Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Infect Dis ; 224(10): 1720-1729, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34628500

RESUMEN

BACKGROUND: Rotavirus is a leading cause of pediatric diarrheal mortality. The rotavirus outer capsid consists of VP7 and VP4 proteins, which, respectively, determine viral G and P type and are primary targets of neutralizing antibodies. METHODS: To elucidate VP7-specific neutralizing antibody responses, we engineered monoreassortant rotaviruses each containing a human VP7 segment from a sequenced clinical specimen or a vaccine strain in an identical genetic background. We quantified replication and neutralization of engineered viruses using sera from infants vaccinated with monovalent ROTARIX or multivalent RotaTeq vaccines. RESULTS: Immunization with RotaTeq induced broader neutralizing antibody responses than ROTARIX. Inclusion of a single dose of RotaTeq in the schedule enhanced G-type neutralization breadth of vaccinated infant sera. Cell type-specific differences in infectivity, replication, and neutralization were detected for some monoreassortant viruses. CONCLUSIONS: These findings suggest that rotavirus VP7, independent of VP4, can contribute to cell tropism and the breadth of vaccine-elicited neutralizing antibody responses.


Asunto(s)
Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Anticuerpos Neutralizantes , Antígenos Virales , Proteínas de la Cápside/genética , Niño , Humanos , Lactante , Vacunas Atenuadas
2.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30333170

RESUMEN

Rotavirus is the leading global cause of diarrheal mortality for unvaccinated children under 5 years of age. The outer capsid of rotavirus virions consists of VP7 and VP4 proteins, which determine viral G and P types, respectively, and are primary targets of neutralizing antibodies. Successful vaccination depends upon generating broadly protective immune responses following exposure to rotaviruses presenting a limited number of G- and P-type antigens. Vaccine introduction resulted in decreased rotavirus disease burden but also coincided with the emergence of uncommon G and P genotypes, including G12. To gain insight into the recent predominance of G12P[8] rotaviruses in the United States, we evaluated 142 complete rotavirus genome sequences and metadata from 151 clinical specimens collected in Nashville, TN, from 2011 to 2013 through the New Vaccine Surveillance Network. Circulating G12P[8] strains were found to share many segments with other locally circulating strains but to have distinct constellations. Phylogenetic analyses of G12 sequences and their geographic sources provided evidence for multiple separate introductions of G12 segments into Nashville, TN. Antigenic epitopes of VP7 proteins of G12P[8] strains circulating in Nashville, TN, differ markedly from those of vaccine strains. Fully vaccinated children were found to be infected with G12P[8] strains more frequently than with other rotavirus genotypes. Multiple introductions and significant antigenic mismatch may in part explain the recent predominance of G12P[8] strains in the United States and emphasize the need for continued monitoring of rotavirus vaccine efficacy against emerging rotavirus genotypes.IMPORTANCE Rotavirus is an important cause of childhood diarrheal disease worldwide. Two immunodominant proteins of rotavirus, VP7 and VP4, determine G and P genotypes, respectively. Recently, G12P[8] rotaviruses have become increasingly predominant. By analyzing rotavirus genome sequences from stool specimens obtained in Nashville, TN, from 2011 to 2013 and globally circulating rotaviruses, we found evidence of multiple introductions of G12 genes into the area. Based on sequence polymorphisms, VP7 proteins of these viruses are predicted to present themselves to the immune system very differently than those of vaccine strains. Many of the sick children with G12P[8] rotavirus in their diarrheal stools also were fully vaccinated. Our findings emphasize the need for continued monitoring of circulating rotaviruses and the effectiveness of the vaccines against strains with emerging G and P genotypes.


Asunto(s)
Antígenos Virales/genética , Proteínas de la Cápside/genética , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus/inmunología , Rotavirus/clasificación , Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , Preescolar , Técnicas de Genotipaje , Humanos , Lactante , Filogenia , Vigilancia de la Población , Rotavirus/genética , Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control , Análisis de Secuencia de ARN , Estados Unidos
3.
Viruses ; 16(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38932271

RESUMEN

Human rotaviruses exhibit limited tropism and replicate poorly in most cell lines. Attachment protein VP4 is a key rotavirus tropism determinant. Previous studies in which human rotaviruses were adapted to cultured cells identified mutations in VP4. However, most such studies were conducted using only a single human rotavirus genotype. In the current study, we serially passaged 50 human rotavirus clinical specimens representing five of the genotypes most frequently associated with severe human disease, each in triplicate, three to five times in primary monkey kidney cells then ten times in the MA104 monkey kidney cell line. From 13 of the 50 specimens, we obtained 25 rotavirus antigen-positive lineages representing all five genotypes, which tended to replicate more efficiently in MA104 cells at late versus early passage. We used Illumina next-generation sequencing and analysis to identify variants that arose during passage. In VP4, variants encoded 28 mutations that were conserved for all P[8] rotaviruses and 12 mutations that were conserved for all five genotypes. These findings suggest there may be a conserved mechanism of human rotavirus adaptation to MA104 cells. In the future, such a conserved adaptation mechanism could be exploited to study human rotavirus biology or efficiently manufacture vaccines.


Asunto(s)
Proteínas de la Cápside , Genotipo , Mutación , Infecciones por Rotavirus , Rotavirus , Pase Seriado , Rotavirus/genética , Rotavirus/clasificación , Humanos , Proteínas de la Cápside/genética , Animales , Infecciones por Rotavirus/virología , Línea Celular , Replicación Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Tropismo Viral
4.
Curr Biol ; 25(19): 2541-8, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26387713

RESUMEN

Neural circuits are actively remodeled during brain development, but the molecular mechanisms that trigger circuit refinement are poorly understood. Here, we describe a transcriptional program in C. elegans that regulates expression of an Ig domain protein, OIG-1, to control the timing of synaptic remodeling. DD GABAergic neurons reverse polarity during larval development by exchanging the locations of pre- and postsynaptic components. In newly born larvae, DDs receive cholinergic inputs in the dorsal nerve cord. These inputs are switched to the ventral side by the end of the first larval (L1) stage. VD class GABAergic neurons are generated in the late L1 and are postsynaptic to cholinergic neurons in the dorsal nerve cord but do not remodel. We investigated remodeling of the postsynaptic apparatus in DD and VD neurons using targeted expression of the acetylcholine receptor (AChR) subunit, ACR-12::GFP. We determined that OIG-1 antagonizes the relocation of ACR-12 from the dorsal side in L1 DD neurons. During the L1/L2 transition, OIG-1 is downregulated in DD neurons by the transcription factor IRX-1/Iroquois, allowing the repositioning of synaptic inputs to the ventral side. In VD class neurons, which normally do not remodel, the transcription factor UNC-55/COUP-TF turns off IRX-1, thus maintaining high levels of OIG-1 to block the removal of dorsally located ACR-12 receptors. OIG-1 is secreted from GABA neurons, but its anti-plasticity function is cell autonomous and may not require secretion. Our study provides a novel mechanism by which synaptic remodeling is set in motion through regulated expression of an Ig domain protein.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Neuronas GABAérgicas/fisiología , Inmunoglobulinas/fisiología , Neuronas Motoras/fisiología , Proteínas del Tejido Nervioso/fisiología , Sinapsis/fisiología , Acetilcolina/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Regulación de la Expresión Génica , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Colinérgicos/metabolismo , Sinapsis/genética , Sinapsis/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA