Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491343

RESUMEN

A primary goal of psychiatry is to better understand the pathways that link genetic risk to psychiatric symptoms. Here, we tested association of diagnosis and endophenotypes with overall and neurotransmitter pathway-specific polygenic risk in patients with early-stage psychosis. Subjects included 205 demographically diverse cases with a psychotic disorder who underwent comprehensive psychiatric and neurological phenotyping and 115 matched controls. Following genotyping, we calculated polygenic scores (PGSs) for schizophrenia (SZ) and bipolar disorder (BP) using Psychiatric Genomics Consortium GWAS summary statistics. To test if overall genetic risk can be partitioned into affected neurotransmitter pathways, we calculated pathway PGSs (pPGSs) for SZ risk affecting each of four major neurotransmitter systems: glutamate, GABA, dopamine, and serotonin. Psychosis subjects had elevated SZ PGS versus controls; cases with SZ or BP diagnoses had stronger SZ or BP risk, respectively. There was no significant association within psychosis cases between individual symptom measures and overall PGS. However, neurotransmitter-specific pPGSs were moderately associated with specific endophenotypes; notably, glutamate was associated with SZ diagnosis and with deficits in cognitive control during task-based fMRI, while dopamine was associated with global functioning. Finally, unbiased endophenotype-driven clustering identified three diagnostically mixed case groups that separated on primary deficits of positive symptoms, negative symptoms, global functioning, and cognitive control. All clusters showed strong genome-wide risk. Cluster 2, characterized by deficits in cognitive control and negative symptoms, additionally showed specific risk concentrated in glutamatergic and GABAergic pathways. Due to the intensive characterization of our subjects, the present study was limited to a relatively small cohort. As such, results should be followed up with additional research at the population and mechanism level. Our study suggests pathway-based PGS analysis may be a powerful path forward to study genetic mechanisms driving psychiatric endophenotypes.

2.
Mol Psychiatry ; 28(10): 4185-4194, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37582858

RESUMEN

Maternal infection has emerged as an important environmental risk factor for neurodevelopmental disorders, including schizophrenia and autism spectrum disorders. Animal model systems of maternal immune activation (MIA) suggest that the maternal immune response plays a significant role in the offspring's neurodevelopment and behavioral outcomes. Extracellular free water is a measure of freely diffusing water in the brain that may be associated with neuroinflammation and impacted by MIA. The present study evaluates the brain diffusion characteristics of male rhesus monkeys (Macaca mulatta) born to MIA-exposed dams (n = 14) treated with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the end of the first trimester (n = 10) or were untreated (n = 4). Offspring underwent diffusion MRI scans at 6, 12, 24, 36, and 45 months. Offspring born to MIA-exposed dams showed significantly increased extracellular free water in cingulate cortex gray matter starting as early as 6 months of age and persisting through 45 months. In addition, offspring gray matter free water in this region was significantly correlated with the magnitude of the maternal IL-6 response in the MIA-exposed dams. Significant correlations between brain volume and extracellular free water in the MIA-exposed offspring also indicate converging, multimodal evidence of the impact of MIA on brain development. These findings provide strong evidence for the construct validity of the nonhuman primate MIA model as a system of relevance for investigating the pathophysiology of human neurodevelopmental psychiatric disorders. Elevated free water in individuals exposed to immune activation in utero could represent an early marker of a perturbed or vulnerable neurodevelopmental trajectory.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Esquizofrenia , Femenino , Animales , Humanos , Masculino , Citocinas , Encéfalo , Modelos Animales de Enfermedad , Primates , Conducta Animal/fisiología
3.
Cogn Affect Behav Neurosci ; 23(1): 203-215, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36418846

RESUMEN

Cognitive control deficits are associated with impaired executive functioning in schizophrenia. The Dual Mechanisms of Control framework suggests that proactive control requires sustained dorsolateral prefrontal activity, whereas reactive control marshals a larger network. However, primate studies suggest these processes are maintained by dual-encoding regions. To distinguish between these theories, we compared the distinctiveness of proactive and reactive control functional neuroanatomy. In a reanalysis of data from a previous study, 47 adults with schizophrenia and 56 controls completed the Dot Pattern Expectancy task during an fMRI scan examining proactive and reactive control in frontoparietal and medial temporal regions. Areas suggesting specialized control or between-group differences were tested for association with symptoms and task performance. Elastic net models additionally explored these areas' predictive abilities regarding performance. Most regions were active in both reactive and proactive control. However, evidence of specialized proactive control was found in the left middle and superior frontal gyri. Control participants showed greater proactive control in the left middle and right inferior frontal gyri. Elastic net models moderately predicted task performance and implicated various frontal gyri regions in control participants, with additional involvement of anterior cingulate and posterior parietal regions for reactive control. Elastic nets for patient participants implicated the inferior and superior frontal gyri, and posterior parietal lobe. Specialized cognitive control was unassociated with either performance or schizophrenia symptomatology. Future work is needed to clarify the distinctiveness of proactive and reactive control, and its role in executive deficits in severe psychopathology.


Asunto(s)
Neuroanatomía , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Lóbulo Frontal , Corteza Prefrontal/diagnóstico por imagen , Lóbulo Temporal , Imagen por Resonancia Magnética
4.
Psychol Med ; 53(13): 6280-6287, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36420704

RESUMEN

BACKGROUND: Motivational impairment associated with deficits in processing the anticipation of future reward is hypothesized to be a cardinal feature of schizophrenia spectrum disorders (SZ). Evidence from short-term follow-up (6-week post-treatment) studies suggests that these deficits may improve or be reversed with treatment, although longer-term outcomes are unknown. Here we examined the one-year trajectory of functional activation in brain circuitry associated with reward anticipation in people with recent onset SZ who participated in coordinated specialty care (CSC) treatment, hypothesizing normalization of brain response mirroring previous short-term findings in first-episode individuals. METHOD: Blood oxygen level-dependent (BOLD) response in the dorsal anterior cingulate cortex, anterior insula, and ventral striatum (VS) associated with reward anticipation during the Incentivized Control Engagement Task (ICE-T) was analyzed in a baseline sample of 49 healthy controls (HCs) and 52 demographically matched people with SZ, with follow-up data available for 35 HCs and 17 people with SZ. RESULTS: In agreement with our hypothesis, significant time × diagnosis interactions were observed across all regions, in which reward anticipation-associated BOLD response increased in SZ to above baseline HC levels at follow-up. Increased VS activation was associated with decreased reality distortion symptoms over the follow-up period. Baseline reward anticipation-associated BOLD response in the right anterior insula was associated with improvement in reality distortion symptoms. CONCLUSIONS: These findings suggest that functional deficits in reward anticipation may be reversed after one year of CSC in recent onset participants with SZ, and that this improvement is associated with reduced positive symptoms in the illness.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/terapia , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Recompensa , Motivación , Anticipación Psicológica/fisiología
5.
Brain Behav Immun ; 109: 92-101, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36610487

RESUMEN

Women who contract a viral or bacterial infection during pregnancy have an increased risk of giving birth to a child with a neurodevelopmental or psychiatric disorder. The effects of maternal infection are likely mediated by the maternal immune response, as preclinical animal models have confirmed that maternal immune activation (MIA) leads to long lasting changes in offspring brain and behavior development. The present study sought to determine the impact of MIA-exposure during the first or second trimester on neuronal morphology in dorsolateral prefrontal cortex (DLPFC) and hippocampus from brain tissue obtained from MIA-exposed and control male rhesus monkey (Macaca mulatta) during late adolescence. MIA-exposed offspring display increased neuronal dendritic branching in pyramidal cells in DLPFC infra- and supragranular layers relative to controls, with no significant differences observed between offspring exposed to maternal infection in the first and second trimester. In addition, the diameter of apical dendrites in DLPFC infragranular layer is significantly decreased in MIA-exposed offspring relative to controls, irrespective of trimester exposure. In contrast, alterations in hippocampal neuronal morphology of MIA-exposed offspring were not evident. These findings demonstrate that a maternal immune challenge during pregnancy has long-term consequences for primate offspring dendritic structure, selectively in a brain region vital for socioemotional and cognitive development.


Asunto(s)
Trastornos Mentales , Efectos Tardíos de la Exposición Prenatal , Humanos , Animales , Embarazo , Masculino , Femenino , Corteza Prefontal Dorsolateral , Exposición Materna , Encéfalo , Modelos Animales de Enfermedad , Poli I-C/farmacología , Conducta Animal/fisiología , Corteza Prefrontal
6.
J Neurosci ; 41(48): 9971-9987, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34607967

RESUMEN

Human epidemiological studies implicate exposure to infection during gestation in the etiology of neurodevelopmental disorders. Animal models of maternal immune activation (MIA) have identified the maternal immune response as the critical link between maternal infection and aberrant offspring brain and behavior development. Here we evaluate neurodevelopment of male rhesus monkeys (Macaca mulatta) born to MIA-treated dams (n = 14) injected with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the same gestational time points (n = 10) or were untreated (n = 4). MIA-treated dams exhibited a strong immune response as indexed by transient increases in sickness behavior, temperature, and inflammatory cytokines. Although offspring born to control or MIA-treated dams did not differ on measures of physical growth and early developmental milestones, the MIA-treated animals exhibited subtle changes in cognitive development and deviated from species-typical brain growth trajectories. Longitudinal MRI revealed significant gray matter volume reductions in the prefrontal and frontal cortices of MIA-treated offspring at 6 months that persisted through the final time point at 45 months along with smaller frontal white matter volumes in MIA-treated animals at 36 and 45 months. These findings provide the first evidence of early postnatal changes in brain development in MIA-exposed nonhuman primates and establish a translationally relevant model system to explore the neurodevelopmental trajectory of risk associated with prenatal immune challenge from birth through late adolescence.SIGNIFICANCE STATEMENT Women exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental disorder. Preclinical maternal immune activation (MIA) models have demonstrated that the effects of maternal infection on fetal brain development are mediated by maternal immune response. Since the majority of MIA models are conducted in rodents, the nonhuman primate provides a unique system to evaluate the MIA hypothesis in a species closely related to humans. Here we report the first longitudinal study conducted in a nonhuman primate MIA model. MIA-exposed offspring demonstrate subtle changes in cognitive development paired with marked reductions in frontal gray and white matter, further supporting the association between prenatal immune challenge and alterations in offspring neurodevelopment.


Asunto(s)
Encéfalo/patología , Modelos Animales de Enfermedad , Trastornos del Neurodesarrollo/etiología , Complicaciones Infecciosas del Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Femenino , Inductores de Interferón/toxicidad , Macaca mulatta , Masculino , Trastornos del Neurodesarrollo/patología , Neurogénesis/fisiología , Poli I-C/toxicidad , Embarazo , Complicaciones Infecciosas del Embarazo/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
7.
J Neuroinflammation ; 19(1): 287, 2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463221

RESUMEN

BACKGROUND: Inflammation and increases in inflammatory cytokines are common findings in psychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Meta-analyses of studies that measured circulating cytokines have provided evidence of innate inflammation across all three disorders, with some overlap of inflammatory cytokines such as IL-6 and TNF-α. However, differences across disorders were also identified, including increased IL-4 in BD that suggest different immune mechanisms may be involved depending on the type of disorder present. METHODS: We sought to identify if the presence or absence of an affective disorder in first-episode psychotic (FEP) patients was associated with variations in cytokine production after stimulation of peripheral blood mononuclear cells (PBMC). 98 participants were recruited and grouped into healthy controls (n = 45) and first-episode psychosis patients (n = 53). Psychosis patients were further grouped by presence (AFF; n = 22) or lack (NON; n = 31) of an affective disorder. We cultured isolated PBMC from all participants for 48 h at 37 °C under four separate conditions; (1) culture media alone for baseline, or the following three stimulatory conditions: (2) 25 ng/mL lipopolysaccharide (LPS), (3) 10 ng/mL phytohemagglutinin (PHA), and (4) 125 ng/ml α-CD3 plus 250 ng/ml α-CD28. Supernatants collected at 48 h were analyzed using multiplex Luminex assay to identify differences in cytokine and chemokine production. Results from these assays were then correlated to patient clinical assessments for positive and negative symptoms common to psychotic disorders. RESULTS: We found that PBMC from affective FEP patients produced higher concentrations of cytokines associated with both innate and adaptive immunity after stimulation than non-affective FEP patients and healthy controls. More specifically, the AFF PBMC produced increased tumor necrosis fctor (TNF)-α, interleukin (IL)-1ß, IL-6, and others associated with innate inflammation. PBMC from AFF also produced increased IL-4, IL-17, interferon (IFN)γ, and other cytokines associated with adaptive immune activation, depending on stimulation. Additionally, inflammatory cytokines that differed at rest and after LPS stimulation correlated with Scale for the Assessment of Negative Symptoms (SANS) scores. CONCLUSIONS: Our findings suggest that immune dysfunction in affective psychosis may differ from that of primary psychotic disorders, and inflammation may be associated with increased negative symptoms. These findings could be helpful in determining clinical diagnosis after first psychotic episode.


Asunto(s)
Trastorno Depresivo Mayor , Enfermedades del Sistema Inmune , Trastornos Psicóticos , Humanos , Leucocitos Mononucleares , Lipopolisacáridos , Interleucina-4 , Interleucina-6 , Trastornos del Humor/etiología , Citocinas , Inflamación , Inmunidad Innata
8.
Psychol Med ; 52(13): 2713-2721, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-33323140

RESUMEN

BACKGROUND: Previous research in resting-state functional magnetic resonance imaging (rs-fMRI) has shown a mixed pattern of disrupted thalamocortical connectivity in psychosis. The clinical meaning of these findings and their stability over time remains unclear. We aimed to study thalamocortical connectivity longitudinally over a 1-year period in participants with recent-onset psychosis. METHODS: To this purpose, 129 individuals with recent-onset psychosis and 87 controls were clinically evaluated and scanned using rs-fMRI. Among them, 43 patients and 40 controls were re-scanned and re-evaluated 12 months later. Functional connectivity between the thalamus and the rest of the brain was calculated using a seed to voxel approach, and then compared between groups and correlated with clinical features cross-sectionally and longitudinally. RESULTS: At baseline, participants with recent-onset psychosis showed increased connectivity (compared to controls) between the thalamus and somatosensory and temporal regions (k = 653, T = 5.712), as well as decreased connectivity between the thalamus and left cerebellum and right prefrontal cortex (PFC; k = 201, T = -4.700). Longitudinal analyses revealed increased connectivity over time in recent-onset psychosis (relative to controls) in the right middle frontal gyrus. CONCLUSIONS: Our results support the concept of abnormal thalamic connectivity as a core feature in psychosis. In agreement with a non-degenerative model of illness in which functional changes occur early in development and do not deteriorate over time, no evidence of progressive deterioration of connectivity during early psychosis was observed. Indeed, regionally increased connectivity between thalamus and PFC was observed.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Psicóticos , Humanos , Imagen por Resonancia Magnética/métodos , Estudios de Seguimiento , Corteza Prefrontal , Tálamo , Vías Nerviosas
9.
Psychol Med ; 52(6): 1115-1125, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-32799938

RESUMEN

BACKGROUND: Schizophrenia is a disorder characterized by pervasive deficits in cognitive functioning. However, few well-powered studies have examined the degree to which cognitive performance is impaired even among individuals with schizophrenia not currently on antipsychotic medications using a wide range of cognitive and reinforcement learning measures derived from cognitive neuroscience. Such research is particularly needed in the domain of reinforcement learning, given the central role of dopamine in reinforcement learning, and the potential impact of antipsychotic medications on dopamine function. METHODS: The present study sought to fill this gap by examining healthy controls (N = 75), unmedicated (N = 48) and medicated (N = 148) individuals with schizophrenia. Participants were recruited across five sites as part of the CNTRaCS Consortium to complete tasks assessing processing speed, cognitive control, working memory, verbal learning, relational encoding and retrieval, visual integration and reinforcement learning. RESULTS: Individuals with schizophrenia who were not taking antipsychotic medications, as well as those taking antipsychotic medications, showed pervasive deficits across cognitive domains including reinforcement learning, processing speed, cognitive control, working memory, verbal learning and relational encoding and retrieval. Further, we found that chlorpromazine equivalency rates were significantly related to processing speed and working memory, while there were no significant relationships between anticholinergic load and performance on other tasks. CONCLUSIONS: These findings add to a body of literature suggesting that cognitive deficits are an enduring aspect of schizophrenia, present in those off antipsychotic medications as well as those taking antipsychotic medications.


Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/uso terapéutico , Dopamina , Cognición , Memoria a Corto Plazo , Pruebas Neuropsicológicas
10.
Mol Psychiatry ; 26(3): 761-771, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-31138893

RESUMEN

Evidence has been accumulating for an immune-based component to the etiology of psychotic disorders. Advancements in diffusion magnetic resonance imaging (MRI) have enabled estimation of extracellular free water (FW), a putative biomarker of neuroinflammation. Furthermore, inflammatory processes may be associated with altered brain levels of metabolites, such as glutathione (GSH). Consequently, we sought to test the hypotheses that FW is increased and associated with decreased GSH in patients with first-episode schizophrenia (SZ) compared with healthy controls (HC). SZ (n = 36) and HC (n = 40) subjects underwent a multi-shell diffusion MRI scan on a Siemens 3T scanner. 1H-MR spectroscopy data were acquired using a GSH-optimized MEGA-PRESS editing sequence and GSH/creatine ratios were calculated for DLPFC (SZ: n = 33, HC: n = 37) and visual cortex (SZ: n = 29, HC: n = 35) voxels. Symptoms and functioning were measured using the SANS, SAPS, BPRS, and GSF/GRF. SZ demonstrated significantly elevated FW in whole-brain gray (p = .001) but not white matter (p = .060). There was no significant difference between groups in GSH in either voxel. However, there was a significant negative correlation between DLPFC GSH and both whole-brain and DLPFC-specific gray matter FW in SZ (r = -.48 and -.47, respectively; both p < .05), while this relationship was nonsignificant in HC and in both groups in the visual cortex. These data illustrate an important relationship between a metabolite known to be important for immune function-GSH-and the diffusion extracellular FW measure, which provides additional support for these measures as neuroinflammatory biomarkers that could potentially provide tractable treatment targets to guide pharmacological intervention.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Sustancia Blanca , Glutatión , Humanos , Imagen por Resonancia Magnética , Trastornos Psicóticos/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Agua , Sustancia Blanca/diagnóstico por imagen
11.
Hum Brain Mapp ; 42(4): 1197-1205, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33185307

RESUMEN

Previous work using logistic regression suggests that cognitive control-related frontoparietal activation in early psychosis can predict symptomatic improvement after 1 year of coordinated specialty care with 66% accuracy. Here, we evaluated the ability of six machine learning (ML) algorithms and deep learning (DL) to predict "Improver" status (>20% improvement on Brief Psychiatric Rating Scale [BPRS] total score at 1-year follow-up vs. baseline) and continuous change in BPRS score using the same functional magnetic resonance imaging-based features (frontoparietal activations during the AX-continuous performance task) in the same sample (individuals with either schizophrenia (n = 65, 49M/16F, mean age 20.8 years) or Type I bipolar disorder (n = 17, 9M/8F, mean age 21.6 years)). 138 healthy controls were included as a reference group. "Shallow" ML methods included Naive Bayes, support vector machine, K Star, AdaBoost, J48 decision tree, and random forest. DL included an explainable artificial intelligence (XAI) procedure for understanding results. The best overall performances (70% accuracy for the binary outcome and root mean square error = 9.47 for the continuous outcome) were achieved using DL. XAI revealed left DLPFC activation was the strongest feature used to make binary classification decisions, with a classification activation threshold (adjusted beta = .017) intermediate to the healthy control mean (adjusted beta = .15, 95% CI = -0.02 to 0.31) and patient mean (adjusted beta = -.13, 95% CI = -0.37 to 0.11). Our results suggest DL is more powerful than shallow ML methods for predicting symptomatic improvement. The left DLPFC may be a functional target for future biomarker development as its activation was particularly important for predicting improvement.


Asunto(s)
Trastorno Bipolar/diagnóstico por imagen , Corteza Prefontal Dorsolateral/diagnóstico por imagen , Función Ejecutiva , Neuroimagen Funcional/normas , Aprendizaje Automático , Evaluación de Resultado en la Atención de Salud/normas , Desempeño Psicomotor , Esquizofrenia/diagnóstico por imagen , Adolescente , Adulto , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/terapia , Aprendizaje Profundo , Corteza Prefontal Dorsolateral/fisiopatología , Función Ejecutiva/fisiología , Femenino , Estudios de Seguimiento , Neuroimagen Funcional/métodos , Humanos , Imagen por Resonancia Magnética , Masculino , Evaluación de Resultado en la Atención de Salud/métodos , Desempeño Psicomotor/fisiología , Esquizofrenia/fisiopatología , Esquizofrenia/terapia , Máquina de Vectores de Soporte , Adulto Joven
12.
Mol Psychiatry ; 25(2): 397-407, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31455860

RESUMEN

Transcranial direct current stimulation (tDCS) is a promising method for altering the function of neural systems, cognition, and behavior. Evidence is emerging that it can also influence psychiatric symptomatology, including major depression and schizophrenia. However, there are many open questions regarding how the method might have such an effect, and uncertainties surrounding its influence on neural activity, and human cognition and functioning. In the present critical review, we identify key priorities for future research into major depression and schizophrenia, including studies of the mechanism(s) of action of tDCS at the neuronal and systems levels, the establishment of the cognitive impact of tDCS, as well as investigations of the potential clinical efficacy of tDCS. We highlight areas of progress in each of these domains, including data that appear to favor an effect of tDCS on neural oscillations rather than spiking, and findings that tDCS administration to the prefrontal cortex during task training may be an effective way to enhance behavioral performance. Finally, we provide suggestions for further empirical study that will elucidate the impact of tDCS on brain and behavior, and may pave the way for efficacious clinical treatments for psychiatric disorders.


Asunto(s)
Trastornos Mentales/terapia , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Transcraneal de Corriente Directa/tendencias , Encéfalo/fisiología , Cognición/fisiología , Trastorno Depresivo Mayor/terapia , Humanos , Neuronas/fisiología , Corteza Prefrontal/fisiología , Esquizofrenia/terapia
13.
J Cogn Neurosci ; 32(11): 2117-2130, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32573383

RESUMEN

Prior studies demonstrated that neural oscillations are enhanced during working memory (WM) maintenance and that this activity can predict behavioral performance in healthy individuals. However, it is unclear whether the relationship holds for people with WM deficits. People with schizophrenia have marked WM deficits, and such deficits are most prominent when patients are required to process relationships between items, such as temporal order. Here, we used EEG to compare the relationship between oscillatory activity and WM performance in patients and controls. EEG was recorded as participants performed tasks requiring maintenance of complex objects ("Item") or the temporal order of objects ("Order"). In addition to testing for group differences, we examined individual differences in EEG power and WM performance across groups. Behavioral results demonstrated that patients showed impaired performance on both Item and Order trials. EEG analyses revealed that patients showed an overall reduction in alpha power, but the relationship between alpha activity and performance was preserved. In contrast, patients showed a reduction in theta power specific to Order trials, and theta power could predict performance on Order trials in controls, but not in patients. These findings demonstrate that WM impairments in patients may reflect two different processes: a general deficit in alpha oscillations and a specific deficit in theta oscillations when temporal order information must be maintained. At a broader level, the results highlight the value of characterizing brain-behavior relationships, by demonstrating that the relationship between neural oscillations and WM performance can be fundamentally disrupted in those with WM deficits.


Asunto(s)
Ondas Encefálicas , Esquizofrenia , Encéfalo , Humanos , Memoria a Corto Plazo , Ritmo Teta
14.
Cogn Affect Behav Neurosci ; 20(1): 76-90, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31811557

RESUMEN

Higher cognitive functioning is supported by adaptive reconfiguration of large-scale functional brain networks. Cognitive control (CC), which plays a vital role in flexibly guiding cognition and behavior in accordance with our goals, supports a range of executive functions via distributed brain networks. These networks process information dynamically and can be represented as functional connectivity changes between network elements. Using graph theory, we explored context-dependent network reorganization in 56 healthy adults performing fMRI tasks from two cognitive domains that varied in CC and episodic-memory demands. We examined whole-brain modular structure during the DPX task, which engages proactive CC in the frontal-parietal cognitive-control network (FPN), and the RiSE task, which manipulates CC demands at encoding and retrieval during episodic-memory processing, and engages FPN, the medial-temporal lobe and other memory-related networks in a context dependent manner. Analyses revealed different levels of network integration and segregation. Modularity analyses revealed greater brain-wide integration across tasks in high CC conditions compared to low CC conditions. Greater network reorganization occurred in the RiSE memory task, which is thought to require coordination across multiple brain networks, than in the DPX cognitive-control task. Finally, FPN, ventral attention, and visual systems showed within network connectivity effects of cognitive control; however, these cognitive systems displayed varying levels of network reorganization. These findings provide insight into how brain networks reorganize to support differing task contexts, suggesting that the FPN flexibly segregates during focused proactive control and integrates to support control in other domains such as episodic memory.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Función Ejecutiva/fisiología , Memoria Episódica , Red Nerviosa/fisiología , Adulto , Encéfalo/fisiopatología , Mapeo Encefálico , Humanos , Masculino , Memoria a Corto Plazo , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiología , Vías Nerviosas/fisiopatología
15.
Psychol Med ; 50(13): 2230-2239, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31507256

RESUMEN

BACKGROUND: Identifying risk factors of individuals in a clinical-high-risk state for psychosis are vital to prevention and early intervention efforts. Among prodromal abnormalities, cognitive functioning has shown intermediate levels of impairment in CHR relative to first-episode psychosis and healthy controls, highlighting a potential role as a risk factor for transition to psychosis and other negative clinical outcomes. The current study used the AX-CPT, a brief 15-min computerized task, to determine whether cognitive control impairments in CHR at baseline could predict clinical status at 12-month follow-up. METHODS: Baseline AX-CPT data were obtained from 117 CHR individuals participating in two studies, the Early Detection, Intervention, and Prevention of Psychosis Program (EDIPPP) and the Understanding Early Psychosis Programs (EP) and used to predict clinical status at 12-month follow-up. At 12 months, 19 individuals converted to a first episode of psychosis (CHR-C), 52 remitted (CHR-R), and 46 had persistent sub-threshold symptoms (CHR-P). Binary logistic regression and multinomial logistic regression were used to test prediction models. RESULTS: Baseline AX-CPT performance (d-prime context) was less impaired in CHR-R compared to CHR-P and CHR-C patient groups. AX-CPT predictive validity was robust (0.723) for discriminating converters v. non-converters, and even greater (0.771) when predicting CHR three subgroups. CONCLUSIONS: These longitudinal outcome data indicate that cognitive control deficits as measured by AX-CPT d-prime context are a strong predictor of clinical outcome in CHR individuals. The AX-CPT is brief, easily implemented and cost-effective measure that may be valuable for large-scale prediction efforts.


Asunto(s)
Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/psicología , Adolescente , Adulto , Niño , Progresión de la Enfermedad , Femenino , Humanos , Modelos Logísticos , Estudios Longitudinales , Masculino , Pruebas Neuropsicológicas , Valor Predictivo de las Pruebas , Síntomas Prodrómicos , Riesgo , Adulto Joven
16.
Brain Behav Immun ; 88: 619-630, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32335198

RESUMEN

Despite the potential of rodent models of maternal immune activation (MIA) to identify new biomarkers and therapeutic interventions for a range of psychiatric disorders, current approaches using these models ignore two of the most important aspects of this risk factor for human disease: (i) most pregnancies are resilient to maternal viral infection and (ii) susceptible pregnancies can lead to different combinations of phenotypes in offspring. Here, we report two new sources of variability-the baseline immunoreactivity (BIR) of isogenic females prior to pregnancy and differences in immune responses in C57BL/6 dams across vendors-that contribute to resilience and susceptibility to distinct combinations of behavioral and biological outcomes in offspring. Similar to the variable effects of human maternal infection, MIA in mice does not cause disease-related phenotypes in all pregnancies and a combination of poly(I:C) dose and BIR predicts susceptibility and resilience of pregnancies to aberrant repetitive behaviors and alterations in striatal protein levels in offspring. Even more surprising is that the intermediate levels of BIR and poly(I:C) dose are most detrimental to offspring, with higher BIR and poly(I:C) doses conferring resilience to measured phenotypes in offspring. Importantly, we identify the BIR of female mice as a biomarker before pregnancy that predicts which dams will be most at risk as well as biomarkers in the brains of newborn offspring that correlate with changes in repetitive behaviors. Together, our results highlight considerations for optimizing MIA protocols to enhance rigor and reproducibility and reveal new factors that drive susceptibility of some pregnancies and resilience of others to MIA-induced abnormalities in offspring.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Animales , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Poli I-C , Embarazo , Reproducibilidad de los Resultados
17.
Am J Med Genet A ; 182(7): 1615-1630, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32319730

RESUMEN

Behavioral components of chromosome 22q11.2 deletion syndrome (22q), caused by the most common human microdeletion, include cognitive and adaptive functioning impairments, heightened anxiety, and an elevated risk of schizophrenia. We investigated how interactions between executive function and the largely overlooked factor of emotion regulation might relate to the incidence of symptoms of psychotic thinking in youth with 22q. We measured neural activity with event-related potentials (ERPs) in variants of an inhibitory function (Go/No-Go) experimental paradigm that presented affective or non-affective stimuli. The study replicated inhibition impairments in the 22q group that were amplified in the presence of stimuli with negative, more than positive affective salience. Importantly, the anterior N2 conflict monitoring ERP significantly increased when youth with 22q viewed angry and happy facial expressions, unlike the typically developing participants. This suggests that youth with 22q may require greater conflict monitoring resources when controlling their behavior in response to highly salient social signals. This evidence of both behavioral and neurophysiological differences in affectively influenced inhibitory function suggests that frequently anxious youth with 22q may struggle more with cognitive control in emotionally charged social settings, which could influence their risk of developing symptoms of psychosis.


Asunto(s)
Anomalías Múltiples/psicología , Disfunción Cognitiva/genética , Síndrome de DiGeorge/psicología , Trastornos Psicóticos/genética , Adolescente , Estudios de Casos y Controles , Niño , Deleción Cromosómica , Cromosomas Humanos Par 22 , Disfunción Cognitiva/psicología , Electroencefalografía , Emociones , Potenciales Evocados , Función Ejecutiva/fisiología , Femenino , Humanos , Masculino
18.
Dev Psychobiol ; 62(7): 950-962, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32666534

RESUMEN

The nonhuman primate provides a sophisticated animal model system both to explore neurobiological mechanisms underlying complex behaviors and to facilitate preclinical research for neurodevelopmental and neuropsychiatric disease. A better understanding of evolutionarily conserved behaviors and brain processes between humans and nonhuman primates will be needed to successfully apply recently released NIMH guidelines (NOT-MH-19-053) for conducting rigorous nonhuman primate neurobehavioral research. Here, we explore the relationship between two measures of social behavior that can be used in both humans and nonhuman primates-traditional observations of social interactions with conspecifics and eye gaze detection in response to social stimuli. Infant male rhesus macaques (Macaca mulatta) serving as controls (N = 14) for an ongoing study were observed in their social rearing groups and participated in a noninvasive, longitudinal eye-tracking study. We found significant positive relationships between time spent viewing eyes of faces in an eye tracker and number of initiations made for social interactions with peers that is consistent with similar observations in human populations. Although future studies are needed to determine if this relationship represents species-typical social developmental processes, these preliminary results provide a novel framework to explore the relationship between social interactions and social attention in nonhuman primate models for neurobehavioral development.


Asunto(s)
Animales Recién Nacidos/psicología , Medidas del Movimiento Ocular/veterinaria , Macaca mulatta/psicología , Conducta Social , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Movimientos Oculares , Macaca mulatta/crecimiento & desarrollo , Masculino
19.
J Cogn Neurosci ; 31(4): 510-521, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30605003

RESUMEN

The subthalamic nucleus (STN) is thought to be a central regulator of behavioral inhibition, which is thought to be a major determinant of impulsivity. Thus, it would be reasonable to hypothesize that STN function is related to impulsivity. However, it has been difficult to test this hypothesis because of the challenges in noninvasively and accurately measuring this structure's signal in humans. We utilized a novel approach for STN signal localization that entails identifying this structure directly on fMRI images for each individual participant in native space. Using this approach, we measured STN responses during the stop signal task in a sample of healthy adult participants. We confirmed that the STN exhibited selective activation during "Stop" trials. Furthermore, the magnitude of STN activation during successful Stop trials inversely correlated with individual differences in trait impulsivity as measured by a personality inventory. Time course analysis revealed that early STN activation differentiated successful from unsuccessful Stop trials, and individual differences in the magnitude of STN activation inversely correlated with stop signal RT, an estimate of time required to stop. These results are consistent with the STN playing a central role in inhibition and related behavioral proclivities, with implications for both normal range function and clinical syndromes of inhibitory dyscontrol. Moreover, the methods utilized in this study for measuring STN fMRI signal in humans may be gainfully applied in future studies to further our understanding of the role of the STN in regulating behavior and neuropsychiatric conditions.


Asunto(s)
Mapeo Encefálico , Conducta Impulsiva/fisiología , Individualidad , Inhibición Psicológica , Desempeño Psicomotor/fisiología , Núcleo Subtalámico/fisiología , Adulto , Humanos , Imagen por Resonancia Magnética , Núcleo Subtalámico/diagnóstico por imagen , Adulto Joven
20.
Cereb Cortex ; 28(11): 3842-3856, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29028974

RESUMEN

Cognitive control refers to the ability to produce flexible, goal-oriented behavior in the face of changing task demands and conflicting response tendencies. A classic cognitive control experiment is the Stroop-color naming task, which requires participants to name the color in which a word is written while inhibiting the tendency to read the word. By comparing stimuli with conflicting word-color associations to congruent ones, control processes over response tendencies can be isolated. We assessed the spatial specificity and temporal dynamics in the theta and gamma bands for regions engaged in detecting and resolving conflict in a cohort of 13 patients using a combination of high-resolution surface and depth recordings. We show that cognitive control manifests as a sustained increase in gamma band power, which correlates with response time. Conflict elicits a sustained gamma power increase but a transient theta power increase, specifically localized to the left cingulate sulcus and bilateral dorsolateral prefrontal cortex (DLPFC). Additionally, activity in DLPFC is affected by trial-by-trial modulation of cognitive control (the Gratton effect). Altogether, the sustained local neural activity in dorsolateral and medial regions is what determines the timing of the correct response.


Asunto(s)
Conflicto Psicológico , Función Ejecutiva/fisiología , Ritmo Gamma , Giro del Cíngulo/fisiología , Corteza Prefrontal/fisiología , Ritmo Teta , Adulto , Femenino , Humanos , Masculino , Test de Stroop , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA