emitted sound waves, we found avalanche behaviour, while all stones also showed signals of local, uncorrelated collapse. These two types of events are called 'wild' for avalanches and 'mild' for uncorrelated events. The key observation is that the crossover from mild to wild collapse events differs greatly between different stones. Weddellite showed brittle collapse, extremely low crossover energies (< 5 aJ) and wild avalanches over 6 orders of magnitude. In cystine and uric acid stones, the collapse was more complicated with a dominance of local "mild" breakings, although they all contained some stress-induced collective avalanches. Cystine stones had high crossover energies, typically [Formula: see text] 750 aJ, and a narrow window over which they showed wild avalanches. Uric acid stones gave moderate values of crossover energies, [Formula: see text] 200 aJ, and wild avalanche behaviour for [Formula: see text] 3 orders of magnitude. Further research extended to all stone types, and measurement of stone responses to different lithotripsy strategies, will assist in optimisation of settings of the laser and other lithotripsy devices to insight fragmentation by targeting the 'wild' avalanche regime.
Asunto(s)
Oxalato de Calcio , Cistina , Cálculos Renales , Humanos , Ácido Úrico , AcústicaRESUMEN
Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination (RADD) assay. This assay offers a single-step set-up and real-time fluorescent read-out, and it is capable of providing insights into enzyme kinetics and also offering a high-sensitivity and easily scalable method for identifying APOBEC3 inhibitors. This assay serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit and possesses the versatility to be readily adapted into a high-throughput format for inhibitor discovery.