Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Obes (Lond) ; 46(4): 866-873, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35017712

RESUMEN

BACKGROUND: Increased adiposity and visceral obesity have been linked to adverse COVID-19 outcomes. The amount of epicardial adipose tissue (EAT) may have relevant implications given its proximity to the heart and lungs. Here, we explored the role of EAT in increasing the risk for COVID-19 adverse outcomes. METHODS: We included 748 patients with COVID-19 attending a reference center in Mexico City. EAT thickness, sub-thoracic and extra-pericardial fat were measured using thoracic CT scans. We explored the association of each thoracic adipose tissue compartment with COVID-19 mortality and severe COVID-19 (defined as mortality and need for invasive mechanical ventilation), according to the presence or absence of obesity. Mediation analyses evaluated the role of EAT in facilitating the effect of age, body mass index and cardiac troponin levels with COVID-19 outcomes. RESULTS: EAT thickness was associated with increased risk of COVID-19 mortality (HR 1.18, 95% CI 1.01-1.39) independent of age, gender, comorbid conditions and BMI. Increased EAT was associated with lower SpO2 and PaFi index and higher levels of cardiac troponins, D-dimer, fibrinogen, C-reactive protein, and 4 C severity score, independent of obesity. EAT mediated 13.1% (95% CI 3.67-28.0%) and 5.1% (95% CI 0.19-14.0%) of the effect of age and 19.4% (95% CI 4.67-63.0%) and 12.8% (95% CI 0.03-46.0%) of the effect of BMI on requirement for intubation and mortality, respectively. EAT also mediated the effect of increased cardiac troponins on myocardial infarction during COVID-19. CONCLUSION: EAT is an independent risk factor for severe COVID-19 and mortality independent of obesity. EAT partly mediates the effect of age and BMI and increased cardiac troponins on adverse COVID-19 outcomes.


Asunto(s)
COVID-19 , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/metabolismo , Adiposidad , Adulto , Índice de Masa Corporal , Humanos , Pericardio/diagnóstico por imagen , Pericardio/metabolismo , Adulto Joven
2.
Front Physiol ; 13: 848172, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360235

RESUMEN

The human body is a complex system maintained in homeostasis thanks to the interactions between multiple physiological regulation systems. When faced with physical or biological perturbations, this system must react by keeping a balance between adaptability and robustness. The SARS-COV-2 virus infection poses an immune system challenge that tests the organism's homeostatic response. Notably, the elderly and men are particularly vulnerable to severe disease, poor outcomes, and death. Mexico seems to have more infected young men than anywhere else. The goal of this study is to determine the differences in the relationships that link physiological variables that characterize the elderly and men, and those that characterize fatal outcomes in young men. To accomplish this, we examined a database of patients with moderate to severe COVID-19 (471 men and 277 women) registered at the "Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán" in March 2020. The sample was stratified by outcome, age, and sex. Physiological networks were built using 67 physiological variables (vital signs, anthropometric, hematic, biochemical, and tomographic variables) recorded upon hospital admission. Individual variables and system behavior were examined by descriptive statistics, differences between groups, principal component analysis, and network analysis. We show how topological network properties, particularly clustering coefficient, become disrupted in disease. Finally, anthropometric, metabolic, inflammatory, and pulmonary cluster interaction characterize the deceased young male group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA