Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Headache Pain ; 25(1): 36, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481170

RESUMEN

BACKGROUND: The upper cervical dorsal root ganglia (DRG) are important for the transmission of sensory information associated with the back of the head and neck, contributing to head pain. Calcitonin receptor (CTR)-based receptors, such as the amylin 1 (AMY1) receptor, and ligands, calcitonin gene-related peptide (CGRP) and amylin, have been linked to migraine and pain. However, the contribution of this system to nociception involving the cervical DRG is unclear. Therefore, this study aimed to determine the relative distribution of the CTR, CGRP, and amylin in upper cervical DRG. METHODS: CTR, CGRP, and amylin immunofluorescence was examined relative to neural markers in C1/2 DRG from male and female mice, rats, and human cases. Immunofluorescence was supported by RNA-fluorescence in situ hybridization examining amylin mRNA distribution in rat DRG. RESULTS: Amylin immunofluorescence was observed in neuronal soma and fibres. Amylin mRNA (Iapp) was also detected. Amylin and CGRP co-expression was observed in 19% (mouse), 17% (rat), and 36% (human) of DRG neurons in distinct vesicle-like neuronal puncta from one another. CTR immunoreactivity was present in DRG neurons, and both peptides produced receptor signalling in primary DRG cell cultures. CTR-positive neurons frequently co-expressed amylin and/or CGRP (66% rat; 84% human), with some sex differences. CONCLUSIONS: Amylin and CGRP could both be local peptide agonists for CTR-based receptors in upper cervical DRG, potentially acting through autocrine and/or paracrine signalling mechanisms to modulate neuron function. Amylin and its receptors could represent novel pain targets.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Receptores de Calcitonina , Ratas , Femenino , Masculino , Humanos , Ratones , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Ganglios Espinales , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Hibridación Fluorescente in Situ , Dolor , ARN Mensajero
2.
Ann Neurol ; 89(6): 1157-1171, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33772845

RESUMEN

OBJECTIVE: Migraine is a prevalent and disabling neurological disease. Its genesis is poorly understood, and there remains unmet clinical need. We aimed to identify mechanisms and thus novel therapeutic targets for migraine using human models of migraine and translational models in animals, with emphasis on amylin, a close relative of calcitonin gene-related peptide (CGRP). METHODS: Thirty-six migraine without aura patients were enrolled in a randomized, double-blind, 2-way, crossover, positive-controlled clinical trial study to receive infusion of an amylin analogue pramlintide or human αCGRP on 2 different experimental days. Furthermore, translational studies in cells and mouse models, and rat, mouse and human tissue samples were conducted. RESULTS: Thirty patients (88%) developed headache after pramlintide infusion, compared to 33 (97%) after CGRP (p = 0.375). Fourteen patients (41%) developed migraine-like attacks after pramlintide infusion, compared to 19 patients (56%) after CGRP (p = 0.180). The pramlintide-induced migraine-like attacks had similar clinical characteristics to those induced by CGRP. There were differences between treatments in vascular parameters. Human receptor pharmacology studies showed that an amylin receptor likely mediates these pramlintide-provoked effects, rather than the canonical CGRP receptor. Supporting this, preclinical experiments investigating symptoms associated with migraine showed that amylin treatment, like CGRP, caused cutaneous hypersensitivity and light aversion in mice. INTERPRETATION: Our findings propose amylin receptor agonism as a novel contributor to migraine pathogenesis. Greater therapeutic gains could therefore be made for migraine patients through dual amylin and CGRP receptor antagonism, rather than selectively targeting the canonical CGRP receptor. ANN NEUROL 2021;89:1157-1171.


Asunto(s)
Agonistas de los Receptores de Amilina/efectos adversos , Polipéptido Amiloide de los Islotes Pancreáticos/efectos adversos , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/efectos adversos , Estudios Cruzados , Método Doble Ciego , Humanos , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Ganglio del Trigémino/metabolismo
3.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36430275

RESUMEN

Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide expressed in the trigeminal ganglia (TG). The TG conducts nociceptive signals in the head and may play roles in migraine. PACAP infusion provokes headaches in healthy individuals and migraine-like attacks in patients; however, it is not clear whether targeting this system could be therapeutically efficacious. To effectively target the PACAP system, an understanding of PACAP receptor distribution is required. Therefore, this study aimed to characterize commercially available antibodies and use these to detect PACAP-responsive receptors in the TG. Antibodies were initially validated in receptor transfected cell models and then used to explore receptor expression in rat and human TG. Antibodies were identified that could detect PACAP-responsive receptors, including the first antibody to differentiate between the PAC1n and PAC1s receptor splice variants. PAC1, VPAC1, and VPAC2 receptor-like immunoreactivity were observed in subpopulations of both neuronal and glial-like cells in the TG. In this study, PAC1, VPAC1, and VPAC2 receptors were detected in the TG, suggesting they are all potential targets to treat migraine. These antibodies may be useful tools to help elucidate PACAP-responsive receptor expression in tissues. However, most antibodies exhibited limitations, requiring the use of multiple methodologies and the careful inclusion of controls.


Asunto(s)
Trastornos Migrañosos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Humanos , Ratas , Animales , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Ganglio del Trigémino/metabolismo , Expresión Génica , Anticuerpos , Trastornos Migrañosos/genética
4.
Neuromodulation ; 24(7): 1237-1246, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34013608

RESUMEN

OBJECTIVES: To assess the efficacy of transcutaneous electrical nerve stimulation (TENS) for neurogenic bladder dysfunction secondary to spinal cord injury (SCI). MATERIALS AND METHODS: A systematic search of MEDLINE, EMBASE, Web of Science, Scopus, and Cochrane libraries up to February 2021 was performed using PRISMA methodology. All randomized controlled trials (RCTs) that studied TENS for neurogenic bladder in a SCI population were included. The primary outcomes of interest were maximum cystometric capacity (MCC) and maximum detrusor pressure (Pdet). Meta-analysis was conducted with RevMan v5.3. RESULTS: Six RCTs involving 353 participants were included. Meta-analysis showed that TENS significantly increased MCC (standardized mean difference 1.11, 95% confidence interval [CI] 0.08-2.14, p = 0.03, I2  = 54%) in acute SCI. No benefits were seen for maximum Pdet. TENS was associated with no major adverse events. CONCLUSIONS: TENS may be an effective, safe intervention for neurogenic bladder dysfunction following SCI. Further studies are essential to confirm these results and more work is required to determine optimal stimulation parameters and duration of the treatment.


Asunto(s)
Traumatismos de la Médula Espinal , Estimulación Eléctrica Transcutánea del Nervio , Vejiga Urinaria Neurogénica , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Vejiga Urinaria Neurogénica/etiología , Vejiga Urinaria Neurogénica/terapia
5.
Cell Biol Int ; 44(1): 343-351, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31498530

RESUMEN

Neuroinflammatory disorders such as Alzheimer's and Parkinson's diseases are characterised by chronic inflammation and loss of vascular integrity. Bradykinin 1 receptor (B1R) activation has been implicated in many neuroinflammatory diseases, but the contribution of B1R to inflammation and vascular breakdown is yet to be determined. As a result, the present study evaluated the effect of B1R stimulation using Des-Arg-9-BK on the cytokine profile and junctional properties of human cerebral microvascular endothelial cells (hCMVECs). Results showed that stimulation of B1R receptors increased secretion of pro-inflammatory cytokines, interleukin-6 (IL-6), IL-8, intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1), but decreased the expression of vascular endothelial growth factor (VEGF), a cytokine and growth factor required for maintenance of the vasculature. B1R stimulation also resulted in the loss of occludin expression at tight junctions with no change in VE-cadherin expression. There was also a significant increase in permeability to Evans blue albumin, suggesting an increase of vascular permeability. Taken together, these results suggest that B1R activation that occurs in neuroinflammatory diseases may contribute to both the inflammation and loss of blood-brain barrier integrity that is characteristic of these diseases.

6.
Int J Mol Sci ; 21(21)2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139674

RESUMEN

We have recently demonstrated that invasive melanoma cells are capable of disrupting the brain endothelial barrier integrity. This was shown using ECIS biosensor technology, which revealed rapid disruption via the paracellular junctions. In this paper, we demonstrate that melanoma cells secrete factors (e.g., cytokines) that weaken the endothelial barrier integrity. Through proteome profiling, we attempt to identify the barrier-disrupting cytokines. Melanoma conditioned media were collected from three New Zealand melanoma lines. ECIS technology was used to assess if the conditioned media disrupted the endothelial barrier independent of the melanoma cells. The melanoma cell secretome was assessed using cytometric bead array (CBA), Luminex immunoassay and multiplex Proteome Profilers, to detect the expression of secretory proteins, which may facilitate metastasis. Finally, ECIS technology was used to assess the direct effects of secreted proteins identified as candidates from the proteome screens. We show that melanoma-conditioned media significantly disrupted the brain endothelial barrier, however, to a much lesser extent than the cells from which they were collected. Cytokine and proteome profiling of the conditioned media showed evidence of high concentrations of approximately 15 secreted proteins (including osteopontin, IL-8, GDF-15, MIF and VEGF). These 15 secreted proteins were expressed variably across the melanoma lines. Surprisingly, the addition of these individually to the brain endothelial cells did not substantially affect the barrier integrity. ANGPTL-4 and TGFß were also produced by the melanoma cells. Whilst TGFß-1 had a pronounced effect on the barrier integrity, surprisingly ANGPTL-4 did not. However, its C-terminal fragment did and within a very similar period to the conditioned media, albeit not to the same extent. Herein we show that melanoma cells produce a wide-range of soluble factors at high concentrations, which most likely favour support or survival of the cancer cells. Most of these, except for TGFß-1 and the C-terminal fragment of ANGPTL-4, did not have an impact on the integrity of the brain endothelial cells.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Citocinas/metabolismo , Células Endoteliales/metabolismo , Melanoma/metabolismo , Neoplasias Cutáneas/metabolismo , Técnicas Biosensibles/métodos , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/patología , Línea Celular , Línea Celular Tumoral , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Citocinas/genética , Citometría de Flujo/métodos , Humanos , Inmunoensayo/métodos , Melanoma/genética , Melanoma/patología , Proteoma/metabolismo , Proteómica/métodos , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
7.
Gene Ther ; 26(5): 198-210, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962538

RESUMEN

Adeno-associated viral (AAV) vectors are a promising system for transgene delivery into the central nervous system (CNS) based on their safety profile and long-term gene expression. Gene delivery to the CNS has largely been neuron centric but advances in AAV technology are facilitating the development of approaches to enable transduction of glial cells. Considering the role of astrocytes in the on-going secondary damage in spinal cord injury (SCI), an AAV vector that targets astrocytes could show benefit as a potential treatment. Transduction efficiency, transgene expression and cellular tropism were compared for the AAV serotypes AAV5, AAV9 and AAVRec2 whereby destabilised yellow fluorescent protein (dYFP) was controlled by the GFAP or the truncated GfaABC1D promoter. The vectors were tested in primary spinal cord astrocyte cell culture, spinal cord slice culture and an in vivo model of SCI contusion. AAV5 resulted in greater transduction efficiency, transgene expression and astrocyte tropism compared with AAV9 and AAVRec2. In a rodent model of SCI, robust transgene expression by AAV5-GFAP/GfaABC1D-dYFP was observed through 12 mm of spinal cord tissue and expression was largely restricted to astrocytes. Thus, AAV5-GFAP/GfaABC1D carries the potential as a potential gene therapy vector, particularly for transducing astrocytes in the damaged spinal cord.


Asunto(s)
Astrocitos/metabolismo , Dependovirus/genética , Terapia Genética/métodos , Traumatismos de la Médula Espinal/terapia , Animales , Células Cultivadas , Técnicas de Transferencia de Gen , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Regiones Promotoras Genéticas , Ratas , Ratas Sprague-Dawley
8.
Biomed Microdevices ; 21(3): 77, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31346791

RESUMEN

Microfluidics-based gradient generators have been used for various biological applications, specifically chemotaxis in cell culture. However, the ability to generate and maintain long term gradients alongside the ability to quickly switch solutions is a challenge of the current microfabricated systems. In this study, a simple flow-driven microfluidic system was developed to achieve long-term stable concentration gradients. Computational modelling was performed to highlight the fluid dynamics as well as to verify the ability of maintaining stable gradients over 7 days. Numerical simulation was analysed to evaluate the static pressure, velocity magnitude and wall shear stress distribution in the chamber. A microdevice fabricated with polydimethylsiloxane (PDMS), using a standard soft lithography technique is presented. It consists of eight parallel microchannels (5 µm × 30 µm × 1,800 µm) linking source and sink chambers; a syringe pump drives fluid through the sink chamber, advection/diffusion from source to sink establishes a gradient. A gradient of a fluorescent dye was generated under the low flow control at 1-10 µl/h of a simple syringe pump equipped with a pulsation damper that was comparable to a pulseless microfluidic pump. Concentration gradients were formed in 1 h and stable from 2 h out to 5 days and consuming less than 1.0 ml of solution. This study focuses on a novel solution to achieve a long-term microfluidic gradient generator using simple engineering techniques of biomedical microdevices.


Asunto(s)
Dispositivos Laboratorio en un Chip , Calibración , Simulación por Computador , Diseño de Equipo , Factores de Tiempo
9.
Biochim Biophys Acta Biomembr ; 1860(1): 224-236, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28347700

RESUMEN

A common cause of mortality and long-term adult disability, cerebral ischemia or brain ischemia imposes a significant health and financial burden on communities worldwide. Cerebral ischemia is a condition that arises from a sudden loss of blood flow and consequent failure to meet the high metabolic demands of the brain. The lack of blood flow initiates a sequelae of cell death mechanisms, including the activation of the inflammatory pathway, which can ultimately result in irreversible brain tissue damage. In particular, Connexins and Pannexins are non-selective channels with a large pore that have shown to play time-dependent roles in the perpetuation of ischaemic injury. This review highlights the roles of Connexin and Pannexin channels in cell death mechanisms as a promising therapeutic target in cerebral ischemia, and in particular connexin hemichannels which may contribute most of the ATP release as a result of ischemia as well as during reperfusion. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.


Asunto(s)
Adenosina Trifosfato/metabolismo , Isquemia Encefálica/metabolismo , Corteza Cerebral/metabolismo , Conexinas/metabolismo , Canales Iónicos/metabolismo , Animales , Isquemia Encefálica/patología , Corteza Cerebral/patología , Humanos
10.
J Neuroinflammation ; 15(1): 138, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29751771

RESUMEN

BACKGROUND: Pericytes and endothelial cells are critical cellular components of the blood-brain barrier (BBB) and play an important role in neuroinflammation. To date, the majority of inflammation-related studies in endothelia and pericytes have been carried out using immortalised cell lines or non-human-derived cells. Whether these are representative of primary human cells is unclear and systematic comparisons of the inflammatory responses of primary human brain-derived pericytes and endothelia has yet to be performed. METHODS: To study the effects of neuroinflammation at the BBB, primary brain endothelial cells and pericytes were isolated from human biopsy tissue. Culture purity was examined using qPCR and immunocytochemistry. Electrical cell-substrate impedance sensing (ECIS) was used to determine the barrier properties of endothelial and pericyte cultures. Using immunocytochemistry, cytometric bead array, and ECIS, we compared the responses of endothelia and pericytes to a panel of inflammatory stimuli (IL-1ß, TNFα, LPS, IFN-γ, TGF-ß1, IL-6, and IL-4). Secretome analysis was performed to identify unique secretions of endothelia and pericytes in response to IL-1ß. RESULTS: Endothelial cells were pure, moderately proliferative, retained the expression of BBB-related junctional proteins and transporters, and generated robust TEER. Both endothelia and pericytes have the same pattern of transcription factor activation in response to inflammatory stimuli but respond differently at the secretion level. Secretome analysis confirmed that endothelia and pericytes have overlapping but distinct secretome profiles in response to IL-1ß. We identified several cell-type specific responses, including G-CSF and GM-CSF (endothelial-specific), and IGFBP2 and IGFBP3 (pericyte-specific). Finally, we demonstrated that direct addition of IL-1ß, TNFα, LPS, and IL-4 contributed to the loss of endothelial barrier integrity in vitro. CONCLUSIONS: Here, we identify important cell-type differences in the inflammatory response of brain pericytes and endothelia and provide, for the first time, a comprehensive profile of the secretions of primary human brain endothelia and pericytes which has implications for understanding how inflammation affects the cerebrovasculature.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Mediadores de Inflamación/metabolismo , Pericitos/metabolismo , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/citología , Encéfalo/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/efectos de los fármacos , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/farmacología , Pericitos/efectos de los fármacos
11.
Cell Tissue Res ; 368(1): 47-59, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27770257

RESUMEN

Chondrogenesis in vivo is precisely controlled in time and space. The entire limb skeleton forms from cells at the core of the early limb bud that condense and undergo chondrogenic differentiation. Whether they form stable cartilage at the articular surface of the joint or transient cartilage that progresses to hypertrophy as endochondral bone, replacing the cartilage template of the skeletal rudiment, is spatially controlled over several days in the embryo. Here, we follow the differentiation of cells taken from the early limb bud (embryonic day 11.5), grown in high-density micromass culture and show that a self-organising pattern of evenly spaced cartilage nodules occurs spontaneously in growth medium. Although chondrogenesis is enhanced by addition of BMP6 to the medium, the spatial pattern of nodule formation is disrupted. We show rapid progression of the entire nodule to hypertrophy in culture and therefore loss of the local signals required to direct formation of stable cartilage. Dynamic hydrostatic pressure, which we have previously predicted to be a feature of the forming embryonic joint region, had a stabilising effect on chondrogenesis, reducing expression of hypertrophic marker genes. This demonstrates the use of micromass culture as a relatively simple assay to compare the effect of both biophysical and molecular signals on spatial and temporal control of chondrogenesis that could be used to examine the response of different types of progenitor cell, both adult- and embryo-derived.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Condrogénesis , Presión Hidrostática , Esbozos de los Miembros/citología , Esbozos de los Miembros/embriología , Animales , Diferenciación Celular/genética , Células Cultivadas , Condrogénesis/genética , Regulación del Desarrollo de la Expresión Génica , Hipertrofia , Ratones
12.
Biotechnol Bioeng ; 114(10): 2400-2411, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28627740

RESUMEN

Regenerating damaged tissue interfaces remains a significant clinical challenge, requiring recapitulation of the structure, composition, and function of the native enthesis. In the ligament-to-bone interface, this region transitions from ligament to fibrocartilage, to calcified cartilage and then to bone. This gradation in tissue types facilitates the transfer of load between soft and hard structures while minimizing stress concentrations at the interface. Previous attempts to engineer the ligament-bone interface have utilized various scaffold materials with an array of various cell types and/or biological cues. The primary goal of this study was to engineer a multiphased construct mimicking the ligament-bone interface by driving differentiation of a single population of mesenchymal stem cells (MSCs), seeded within blended fibrin-alginate hydrogels, down an endochondral, fibrocartilaginous, or ligamentous pathway through spatial presentation of growth factors along the length of the construct within a custom-developed, dual-chamber culture system. MSCs within these engineered constructs demonstrated spatially distinct regions of differentiation, adopting either a cartilaginous or ligamentous phenotype depending on their local environment. Furthermore, there was also evidence of spatially defined progression toward an endochondral phenotype when chondrogenically primed MSCs within this construct were additionally exposed to hypertrophic cues. The study demonstrates the feasibility of engineering spatially complex soft tissues within a single MSC laden hydrogel through the defined presentation of biochemical cues. This novel approach represents a new strategy for engineering the ligament-bone interface. Biotechnol. Bioeng. 2017;114: 2400-2411. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Cartílago Articular/crecimiento & desarrollo , Condrogénesis/fisiología , Ligamentos/crecimiento & desarrollo , Células Madre Mesenquimatosas/fisiología , Técnicas de Cultivo de Órganos/instrumentación , Ingeniería de Tejidos/instrumentación , Andamios del Tejido , Animales , Cartílago Articular/citología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Diseño de Equipo , Análisis de Falla de Equipo , Ligamentos/citología , Células Madre Mesenquimatosas/citología , Porcinos , Ingeniería de Tejidos/métodos
13.
Biochim Biophys Acta Gen Subj ; 1861(2): 68-78, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27816754

RESUMEN

BACKGROUND: Non-selective Connexin43 hemichannels contribute to secondary lesion spread. The hemichannel blocking peptidomimetic Peptide5, derived from the second extracellular loop of the human Connexin43 protein, prevents lesion spread and reduces vascular permeability in preclinical models of central nervous system injury. The molecular mode of action of Peptide5, however, was unknown and is described here. METHODS: Human cerebral microvascular endothelial cells and APRE-19 cells were used. Scrape loading was used to assess gap junction function and hypoxic, acidic ion-shifted Ringer solution induced ATP release used to assess hemichannel function. Peptide modifications, including amino acid substitutions and truncations, and competition assays were used to demonstrate Peptide5 functional specificity and site of action respectively. RESULTS: Peptide5 inhibits Connexin43 hemichannel-mediated ATP release by acting on extracellular loop two of Connexin43, adjacent to its matching sequence within the protein. Precise sequence specificity is important for hemichannel block, but less so for uncoupling of gap junction channels (seen only at high concentrations). The SRPTEKT motif is central to Peptide5 function but on its own is not sufficient to inhibit hemichannels. Both the SRPTEKT motif and Peptide5 reduce gap junction communication, but neither uncoupling below 50%. CONCLUSIONS: Reduced gap junction coupling at high peptide concentrations appears to be relatively non-specific. However, Peptide5 at low concentrations acts upon extracellular loop two of Connexin43 to block hemichannels in a precise, sequence specific manner. GENERAL SIGNIFICANCE: The concentration dependent and sequence specific action of Peptide5 supports its development for the treatment of retinal injury and chronic disease, as well as other central nervous system injury and disease conditions.


Asunto(s)
Cerebro/efectos de los fármacos , Conexina 43/metabolismo , Células Endoteliales/efectos de los fármacos , Isquemia/tratamiento farmacológico , Péptidos/farmacología , Daño por Reperfusión/tratamiento farmacológico , Adenosina Trifosfato/metabolismo , Línea Celular , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/metabolismo , Cerebro/metabolismo , Células Endoteliales/metabolismo , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Humanos , Canales Iónicos/metabolismo , Isquemia/metabolismo , Daño por Reperfusión/metabolismo , Enfermedades de la Retina/tratamiento farmacológico , Enfermedades de la Retina/metabolismo
14.
Exp Brain Res ; 235(10): 3033-3048, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28725925

RESUMEN

Systemic administration of a Connexin43 mimetic peptide, Peptide5, has been shown to reduce secondary tissue damage and improve functional recovery after spinal cord injury (SCI). This study investigated safety measures and potential off-target effects of Peptide5 systemic administration. Rats were subjected to a mild contusion SCI using the New York University impactor. One cohort was injected intraperitoneally with a single dose of fluorescently labelled Peptide5 and euthanised at 2 or 4 h post-injury for peptide distribution analysis. A second cohort received intraperitoneal injections of Peptide5 or a scrambled peptide and was culled at 8 or 24 h post-injury for the analysis of connexin proteins and systemic cytokine profile. We found that Peptide5 did not cross the blood-spinal cord barrier in control animals, but reached the lesion area in the spinal cord-injured animals without entering non-injured tissue. There was no evidence that the systemic administration of Peptide5 modulates Connexin43 protein expression or hemichannel closure in the heart and lung tissue of SCI animals. The expression levels of other major connexin proteins including Connexin30 in astrocytes, Connexin36 in neurons and Connexin47 in oligodendrocytes were also unaltered by systemic delivery of Peptide5 in either the injured or non-injured spinal cords. In addition, systemic delivery of Peptide5 had no significant effect on the plasma levels of cytokines, chemokines or growth factors. These data indicate that the systemic delivery of Peptide5 is unlikely to cause any off-target or adverse effects and may thus be a safe treatment option for traumatic SCI.


Asunto(s)
Materiales Biomiméticos/farmacología , Conexina 43/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Materiales Biomiméticos/administración & dosificación , Materiales Biomiméticos/efectos adversos , Materiales Biomiméticos/farmacocinética , Conexina 43/administración & dosificación , Conexina 43/efectos adversos , Conexina 43/farmacocinética , Modelos Animales de Enfermedad , Femenino , Ratas , Ratas Sprague-Dawley
15.
J Neuroinflammation ; 12: 131, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26152369

RESUMEN

BACKGROUND: The vasculature of the brain is composed of endothelial cells, pericytes and astrocytic processes. The endothelial cells are the critical interface between the blood and the CNS parenchyma and are a critical component of the blood-brain barrier (BBB). These cells are innately programmed to respond to a myriad of inflammatory cytokines or other danger signals. IL-1ß and TNFα are well recognised pro-inflammatory mediators, and here, we provide compelling evidence that they regulate the function and immune response profile of human cerebral microvascular endothelial cells (hCMVECs) differentially. METHODS: We used xCELLigence biosensor technology, which revealed global differences in the endothelial response between IL-1ß and TNFα. xCELLigence is a label-free impedance-based biosensor, which is ideal for acute or long-term comparison of drug effects on cell behaviour. In addition, flow cytometry and multiplex cytokine arrays were used to show differences in the inflammatory responses from the endothelial cells. RESULTS: Extensive cytokine-secretion profiling and cell-surface immune phenotyping confirmed that the immune response of the hCMVEC to IL-1ß was different to that of TNFα. Interestingly, of the 38 cytokines, chemokines and growth factors measured by cytometric bead array, the endothelial cells secreted only 13. Of importance was the observation that the majority of these cytokines were differentially regulated by either IL-1ß or TNFα. Cell-surface expression of ICAM-1 and VCAM-1 were also differentially regulated by IL-1ß or TNFα, where TNFα induced a substantially higher level of expression of both key leukocyte-adhesion molecules. A range of other cell-surface cellular and junctional adhesion molecules were basally expressed by the hCMVEC but were unaffected by IL-1ß or TNFα. CONCLUSIONS: To our knowledge, this is the most comprehensive analysis of the immunological profile of brain endothelial cells and the first direct evidence that human brain endothelial cells are differentially regulated by these two key pro-inflammatory mediators.


Asunto(s)
Encefalitis/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Interleucina-1beta/farmacología , Fenotipo , Factor de Necrosis Tumoral alfa/farmacología , Encéfalo/irrigación sanguínea , Línea Celular , Citocinas/metabolismo , Encefalitis/metabolismo , Células Endoteliales/metabolismo , Humanos , Inmunofenotipificación , Molécula 1 de Adhesión Intercelular/metabolismo , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Microvasos/patología , Proteínas de Uniones Estrechas/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
16.
Br J Pharmacol ; 181(15): 2655-2675, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38616050

RESUMEN

BACKGROUND AND PURPOSE: The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH: Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS: PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS: The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Médula Espinal , Péptido Intestinal Vasoactivo , Animales , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/agonistas , Humanos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Ratones , Ratas , Transducción de Señal/efectos de los fármacos , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Receptores de Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Células Cultivadas , Ratas Sprague-Dawley , Masculino , Ratones Endogámicos C57BL , AMP Cíclico/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/agonistas
17.
Ann Neurol ; 71(1): 121-32, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22275258

RESUMEN

OBJECTIVE: Connexin hemichannels can open during ischemia, resulting in loss of membrane potential, calcium influx, and release of glutamate. In this study, we tested the hypothesis that opening of hemichannels after cerebral ischemia may contribute to delayed evolution of injury. METHODS: We infused a mimetic peptide that blocks connexin 43 hemichannels into the lateral ventricle of chronically instrumented fetal sheep in utero at 128 ± 1 days gestation (term is 147 days), starting 90 minutes after 30 minutes of severe ischemia induced by reversible bilateral carotid artery occlusion, for either 1 or 25 hours. Sheep were killed 7 days later. RESULTS: Peptide infusion was associated with a graded improvement in recovery of electroencephalographic power after 7 days recovery, from -13 ± 1.9 dB (n = 7) after ischemia-vehicle to -9 ± 1.6 dB (n = 7) after ischemia-short infusion and -5 ± 1.6 dB after ischemia-long infusion (n = 6, p < 0.05). Peptide infusion was associated with reduced seizure activity after ischemia, less frequent status epilepticus (p < 0.05), and earlier return of sleep state cycling (p < 0.05). Ischemia-long infusion (but not ischemia-short infusion) was associated with improved survival of oligodendrocytes in intragyral and periventricular white matter (p < 0.05) and increased brain weight (p < 0.05). Ischemia-long infusion was associated with an intermediate estimate of surviving neurons in the parasagittal cortex of 2.9 ± 0.8 × 10(6), in comparison to sham control (4.3 ± 0.9 × 10(6)) or ischemia-vehicle (1.5 ± 0.4 × 10(6); p < 0.05 vs sham control). INTERPRETATION: These data support the hypothesis that opening of connexin hemichannels is a significant mediator of postischemic white and gray matter dysfunction and injury.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevención & control , Conexina 43/antagonistas & inhibidores , Hipoxia Fetal/tratamiento farmacológico , Fragmentos de Péptidos/administración & dosificación , Animales , Isquemia Encefálica/fisiopatología , Supervivencia Celular/fisiología , Conexina 43/fisiología , Modelos Animales de Enfermedad , Electroencefalografía , Femenino , Hipoxia Fetal/metabolismo , Hipoxia Fetal/patología , Marcación de Gen , Masculino , Neuronas/patología , Neuronas/fisiología , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/uso terapéutico , Embarazo , Convulsiones/prevención & control , Ovinos , Fases del Sueño/fisiología , Resultado del Tratamiento
18.
Brain ; 135(Pt 2): 506-20, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22345088

RESUMEN

Connexin43 gap junction protein is expressed in astrocytes and the vascular endothelium in the central nervous system. It is upregulated following central nervous system injury and is recognized as playing an important role in modulating the extent of damage. Studies that have transiently blocked connexin43 in spinal cord injury and central nervous system epileptic models have reported neuronal rescue. The purpose of this study was to investigate neuronal rescue following retinal ischaemia-reperfusion by transiently blocking connexin43 activity using a connexin43 mimetic peptide. A further aim was to evaluate the effect of transiently blocking connexin43 on vascular permeability as this is known to increase following central nervous system ischaemia. Adult male Wistar rats were exposed to 60 min of retinal ischaemia. Treatment groups consisted of no treatment, connexin43 mimetic peptide and scrambled peptide. Retinas were then evaluated at 1-2, 4, 8 and 24 h, and 7 and 21 days post-ischaemia. Evans blue dye leak from retinal blood vessels was used to assess vascular leakage. Blood vessel integrity was examined using isolectin-B4 labelling. Connexin43 levels and astrocyte activation (glial fibrillary acidic protein) were assessed using immunohistochemistry and western blot analysis. Retinal whole mounts and retinal ganglion cell counts were used to quantify neurodegeneration. An in vitro cell culture model of endothelial cell ischaemia was used to assess the effect of connexin43 mimetic peptide on endothelial cell survival and connexin43 hemichannel opening using propidium iodide dye uptake. We found that retinal ischaemia-reperfusion induced significant vascular leakage and disruption at 1-2, 4 and 24 h following injury with a peak at 4 h. Connexin43 immunoreactivity was significantly increased at 1-2, 4, 8 and 24 h post ischaemia-reperfusion injury co-localizing with activated astrocytes, Muller cells and vascular endothelial cells. Connexin43 mimetic peptide significantly reduced dye leak at 4 and 24 h. In vitro studies on endothelial cells demonstrate that endothelial cell death following hypoxia can be mediated directly by opening of connexin43 hemichannels in endothelial cells. Blocking connexin43 mediated vascular leakage using a connexin43 mimetic peptide led to increased retinal ganglion cell survival at 7 and 21 days to levels of uninjured retinas. Treatment with scrambled peptide did not result in retinal ganglion cell rescue. Pharmacological targeting of connexin43 gap junction protein by transiently blocking gap junction hemichannels following injury provides new opportunities for treatment of central nervous system ischaemia.


Asunto(s)
Conexina 43/antagonistas & inhibidores , Isquemia/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Retina/efectos de los fármacos , Enfermedades de la Retina/tratamiento farmacológico , Células Ganglionares de la Retina/efectos de los fármacos , Vasos Retinianos/efectos de los fármacos , Animales , Conexina 43/metabolismo , Isquemia/metabolismo , Isquemia/patología , Masculino , Ratas , Ratas Wistar , Retina/metabolismo , Retina/patología , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Vasos Retinianos/metabolismo , Vasos Retinianos/patología
19.
BMJ Open ; 13(12): e076186, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38128935

RESUMEN

OBJECTIVES: The goals of this rapid realist review were to ask: (a) what are the key mechanisms that drive successful interventions for long COVID in long-term care (LTC) and (b) what are the critical contexts that determine whether the mechanisms produce the intended outcomes? DESIGN: Rapid realist review. DATA SOURCES: Medline, CINAHL, Embase, PsycINFO and Web of Science for peer-reviewed literature and Google for grey literature were searched up to 23 February 2023. ELIGIBILITY CRITERIA: We included sources focused on interventions, persons in LTC, long COVID or post-acute phase at least 4 weeks following initial COVID-19 infection and ones that had a connection with source materials. DATA EXTRACTION AND SYNTHESIS: Three independent reviewers searched, screened and coded studies. Two independent moderators resolved conflicts. A data extraction tool organised relevant data into context-mechanism-outcome configurations using realist methodology. Twenty-one sources provided 51 intervention data excerpts used to develop our programme theory. Synthesised findings were presented to a reference group and expert panel for confirmatory purposes. RESULTS: Fifteen peer-reviewed articles and six grey literature sources were eligible for inclusion. Eleven context-mechanism-outcome configurations identify those contextual factors and underlying mechanisms associated with desired outcomes, such as clinical care processes and policies that ensure timely access to requisite resources for quality care delivery, and resident-centred assessments and care planning to address resident preferences and needs. The underlying mechanisms associated with enhanced outcomes for LTC long COVID survivors were: awareness, accountability, vigilance and empathetic listening. CONCLUSIONS: Although the LTC sector struggles with organisational capacity issues, they should be aware that comprehensively assessing and monitoring COVID-19 survivors and providing timely interventions to those with long COVID is imperative. This is due to the greater care needs of residents with long COVID, and coordinated efficient care is required to optimise their quality of life.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , COVID-19/terapia , Atención a la Salud , Cuidados a Largo Plazo , Calidad de Vida
20.
Acta Biomater ; 158: 87-100, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36640949

RESUMEN

Electrically modulated delivery of proteins provides an avenue to target local tissues specifically and tune the dose to the application. This approach prolongs and enhances activity at the target site whilst reducing off-target effects associated with systemic drug delivery. The work presented here explores an electrically active composite material comprising of a biocompatible hydrogel, gelatin methacryloyl (GelMA) and a conducting polymer, poly(3,4-ethylenedioxythiophene), generating a conducting polymer hydrogel. In this paper, the key characteristics of electroactivity, mechanical properties, and morphology are characterized using electrochemistry techniques, atomic force, and scanning electron microscopy. Cytocompatibility is established through exposure of human cells to the materials. By applying different electrical-stimuli, the short-term release profiles of a model protein can be controlled over 4 h, demonstrating tunable delivery patterns. This is followed by extended-release studies over 21 days which reveal a bimodal delivery mechanism influenced by both GelMA degradation and electrical stimulation events. This data demonstrates an electroactive and cytocompatible material suitable for the delivery of protein payloads over 3 weeks. This material is well suited for use as a treatment delivery platform in tissue engineering applications where targeted and spatio-temporal controlled delivery of therapeutic proteins is required. STATEMENT OF SIGNIFICANCE: Growth factor use in tissue engineering typically requires sustained and tunable delivery to generate optimal outcomes. While conducting polymer hydrogels (CPH) have been explored for the electrically responsive release of small bioactives, we report on a CPH capable of releasing a protein payload in response to electrical stimulus. The composite material combines the benefits of soft hydrogels acting as a drug reservoir and redox-active properties from the conducting polymer enabling electrical responsiveness. The CPH is able to sustain protein delivery over 3 weeks, with electrical stimulus used to modulate release. The described material is well suited as a treatment delivery platform to deliver large quantities of proteins in applications where spatio-temporal delivery patterns are paramount.


Asunto(s)
Hidrogeles , Polímeros , Humanos , Polímeros/química , Hidrogeles/química , Ingeniería de Tejidos/métodos , Sistemas de Liberación de Medicamentos , Electricidad , Gelatina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA