Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Autoimmun ; 148: 103298, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067314

RESUMEN

Multiple sclerosis (MS) is an autoimmune neurodegenerative disease of unknown etiology characterized by infiltration of encephalitogenic cells in the central nervous system (CNS) resulting in the presence of multifocal areas of demyelination leading to neurodegeneration. The infiltrated immune cells population is composed mainly of effector CD4+ and CD8+ T lymphocytes, B cells, macrophages, and dendritic cells that secrete pro-inflammatory factors that eventually damage myelin leading to axonal damage. The most common clinical form of MS is relapsing-remitting (RR), characterized by neuroinflammatory episodes followed by partial or total recovery of neurological deficits. The first-line treatment for RRMS relapses is a high dose of glucocorticoids, especially methylprednisolone, for three to five consecutive days. Several studies have reported the beneficial effects of melatonin in the context of neuroinflammation associated with MS or experimental autoimmune encephalomyelitis (EAE), the preclinical model for MS. Therefore, the objective of this study was to evaluate the effect of the combined treatment of melatonin and methylprednisolone on the neuroinflammatory response associated with the EAE development. This study shows for the first time the protective synergistic effect of co-treatment with melatonin and methylprednisolone on reducing the severity of EAE by decreasing CD4 lymphocytes, B cells, macrophages and dendritic cells in the CNS, as well as modulating the population of infiltrated T and B cells toward regulatory phenotypes to the detriment of pro-inflammatory effector functions. In addition to the potentiation of the protective role of methylprednisolone, treatment with melatonin from the clinical onset of EAE improves the natural course of the EAE and the response to a subsequent treatment with methylprednisolone in a later relapse of the disease, pointing melatonin as potential therapeutic tool in combination with methylprednisolone for the treatment of relapses in MS.


Asunto(s)
Modelos Animales de Enfermedad , Sinergismo Farmacológico , Encefalomielitis Autoinmune Experimental , Melatonina , Metilprednisolona , Esclerosis Múltiple , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/administración & dosificación , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Animales , Metilprednisolona/farmacología , Metilprednisolona/uso terapéutico , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/inmunología , Femenino , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inmunología , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
2.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175623

RESUMEN

In recent decades, people in the industrialized world have increased the demand for meat-free foods motivated by health, environmental, and animal welfare reasons [...].


Asunto(s)
Antioxidantes , Carne , Animales , Antioxidantes/metabolismo , Manipulación de Alimentos , Fitoquímicos/farmacología
3.
Pharmacol Res ; 182: 106315, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35724819

RESUMEN

Tobacco smoking remains without a doubt one of the leading causes of premature death worldwide. In combination with conventional protocols for smoking cessation, e-cigarettes have been proposed as a useful tool to quit smoking. Advertised as almost free of toxic effects, e-cigarettes have rapidly increased their popularity, becoming a sought-after device, especially among young people. Recently some health concerns about e-cigarette consumption are being raised. It is well known that they can release several toxic compounds, some of which are carcinogenic to humans, and emerging results are now outlining the risks related to the onset of respiratory and cardiovascular diseases and even cancer. The present review shows the emerging evidence about the role of technical components of the devices, the e-liquid composition as well as customization by consumers. The primary topics we discuss are the main toxicological aspects associated with e-cigarette consumption, focusing on the molecular pathways involved. Here it will be shown how exposure to e-cigarette aerosol induces stress/mitochondrial toxicity, DNA breaks/fragmentation following the same pathological pathways triggered by tobacco smoke, including the deregulation of molecular signalling axis associated with cancer progression and cell migration. Risk to fertility and pregnancy, as well as cardiovascular risk associated with e-cigarette use, have also been reported.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Cese del Hábito de Fumar , Adolescente , Femenino , Humanos , Embarazo , Humo , Fumar , Cese del Hábito de Fumar/métodos , Nicotiana
4.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077225

RESUMEN

Anxiety is the most prevalent psychiatric disorder worldwide, causing a substantial economic burden due to the associated healthcare costs. Given that commercial anxiolytic treatments may cause important side effects and have medical restrictions for prescription and high costs, the search for new natural and safer treatments is gaining attention. Since lupin protein hydrolysate (LPH) has been shown to be safe and exert anti-inflammatory and antioxidant effects, key risk factors for the anxiety process and memory impairment, we evaluated in this study the potential effects of LPH on anxiety and spatial memory in a Western diet (WD)-induced anxiety model in ApoE-/- mice. We showed that 20.86% of the 278 identified LPH peptides have biological activity related to anxiolytic/analgesic effects; the principal motifs found were the following: VPL, PGP, YL, and GQ. Moreover, 14 weeks of intragastrical LPH treatment (100 mg/kg) restored the WD-induced anxiety effects, reestablishing the anxiety levels observed in the standard diet (SD)-fed mice since they spent less time in the anxiety zones of the elevated plus maze (EPM). Furthermore, a significant increase in the number of head dips was recorded in LPH-treated mice, which indicates a greater exploration capacity and less fear due to lower levels of anxiety. Interestingly, the LPH group showed similar thigmotaxis, a well-established indicator of animal anxiety and fear, to the SD group, counteracting the WD effect. This is the first study to show that LPH treatment has anxiolytic effects, pointing to LPH as a potential component of future nutritional therapies in patients with anxiety.


Asunto(s)
Ansiolíticos , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/psicología , Apolipoproteínas E/genética , Apolipoproteínas E/farmacología , Conducta Animal , Dieta Occidental/efectos adversos , Humanos , Aprendizaje por Laberinto , Ratones , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/uso terapéutico
6.
J Pineal Res ; 63(4)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28793364

RESUMEN

Multiple sclerosis (MS) is a neuroinflammatory disease of the central nervous system in which the immune system plays a central role. In particular, effector populations such as T helper (Th) 1, Th9, Th17, and Th22 cells are involved in disease development, whereas T regulatory cells (Tregs) are associated with the resolution of the disease. Melatonin levels are impaired in patients with MS, and exogenous melatonin ameliorates the disease in MS animal models by modulating the Th1/Th17/Treg responses and also improves quality of life and several symptoms in patients with MS. However, no study has examined melatonin's effect on T cells from relapsing-remitting MS (RR-MS) patients. Therefore, the objectives of the present study were to evaluate the effects of the in vitro administration of melatonin to peripheral blood mononuclear cells (PBMCs) from 64 RR-MS patients and 64 sex- and age-matched healthy subjects on Th1, Th9, Th17, Th22, and Treg responses and to analyze the expression of the melatonin effector/receptor system in these cells. Melatonin decreased Th1 and Th22 responses in patients, whereas it did not affect the Th17 and Treg subsets. Melatonin also promoted skewing toward a more protective cytokine microenvironment, as shown by an increased anti-inflammatory/Th1 ratio. Furthermore, for the first time, we describe the overexpression of the melatonin effector/receptor system in PBMCs from patients with MS; this alteration might be relevant to the disease because acetylserotonin O-methyltransferase expression significantly correlates with disease progression and T effector/regulatory responses in patients. Therefore, our data suggest that melatonin may be an effective treatment for MS.


Asunto(s)
Antioxidantes/farmacología , Melatonina/farmacología , Esclerosis Múltiple Recurrente-Remitente/inmunología , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Adulto , Células Cultivadas , Femenino , Humanos , Inflamación/inmunología , Masculino
7.
Brain Behav Immun ; 50: 101-114, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26130320

RESUMEN

Experimental autoimmune encephalomyelitis (EAE), the experimental model for multiple sclerosis (MS), is triggered by myelin-specific Th1 and Th17 cells. The immunomodulatory activities of melatonin have been shown to be beneficial under several conditions in which the immune system is exacerbated. Here, we sought to elucidate the basis of the melatonin protective effect on EAE by characterizing the T effector/regulatory responses, particularly those of the memory cell subsets. Melatonin was tested for its effect on Th1, Th17 and T regulatory (Treg) cells in the lymph nodes and CNS of immunodominant peptide of myelin oligodendrocyte glycoprotein (pMOG)-immunized and EAE mice, respectively. The capacity of melatonin to ameliorate EAE as well as modifying both T cell response and effector/regulatory balance was surveyed. T cell memory subsets and CD44, a key activation marker involved in the EAE pathogenesis, were also examined. Melatonin protected from EAE by decreasing peripheral and central Th1/Th17 responses and enhancing both the Treg frequency and IL-10 synthesis in the CNS. Melatonin reduced the T effector memory population and its pro-inflammatory response and regulated CD44 expression, which was decreased in T effector cells and increased in Tregs. The alterations in the T cell subpopulations were associated with a reduced mononuclear infiltration (CD4 and CD11b cells) of the melatonin-treated mice CNS. For the first time, we report that melatonin protects against EAE by controlling peripheral and central T effector/regulatory responses, effects that might be partially mediated by CD44. This immunomodulatory effect on EAE suggests that melatonin may represent an effective treatment option for MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Melatonina/administración & dosificación , Melatonina/inmunología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Proliferación Celular/efectos de los fármacos , Citocinas/inmunología , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Inflamación/inmunología , Inflamación/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Médula Espinal/inmunología , Médula Espinal/metabolismo , Linfocitos T Reguladores/metabolismo , Células TH1/metabolismo , Células Th17/metabolismo
8.
J Pineal Res ; 58(2): 173-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25546814

RESUMEN

We describe the case of a female patient who, at the age of 28, was diagnosed with symptoms of primary progressive multiple sclerosis (PPMS). Glucocorticoid treatment was immediately initiated. The disease and the demyelinating lesions progressed during the following 9 years reaching Expanded Disability Status Scale (EDSS) 8.0 (patient essentially restricted to bed, a chair or perambulated in a wheelchair). At this point, the patient began taking melatonin at doses ranging from 50 to 300 mg per day. Melatonin was her only treatment for the next 4 years; during this interval, her EDSS progressively recovered to 6.0 (the person needs intermittent or unilateral constant assistance such as cane, crutch, or brace to walk 100 meters with or without resting). This long-lasting improvement is likely due to melatonin usage since it is related in time and because of its exceptionally long duration.


Asunto(s)
Melatonina/uso terapéutico , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Adulto , Femenino , Humanos , Melatonina/administración & dosificación , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/patología
9.
J Pineal Res ; 58(2): 219-26, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25612066

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the production of antinuclear autoantibodies. In addition, the involvement of CD4+ T-helper (Th) cells in SLE has become increasingly evident. Although the role of melatonin has been tested in some experimental models of lupus with inconclusive results, there are no studies evaluating the melatonin effect on cells from patients with SLE. Therefore, the aim of this study was to analyse the role of in vitro administered melatonin in the immune response of peripheral leukocytes from treated patients with SLE (n = 20) and age- and sex-matched healthy controls. Melatonin was tested for its effect on the production of key Th1, Th2, Th9, Th17 and innate cytokines. The frequency of T regulatory (Treg) cells and the expression of FOXP3 and BAFF were also explored. Our results are the first to show that melatonin decreased the production of IL-5 and to describe the novel role of melatonin in IL-9 production by human circulating cells. Additionally, we highlighted a two-faceted melatonin effect. Although it acted as a prototypical anti-inflammatory compound, reducing exacerbated Th1 and innate responses in PHA-stimulated cells from healthy subjects, it caused the opposite actions in immune-depressed cells from patients with SLE. Melatonin also increased the number of Treg cells expressing FOXP3 and offset BAFF overexpression in SLE patient cells. These findings open a new field of research in lupus that could lead to the use of melatonin as treatment or cotreatment for SLE.


Asunto(s)
Factores Inmunológicos/uso terapéutico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/inmunología , Melatonina/uso terapéutico , Linfocitos T Reguladores/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Citocinas/sangre , Citocinas/metabolismo , Femenino , Citometría de Flujo , Humanos , Lupus Eritematoso Sistémico/sangre , Masculino , Persona de Mediana Edad
10.
Biomed Pharmacother ; 178: 117198, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059351

RESUMEN

The prevalence of obesity is increasingly widespread, resembling a global epidemic. Lifestyle changes, such as consumption of high-energy-dense diets and physical inactivity, are major contributors to obesity. Common features of this metabolic pathology involve an imbalance in lipid and glucose homeostasis including dyslipidemia, insulin resistance and adipose tissue dysfunction. Moreover, the importance of the gut microbiota in the development and susceptibility to obesity has recently been highlighted. In recent years, new strategies based on the use of functional foods, in particular bioactive peptides, have been proposed to counteract obesity outcomes. In this context, the present study examines the effects of a lupin protein hydrolysate (LPH) on obesity, dyslipidemia and gut dysbiosis in mice fed a high-fat diet (HFD). After 12 weeks of LPH treatment, mice gained less weight and showed decreased adipose dysfunction compared to the HFD-fed group. HFD-induced dyslipidemia (increased triglycerides, cholesterol and LDL concentration) and insulin resistance were both counteracted by LPH consumption. Discriminant analysis differentially distributed LPH-treated mice compared to non-treated mice. HFD reduced gut ecological parameters, promoted the blooming of deleterious taxa and reduced the abundance of commensal members. Some of these changes were corrected in the LPH group. Finally, correlation analysis suggested that changes in this microbial population could be responsible for the improvement in obesity outcomes. In conclusion, this is the first study to show the effect of LPH on improving weight gain, adiposopathy and gut dysbiosis in the context of diet-induced obesity, pointing to the therapeutic potential of bioactive peptides in metabolic diseases.


Asunto(s)
Dieta Alta en Grasa , Disbiosis , Microbioma Gastrointestinal , Resistencia a la Insulina , Lupinus , Obesidad , Hidrolisados de Proteína , Animales , Masculino , Ratones , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa/efectos adversos , Dislipidemias/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/tratamiento farmacológico , Hidrolisados de Proteína/farmacología
11.
Plants (Basel) ; 13(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065441

RESUMEN

In the dynamic landscape of agriculture and food science, incorporating emergent crops appears as a pioneering solution for diversifying agriculture, unlocking possibilities for sustainable cultivation and nutritional bolstering food security, and creating economic prospects amid evolving environmental and market conditions with positive impacts on human health. This review explores the potential of utilizing emergent crops in Mediterranean environments under current climate scenarios, emphasizing the manifold benefits of agricultural and food system diversification and assessing the impact of environmental factors on their quality and consumer health. Through a deep exploration of the resilience, nutritional value, and health impacts of neglected and underutilized species (NUS) such as quinoa, amaranth, chia, moringa, buckwheat, millet, teff, hemp, or desert truffles, their capacity to thrive in the changing Mediterranean climate is highlighted, offering novel opportunities for agriculture and functional food development. By analysing how promoting agricultural diversification can enhance food system adaptability to evolving environmental conditions, fostering sustainability and resilience, we discuss recent findings that underscore the main benefits and limitations of these crops from agricultural, food science, and health perspectives, all crucial for responsible and sustainable adoption. Thus, by using a sustainable and holistic approach, this revision analyses how the integration of NUS crops into Mediterranean agrifood systems can enhance agriculture resilience and food quality addressing environmental, nutritional, biomedical, economic, and cultural dimensions, thereby mitigating the risks associated with monoculture practices and bolstering local economies and livelihoods under new climate scenarios.

12.
Food Funct ; 15(7): 3722-3730, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38489157

RESUMEN

Bioactive peptides have been considered potential components for the future functional foods and nutraceuticals generation. The enzymatic method of hydrolysis has several advantages compared to those of chemical hydrolysis and fermentation. Despite this fact, the high cost of natural and commercial proteases limits the commercialization of hydrolysates in the food and pharmacological industries. For this reason, more efficient and economically interesting techniques, such as the immobilisation of the enzyme, are gaining attention. In the present study, a new protein hydrolysate from Lupinus angustifolius was generated by enzymatic hydrolysis through the immobilisation of the enzyme alcalase® (imLPH). After the chemical and nutritional characterization of the imLPH, an in vivo study was carried out in order to evaluate the effect of 12 weeks treatment with imLPH on the plasmatic lipid profile and antioxidant status in western-diet-fed apolipoprotein E knockout mice. The immobilisation of alcalase® generated an imLPH with a degree of hydrolysis of 29.71 ± 2.11%. The imLPH was mainly composed of protein (82.50 ± 0.88%) with a high content of glycine/glutamine, arginine, and aspartic acid/asparagine. The imLPH-treatment reduced the amount of abdominal white adipose tissue, total plasma cholesterol, LDL-C, and triglycerides, as well as the cardiovascular risk indexes (CRI) -I, CRI-II, and atherogenic index of plasma. The imLPH-treated mice also showed an increase in the plasma antioxidant capacity. For the first time, this study demonstrates the beneficial in vivo effect of a lupin protein hydrolysate obtained with the alcalase® immobilised and points out this approach as a possible cost-effective solution at the expensive generation of the hydrolysate through the traditional batch conditions with soluble enzymes.


Asunto(s)
Lupinus , Hidrolisados de Proteína , Animales , Ratones , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Antioxidantes/química , Lupinus/metabolismo , Subtilisinas/metabolismo , Endopeptidasas/metabolismo , Hidrólisis
13.
Mol Nutr Food Res ; 68(5): e2300503, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308501

RESUMEN

Oxidative stress plays a crucial role in neurodegenerative diseases like Parkinson's and Alzheimer's. Studies indicate the relationship between oxidative stress and the brain damage caused by a high-fat diet. It is previously found that a lupin protein hydrolysate (LPH) has antioxidant effects on human leukocytes, as well as on the plasma and liver of Western diet (WD)-fed ApoE-/- mice. Additionally, LPH shows anxiolytic effects in these mice. Given the connection between oxidative stress and anxiety, this study aimed to investigate the antioxidant effects of LPH on the brain of WD-fed ApoE-/- mice. LPH (100 mg kg-1) or a vehicle is administered daily for 12 weeks. Peptide analysis of LPH identified 101 amino acid sequences (36.33%) with antioxidant motifs. Treatment with LPH palliated the decrease in total antioxidant activity caused by WD ingestion and regulated the nitric oxide synthesis pathway in the brain of the animals. Furthermore, LPH increased cerebral glutathione levels and the activity of catalase and glutathione reductase antioxidant enzymes and reduced the 8-hydroxy-2'-deoxyguanosine levels, a DNA damage marker. These findings, for the first time, highlight the antioxidant activity of LPH in the brain. This hydrolysate could potentially be used in future nutraceutical therapies for neurodegenerative diseases.


Asunto(s)
Antioxidantes , Enfermedades Neurodegenerativas , Ratones , Humanos , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Hidrolisados de Proteína/farmacología , Dieta Occidental , Estrés Oxidativo , Encéfalo/metabolismo , Apolipoproteínas E/genética
14.
Int J Mol Sci ; 14(4): 8638-83, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23609496

RESUMEN

Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed.


Asunto(s)
Melatonina/inmunología , Adyuvantes Inmunológicos/farmacología , Envejecimiento/inmunología , Animales , Antiinflamatorios/farmacología , Autoinmunidad , Humanos , Infecciones/inmunología , Melatonina/farmacología , Neuroinmunomodulación , Glándula Pineal/inmunología , Receptores de Melatonina/inmunología , Vacunación
15.
Antioxidants (Basel) ; 12(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37507875

RESUMEN

MOMAST® is a patented natural phenolic complex, rich in tyrosol (9.0 g/kg, Tyr), hydroxityrosol (43,5 g/kg, OH-Tyr), and verbascoside (5.0 g/Kg), which is obtained from the OVW by-product of the Coratina cultivar with potent direct antioxidant activity (measured by DPPH and FRAP assays, respectively). Indeed, MOMAST® represents an innovative sustainable bioactive ingredient which has been obtained with ethical and empowering behavior by applying the principles of a circular economy. In the framework of research aimed at fostering its health-promoting activity, in this study it was clearly demonstrated that MOMAST® treatment reduced the oxidative stress and levels of total cholesterol (TC) and low-density lipoprotein (LDL) cholesterol, and increased the HDL levels, without changes in the triglyceride (TG) levels in Western diet (WD)-fed mice. The modulation of the plasmatic lipid profile is similar to red yeast rice (RYR) containing Monacolin K (3%). In addition, at the molecular level in liver homogenates, similarly to RYR, MOMAST® exerts cholesterol-lowering activity through the activation of LDL receptor, whereas, unlike RYR, MOMAST® reduces proprotein convertase subtilisin/kexin type 9 (PCSK9) protein levels via hepatic nuclear factor 1 (HNF1)-α activation. Hence, this study provides the proof of concept regarding the hypocholesterolemic activity of MOMAST, which could be successfully exploited as an active ingredient for the development of innovative and sustainable dietary supplements and functional foods.

16.
Food Chem ; 426: 136458, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37329795

RESUMEN

Dipeptidyl peptidase IV (DPP-IV) is considered a key target for the diabetes treatment, since it is involved in glucose metabolism. Although lupin protein consumption shown hypoglycemic activity, there is no evidence of its effect on DPP-IV activity. This study demonstrates that a lupin protein hydrolysate (LPH), obtained by hydrolysis with Alcalase, exerts anti-diabetic activity by modulating DPP-IV activity. In fact, LPH decreased DPP-IV activity in a cell-free and cell-based system. Contextually, Caco-2 cells were employed to identify LPH peptides that can be intestinally trans-epithelial transported. Notably, 141 different intestinally transported LPH sequences were identified using nano- and ultra-chromatography coupled to mass spectrometry. Hence, it was demonstrated that LPH modulated the glycemic response and the glucose concentration in mice, by inhibiting the DPP-IV. Finally, a beverage containing 1 g of LPH decreased DPP-IV activity and glucose levels in humans.


Asunto(s)
Diabetes Mellitus , Inhibidores de la Dipeptidil-Peptidasa IV , Lupinus , Humanos , Animales , Ratones , Lupinus/química , Células CACO-2 , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptidos/química , Dipeptidil Peptidasa 4/metabolismo , Glucosa
17.
J Immunol ; 184(6): 2839-46, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20164413

RESUMEN

Breakdown in immunological self tolerance, leading to autoimmune diseases such as multiple sclerosis, might arise from immune recognition of self proteins that have undergone heightened posttranslational modification under pathophysiological conditions. A posttranslational modification of particular interest is the deimination of Arg to citrulline, catalyzed by peptidylarginyl deiminase (PAD) enzymes. As a CD4(+) T cell-driven model of multiple sclerosis, we used experimental autoimmune encephalomyelitis (EAE) induced with the immunodominant 35-55 peptide of myelin oligodendrocyte glycoprotein (pMOG) in C57BL/6 mice to test whether citrullination of a T cell epitope can contribute to disease etiopathology. Immunization with an altered peptide ligand (APL) of pMOG with an Arg-->citrulline conversion at a TCR contact (residue 41) led to the activation of two populations of APL-responsive T cells that either did, or did not cross-react with the native pMOG peptide. This APL could induce EAE. However, this reflected the activation of T cells that cross-reacted with the native pMOG epitope, because prior tolerization of these T cells using pMOG prevented APL-induced EAE. Using a passive transfer model, we found that T cells that responded specifically to the citrullinated form of pMOG were neither necessary, nor sufficient to initiate the EAE lesion. Nevertheless, these cells could provoke exacerbation of pathology if transferred into mice with ongoing EAE. The PAD2 and PAD4 enzymes were markedly upregulated in the inflamed CNS. Therefore, once inflammation is established, citrullination of target autoantigens can allow an expanded repertoire of T cells to contribute to CNS pathology.


Asunto(s)
Autoantígenos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Citrulina/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Glicoproteínas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Linfocitos T CD4-Positivos/enzimología , Encefalomielitis Autoinmune Experimental/enzimología , Glicoproteínas/fisiología , Hidrolasas/biosíntesis , Hidrolasas/genética , Hidrolasas/metabolismo , Epítopos Inmunodominantes/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Glicoproteína Mielina-Oligodendrócito , Proteínas del Tejido Nervioso/fisiología , Fragmentos de Péptidos/fisiología , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica , Receptores de Antígenos de Linfocitos T/metabolismo
18.
BMC Vet Res ; 8: 84, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22716226

RESUMEN

BACKGROUND: Melatonin regulates several physiological processes and its powerful action as antioxidant has been widely reported. Melatonin acts modulating the immune system, showing a protective effect on the cardiovascular system and improving vaccine administration as an adjuvant-like agent. Here, we have investigated the role of melatonin as an adjuvant of the Clostridium perfringens vaccine in prepartum sheep and whether melatonin modulates platelet physiology during peripartum. RESULTS: The experiments were carried out in peripartum sheep from a farm located in an area of Mediterranean-type ecosystem. Plasma melatonin levels were determined by ELISA and sheep platelet aggregation was monitored using an aggregometer. Here we demonstrated for the first time that plasma melatonin concentration were higher in pregnant (125 pg/mL) than in non-pregnant sheep (15 pg/mL; P < 0.05). Administration of melatonin prepartum did not significantly modify platelet function but significantly improved the immune response to vaccination against C. perfringens. CONCLUSION: Administration of melatonin as an adjuvant provides a significant improvement in the immune response to vaccine administration prepartum against C. perfringens.


Asunto(s)
Vacunas Bacterianas/inmunología , Infecciones por Clostridium/veterinaria , Melatonina/farmacología , Agregación Plaquetaria/efectos de los fármacos , Enfermedades de las Ovejas/prevención & control , Adyuvantes Inmunológicos/farmacología , Animales , Vacunas Bacterianas/administración & dosificación , Infecciones por Clostridium/prevención & control , Clostridium perfringens/inmunología , Implantes de Medicamentos , Femenino , Esquemas de Inmunización , Melatonina/sangre , Agregación Plaquetaria/inmunología , Embarazo , Ovinos , Enfermedades de las Ovejas/microbiología
19.
Biology (Basel) ; 11(9)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36138840

RESUMEN

Morphological embryo quality is an accurate prognostic tool for the success of assisted reproduction implantation, although complete certainty cannot be guaranteed. The transcriptome of the cumulus cells could be monitored as a faithful reflex of the physiological state of the oocytes, given the molecular crosstalk between both types of cells. Here, we compare the expression of specific genes related to oocyte competence, such as hyaluronic acid synthase 2 (HAS2), cell division control protein 42 (CDC42), connexin 43 (CX43), and glutathione peroxidase 3 (GPX3), in cumulus cells from implanted versus non-implanted embryos in 25 women, using RT-qPCR. After embryo transfer, two cohorts were differentiated: the pregnant group (women with the implantation of 100% of embryos transferred) versus the non-pregnant group (with an absence of embryo implantation), aiming to compare the possible differential expression of the selected genes in the cumulus cells of embryos from each group. HAS2, CDC42 and CX43 did not reveal differential expression between the two cohorts. However, GPX3 showed significantly reduced expression in the cumulus belonging to the pregnant group. Interestingly, even cumulus cells belonging only to morphotype A embryos showed a significantly lower expression of GPX3 in the pregnancy group. GPX3 overexpression in cumulus cells could be a poor prognostic indicator of implantation, discriminating beyond the capacity of the morphokinetic score. Unveiling the cumulus transcriptome could improve successful implantation in assisted reproduction treatments.

20.
Food Funct ; 13(7): 4158-4170, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35316320

RESUMEN

Lupin protein hydrolysates (LPHs) are gaining attention in the food and nutraceutical industries due to their several beneficial health effects. Recently, we have shown that LPH treatment reduces liver cholesterol and triglyceride levels in hypercholesterolemic mice. The aim of this study was to elucidate the effects of LPH treatment on the molecular mechanism underlying liver cholesterol metabolism in ApoE-/- mice fed the Western diet. After identifying the composition of the peptide within the LPH mixture and determining its ability to reduce HMGCoAR activity in vitro, its effect on the LDLR and PCSK9 pathways was measured in liver tissue from the same mice. Thus, the LPH reduced the protein levels of HMGCoAR and increased the phosphorylated inactive form of HMGCoAR and the pHMGCoAR/HMGCoAR ratio, which led to the deactivation of de novo cholesterol synthesis. Furthermore, the LPH decreased the protein levels of SREBP2, a key upstream transcription factor involved in the expression of HMGCoAR and LDLR. Consequently, LDLR protein levels decreased in the liver of LPH-treated animals. Interestingly, the LPH also increased the protein levels of pAMPK responsible for HMGCoAR phosphorylation. Furthermore, the LPH controlled the PSCK9 signal pathway by decreasing its transcription factor, the HNF1-α protein. Consequently, lower PSCK9 protein levels were found in the liver of LPH-treated mice. This is the first study elucidating the molecular mechanism at the basis of the hypocholesterolemic effects exerted by the LPH in an in vivo model. All these findings point out LPHs as a future lipid-lowering ingredient to develop new functional foods.


Asunto(s)
Lupinus , Proproteína Convertasa 9 , Animales , Apolipoproteínas E/genética , Dieta Occidental/efectos adversos , Hígado/metabolismo , Lupinus/metabolismo , Ratones , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Hidrolisados de Proteína/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA