Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Neurosci ; 39(42): 8200-8208, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619488

RESUMEN

Mitochondria play many important biological roles, including ATP production, lipid biogenesis, ROS regulation, and calcium clearance. In neurons, the mitochondrion is an essential organelle for metabolism and calcium homeostasis. Moreover, mitochondria are extremely dynamic and able to divide, fuse, and move along microtubule tracks to ensure their distribution to the neuronal periphery. Mitochondrial dysfunction and altered mitochondrial dynamics are observed in a wide range of conditions, from impaired neuronal development to various neurodegenerative diseases. Novel imaging techniques and genetic tools provide unprecedented access to the physiological roles of mitochondria by visualizing mitochondrial trafficking, morphological dynamics, ATP generation, and ultrastructure. Recent studies using these new techniques have unveiled the influence of mitochondria on axon branching, synaptic function, calcium regulation with the ER, glial cell function, neurogenesis, and neuronal repair. This review provides an overview of the crucial roles played by mitochondria in the CNS in physiological and pathophysiological conditions.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Animales , Humanos , Mitocondrias/patología , Dinámicas Mitocondriales/fisiología , Enfermedades Neurodegenerativas/patología , Neurogénesis/fisiología , Neuronas/patología
2.
Hum Mol Genet ; 22(20): 4224-32, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23777631

RESUMEN

Charcot-Marie-Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CMT, we identified overlapping regions of homozygosity on chromosome 1p36 with a combined maximum LOD score of 5.4. Molecular investigation of the genes from this region allowed identification of two homozygous mutations in PLEKHG5 that produce premature stop codons and are predicted to result in functional null alleles. Analysis of Plekhg5 in the mouse revealed that this gene is expressed in neurons and glial cells of the peripheral nervous system, and that knockout mice display reduced nerve conduction velocities that are comparable with those of affected individuals from both families. Interestingly, a homozygous PLEKHG5 missense mutation was previously reported in a recessive form of severe childhood onset lower motor neuron disease (LMND) leading to loss of the ability to walk and need for respiratory assistance. Together, these observations indicate that different mutations in PLEKHG5 lead to clinically diverse outcomes (intermediate CMT or LMND) affecting the function of neurons and glial cells.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Genes Recesivos , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factores de Intercambio de Guanina Nucleótido/genética , Adulto , Edad de Inicio , Animales , Niño , Cromosomas Humanos Par 1/genética , Codón sin Sentido , Femenino , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Enfermedad de la Neurona Motora/genética , Mutación Missense , Neuroglía/metabolismo , Neuroglía/fisiología , Neuronas/metabolismo , Adulto Joven
3.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766051

RESUMEN

Among neurons, retinal ganglion cells (RGCs) are uniquely sensitive to mitochondrial dysfunction. The RGC is highly polarized, with a somatodendritic compartment in the inner retina and an axonal compartment projecting to targets in the brain. The drastically dissimilar functions of these compartments implies that mitochondria face different bioenergetic and other physiological demands. We hypothesized that compartmental differences in mitochondrial biology would be reflected by disparities in mitochondrial protein composition. Here, we describe a protocol to isolate intact mitochondria separately from mouse RGC somatodendritic and axonal compartments by immunoprecipitating labeled mitochondria from RGC MitoTag mice. Using mass spectrometry, 471 and 357 proteins were identified in RGC somatodendritic and axonal mitochondrial immunoprecipitates, respectively. We identified 10 mitochondrial proteins exclusively in the somatodendritic compartment and 19 enriched ≥2-fold there, while 3 proteins were exclusively identified and 18 enriched in the axonal compartment. Our observation of compartment-specific enrichment of mitochondrial proteins was validated through immunofluorescence analysis of the localization and relative abundance of superoxide dismutase ( SOD2 ), sideroflexin-3 ( SFXN3 ) and trifunctional enzyme subunit alpha ( HADHA ) in retina and optic nerve specimens. The identified compartmental differences in RGC mitochondrial composition may provide promising leads for uncovering physiologically relevant pathways amenable to therapeutic intervention for optic neuropathies.

4.
Neurobiol Dis ; 49: 107-17, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22975021

RESUMEN

Skeletal muscle mitochondrial dysfunction is believed to play a role in the progression and severity of amyotrophic lateral sclerosis (ALS). The regulation of transcriptional co-activators involved in mitochondrial biogenesis and function in ALS is not well known. When compared with healthy control subjects, patients with ALS, but not neurogenic disease (ND), had lower levels of skeletal muscle peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA and protein and estrogen-related receptor-α (ERRα) and mitofusin-2 (Mfn2) mRNA. PGC-1ß, nuclear respiratory factor-1 (NRF-1) and Mfn1 mRNA as well as cytochrome C oxidase subunit IV (COXIV) mRNA and protein were lower in patients with ALS and ND. Both patient groups had reductions in citrate synthase and cytochrome c oxidase activity. Similar observations were made in skeletal muscle from transgenic ALS G93A transgenic mice. In vitro, PGC-1α and PGC-1ß regulated Mfn1 and Mfn2 in an ERRα-dependent manner. Compared to healthy controls, miRNA 23a, 29b, 206 and 455 were increased in skeletal muscle of ALS patients. miR-23a repressed PGC-1α translation in a 3' UTR dependent manner. Transgenic mice over expressing miR-23a had a reduction in PGC-1α, cytochome-b and COXIV protein levels. These results show that skeletal muscle mitochondrial dysfunction in ALS patients is associated with a reduction in PGC-1α signalling networks involved in mitochondrial biogenesis and function, as well as increases in several miRNAs potentially implicated in skeletal muscle and neuromuscular junction regeneration. As miR-23a negatively regulates PGC-1α signalling, therapeutic inhibition of miR-23a may be a strategy to rescue PGC-1α activity and ameliorate skeletal muscle mitochondrial function in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , MicroARNs/metabolismo , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Adulto , Anciano , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Transgénicos , MicroARNs/genética , Persona de Mediana Edad , Mutación , ARN Mensajero/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Adulto Joven
5.
FASEB J ; 25(5): 1618-27, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21285398

RESUMEN

Charcot-Marie-Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochondrial outer membrane protein that promotes mitochondrial fusion. Emerging evidence also points to a role of MFN2 in the regulation of mitochondrial metabolism. To examine whether mitochondrial dysfunction is a feature of CMT2A, we used a transgenic mouse model expressing in neurons a mutated R94Q form of human MFN2 shown to induce a CMT2A phenotype. Oxygraphic and enzymatic measurements both revealed a combined defect of mitochondrial complexes II and V (40 and 30% decrease, respectively) in the brain of Tg-R94 mice, leading to a drastic decrease of ATP synthesis. These deficiencies were reversed by the mitochondrial ATP-sensitive potassium channel (mK(ATP)) inhibitor 5-hydroxydecanoate. Conversely, in controls and wild-type human MFN2 mice, the mK(ATP) activator diazoxide mimicked the deficiency observed with the R94Q mutation. The physical links between complexes II and V, previously proposed as part of mK(ATP), were reinforced in Tg-R94Q mice. Our results show that the R94Q MFN2 mutation induces a combined defect of complexes II and V linked to the opening of mK(ATP), which could participate in the pathophysiology of the disease.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Canales KATP/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Western Blotting , Encéfalo/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Diazóxido/farmacología , GTP Fosfohidrolasas/genética , Humanos , Inmunoprecipitación , Canales KATP/agonistas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
6.
Neuron ; 110(9): 1516-1531.e9, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35216662

RESUMEN

PTEN-induced kinase 1 (PINK1) is a short-lived protein required for the removal of damaged mitochondria through Parkin translocation and mitophagy. Because the short half-life of PINK1 limits its ability to be trafficked into neurites, local translation is required for this mitophagy pathway to be active far from the soma. The Pink1 transcript is associated and cotransported with neuronal mitochondria. In concert with translation, the mitochondrial outer membrane proteins synaptojanin 2 binding protein (SYNJ2BP) and synaptojanin 2 (SYNJ2) are required for tethering Pink1 mRNA to mitochondria via an RNA-binding domain in SYNJ2. This neuron-specific adaptation for the local translation of PINK1 provides distal mitochondria with a continuous supply of PINK1 for the activation of mitophagy.


Asunto(s)
Mitofagia , Proteínas Quinasas , Mitocondrias/metabolismo , Mitofagia/genética , Proteínas del Tejido Nervioso , Neuronas/metabolismo , Monoéster Fosfórico Hidrolasas , Proteínas Quinasas/genética , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Brain ; 133(Pt 5): 1460-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20418531

RESUMEN

Charcot-Marie-Tooth disease type 2A is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene. Mitofusin 2 encodes a mitochondrial outer membrane protein that participates in mitochondrial fusion in mammalian cells. How mutations in this protein lead to Charcot-Marie-Tooth disease type 2A pathophysiology remains unclear. We have generated a transgenic mouse expressing either a mutated (R94Q) or wild-type form of human mitofusin 2 in neurons to evaluate whether the R94Q mutation was sufficient for inducing a Charcot-Marie-Tooth disease type 2A phenotype. Only mice expressing mitofusin 2(R94Q) developed locomotor impairments and gait defects thus mimicking the Charcot-Marie-Tooth disease type 2A neuropathy. In these animals, the number of mitochondria per axon was significantly increased in the distal part of the sciatic nerve axons with a diameter smaller than 3.5 microm. Importantly, the analysis of R94Q transgenic animals also revealed an age-related shift in the size of myelinated axons leading to an over-representation of axons smaller than 3.5 microm. Together these data suggest a link between an increased number of mitochondria in axons and a shift in axonal size distribution in mitofusin 2(R94Q) transgenic animals that may contribute to their neurological phenotype.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/fisiopatología , GTP Fosfohidrolasas/genética , Proteínas de Transporte de Membrana/genética , Proteínas Mitocondriales/genética , Mutación , Envejecimiento , Animales , Arginina , Axones/ultraestructura , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , ADN Complementario/metabolismo , Glutamina , Humanos , Ratones , Ratones Transgénicos , Microscopía Electrónica , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial , Fibras Nerviosas Mielínicas/patología , Neuronas/metabolismo , Nervios Periféricos/ultraestructura , Fenotipo , Nervio Ciático/patología
8.
Front Neuroanat ; 15: 678501, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093141

RESUMEN

Mitochondria are essential for neurons and must be optimally distributed along their axon to fulfill local functions. A high density of mitochondria has been observed in retinal ganglion cell (RGC) axons of an unmyelinated region of the optic nerve, called the glial lamina (GL) in mouse (lamina cribrosa in human). In glaucoma, the world's leading cause of irreversible blindness, the GL is the epicenter of RGC degeneration and is connected to mitochondrial dysfunction. It is generally accepted that the local accumulation of mitochondria in the GL is established due to the higher energy requirement of unmyelinated axons. Here we revisit the connection between mitochondrial positioning and myelin in RGC axons. We show that the high density of mitochondria in the GL is restricted to larger axons and is established before myelination. Thus, contrary to a longstanding belief in the field, the myelination pattern is not responsible for the establishment of the local accumulation of mitochondria in GL axons. Our findings open new research avenues likely critical to understanding the pathophysiology of glaucoma.

9.
PLoS One ; 12(9): e0184672, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28926622

RESUMEN

Improving axonal transport in the injured and diseased central nervous system has been proposed as a promising strategy to improve neuronal repair. However, the contribution of each cargo to the repair mechanism is unknown. DRG neurons globally increase axonal transport during regeneration. Because the transport of specific cargos after axonal insult has not been examined systematically in a model of enhanced regenerative capacity, it is unknown whether the transport of all cargos would be modulated equally in injured central nervous system neurons. Here, using a microfluidic culture system we compared neurons co-deleted for PTEN and SOCS3, an established model of high axonal regeneration capacity, to control neurons. We measured the axonal transport of three cargos (mitochondria, synaptic vesicles and late endosomes) in regenerating axons and found that the transport of mitochondria, but not the other cargos, was increased in PTEN/SOCS3 co-deleted axons relative to controls. The results reported here suggest a pivotal role for this organelle during axonal regeneration.


Asunto(s)
Axones/fisiología , Mitocondrias/metabolismo , Regeneración Nerviosa/fisiología , Animales , Transporte Biológico , Células Cultivadas , Corteza Cerebral/citología , Femenino , Inmunohistoquímica , Ratones Transgénicos , Microscopía Confocal , Neuronas/citología , Neuronas/metabolismo , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Ratas , Proteína 3 Supresora de la Señalización de Citocinas/deficiencia , Proteína 3 Supresora de la Señalización de Citocinas/genética , Imagen de Lapso de Tiempo , Tubulina (Proteína)/metabolismo
10.
Neuron ; 92(6): 1294-1307, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28009275

RESUMEN

Mitochondrial transport is crucial for neuronal and axonal physiology. However, whether and how it impacts neuronal injury responses, such as neuronal survival and axon regeneration, remain largely unknown. In an established mouse model with robust axon regeneration, we show that Armcx1, a mammalian-specific gene encoding a mitochondria-localized protein, is upregulated after axotomy in this high regeneration condition. Armcx1 overexpression enhances mitochondrial transport in adult retinal ganglion cells (RGCs). Importantly, Armcx1 also promotes both neuronal survival and axon regeneration after injury, and these effects depend on its mitochondrial localization. Furthermore, Armcx1 knockdown undermines both neuronal survival and axon regeneration in the high regenerative capacity model, further supporting a key role of Armcx1 in regulating neuronal injury responses in the adult central nervous system (CNS). Our findings suggest that Armcx1 controls mitochondrial transport during neuronal repair.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Axones/metabolismo , Axotomía , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Regeneración Nerviosa/genética , Traumatismos del Nervio Óptico/genética , Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Proteínas del Dominio Armadillo/metabolismo , Axones/ultraestructura , Transporte Biológico , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Hibridación in Situ , Ratones , Microscopía Confocal , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Nervio Óptico/ultraestructura , Regeneración , Retina , Células Ganglionares de la Retina/ultraestructura , Imagen de Lapso de Tiempo
11.
Neuron ; 88(4): 704-19, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26526391

RESUMEN

After axotomy, neuronal survival and growth cone re-formation are required for axon regeneration. We discovered that doublecortin-like kinases (DCLKs), members of the doublecortin (DCX) family expressed in adult retinal ganglion cells (RGCs), play critical roles in both processes, through distinct mechanisms. Overexpression of DCLK2 accelerated growth cone re-formation in vitro and enhanced the initiation and elongation of axon re-growth after optic nerve injury. These effects depended on both the microtubule (MT)-binding domain and the serine-proline-rich (S/P-rich) region of DCXs in-cis in the same molecules. While the MT-binding domain is known to stabilize MT structures, we show that the S/P-rich region prevents F-actin destabilization in injured axon stumps. Additionally, while DCXs synergize with mTOR to stimulate axon regeneration, alone they can promote neuronal survival possibly by regulating the retrograde propagation of injury signals. Multifunctional DCXs thus represent potential targets for promoting both survival and regeneration of injured neurons.


Asunto(s)
Actinas/metabolismo , Axones/metabolismo , Microtúbulos/metabolismo , Regeneración Nerviosa/genética , Proteínas Serina-Treonina Quinasas/genética , Células Ganglionares de la Retina/metabolismo , Animales , Axones/fisiología , Axotomía , Supervivencia Celular , Proteína Doblecortina , Quinasas Similares a Doblecortina , Conos de Crecimiento , Técnicas In Vitro , Ratones , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Traumatismos del Nervio Óptico , Proteínas Serina-Treonina Quinasas/metabolismo , Células Ganglionares de la Retina/fisiología , Serina-Treonina Quinasas TOR/metabolismo
13.
Neuron ; 73(3): 445-52, 2012 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-22325198

RESUMEN

Loss of retinal ganglion cells (RGCs) accounts for visual function deficits after optic nerve injury, but how axonal insults lead to neuronal death remains elusive. By using an optic nerve crush model that results in the death of the majority of RGCs, we demonstrate that axotomy induces differential activation of distinct pathways of the unfolded protein response in axotomized RGCs. Optic nerve injury provokes a sustained CCAAT/enhancer binding homologous protein (CHOP) upregulation, and deletion of CHOP promotes RGC survival. In contrast, IRE/XBP-1 is only transiently activated, and forced XBP-1 activation dramatically protects RGCs from axon injury-induced death. Importantly, such differential activations of CHOP and XBP-1 and their distinct effects on neuronal cell death are also observed in RGCs with other types of axonal insults, such as vincristine treatment and intraocular pressure elevation, suggesting a new protective strategy for neurodegeneration associated with axonal damage.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/fisiopatología , Células Ganglionares de la Retina/patología , Aminoácidos , Animales , Axotomía/métodos , Caspasa 3/metabolismo , Muerte Celular/genética , Supervivencia Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dependovirus/genética , Citometría de Flujo , Regulación de la Expresión Génica/genética , Glaucoma/etiología , Glaucoma/genética , Glaucoma/fisiopatología , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Traumatismos del Nervio Óptico/etiología , Pliegue de Proteína , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Transcripción del Factor Regulador X , Factor de Transcripción CHOP/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tubulina (Proteína)/metabolismo , Proteína 1 de Unión a la X-Box
14.
Exp Neurol ; 218(2): 268-73, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19427854

RESUMEN

Charcot-Marie-Tooth disease (CMT) is the most common form of hereditary peripheral neuropathy. The main axonal form of CMT, CMT2A, preferentially affects peripheral neurons with the longest neurites. CMT2A has been recently linked to mutations in the mitofusin 2 (Mfn2) gene. Mfn2 participates in mitochondrial fusion a process that together with mitochondrial fission, contributes to mitochondrial morphology. Many hypotheses have been postulated to understand how mutations in Mfn2 lead to CMT2A. In this review, we will describe the physiological role of Mfn2, the pathophysiology of CMT2A and current hypotheses about the deleterious role of mutant Mfn2 in neuronal function.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Mutación , Neuronas/metabolismo , Animales , GTP Fosfohidrolasas , Predisposición Genética a la Enfermedad , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas/patología
15.
J Physiol ; 576(Pt 3): 923-33, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16916907

RESUMEN

Skeletal muscle size is tightly regulated by the synergy between anabolic and catabolic signalling pathways which, in humans, have not been well characterized. Akt has been suggested to play a pivotal role in the regulation of skeletal muscle hypertrophy and atrophy in rodents and cells. Here we measured the amount of phospho-Akt and several of its downstream anabolic targets (glycogen synthase kinase-3beta (GSK-3beta), mTOR, p70(s6k) and 4E-BP1) and catabolic targets (Foxo1, Foxo3, atrogin-1 and MuRF1). All measurements were performed in human quadriceps muscle biopsies taken after 8 weeks of both hypertrophy-stimulating resistance training and atrophy-stimulating de-training. Following resistance training a muscle hypertrophy ( approximately 10%) and an increase in phospho-Akt, phospho-GSK-3beta and phospho-mTOR protein content were observed. This was paralleled by a decrease in Foxo1 nuclear protein content. Following the de-training period a muscle atrophy (5%), relative to the post-training muscle size, a decrease in phospho-Akt and GSK-3beta and an increase in Foxo1 were observed. Atrogin-1 and MuRF1 increased after the hypertrophy and decreased after the atrophy phases. We demonstrate, for the first time in human skeletal muscle, that the regulation of Akt and its downstream signalling pathways GSK-3beta, mTOR and Foxo1 are associated with both the skeletal muscle hypertrophy and atrophy processes.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Atrofia/genética , Atrofia/metabolismo , Atrofia/patología , Proteínas de Ciclo Celular , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica/fisiología , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Hipertrofia/genética , Hipertrofia/metabolismo , Hipertrofia/patología , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
J Physiol ; 567(Pt 1): 349-58, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15961417

RESUMEN

Mitochondrial impairment is hypothesized to contribute to the pathogenesis of insulin resistance. Mitofusin (Mfn) proteins regulate the biogenesis and maintenance of the mitochondrial network, and when inactivated, cause a failure in the mitochondrial architecture and decreases in oxidative capacity and glucose oxidation. Exercise increases muscle mitochondrial content, size, oxidative capacity and aerobic glucose oxidation. To address if Mfn proteins are implicated in these exercise-induced responses, we measured Mfn1 and Mfn2 mRNA levels, pre-, post-, 2 and 24 h post-exercise. Additionally, we measured the expression levels of transcriptional regulators that control mitochondrial biogenesis and functions, including PGC-1alpha, NRF-1, NRF-2 and the recently implicated ERRalpha. We show that Mfn1, Mfn2, NRF-2 and COX IV mRNA were increased 24 h post-exercise, while PGC-1alpha and ERRalpha mRNA increased 2 h post-exercise. Finally, using in vitro cellular assays, we demonstrate that Mfn2 gene expression is driven by a PGC-1alpha programme dependent on ERRalpha. The PGC-1alpha/ERRalpha-mediated induction of Mfn2 suggests a role of these two factors in mitochondrial fusion. Our results provide evidence that PGC-1alpha not only mediates the increased expression of oxidative phosphorylation genes but also mediates alterations in mitochondrial architecture in response to aerobic exercise in humans.


Asunto(s)
Receptor alfa de Estrógeno/genética , Ejercicio Físico/fisiología , GTP Fosfohidrolasas/genética , Proteínas de Transporte de Membrana/genética , Proteínas Mitocondriales/genética , Músculo Esquelético/fisiología , Adulto , Metabolismo Energético/fisiología , Expresión Génica/fisiología , Humanos , Masculino , Proteínas de la Membrana/genética , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial , Regiones Promotoras Genéticas/fisiología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA