Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38359819

RESUMEN

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Asunto(s)
Neoplasias , Proteogenómica , Humanos , Terapia Combinada , Genómica , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Proteómica , Escape del Tumor
2.
J Transl Med ; 22(1): 223, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429759

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor, that is refractory to standard treatment and to immunotherapy with immune-checkpoint inhibitors (ICI). Noteworthy, melanoma brain metastases (MM-BM), that share the same niche as GBM, frequently respond to current ICI therapies. Epigenetic modifications regulate GBM cellular proliferation, invasion, and prognosis and may negatively regulate the cross-talk between malignant cells and immune cells in the tumor milieu, likely contributing to limit the efficacy of ICI therapy of GBM. Thus, manipulating the tumor epigenome can be considered a therapeutic opportunity in GBM. METHODS: Microarray transcriptional and methylation profiles, followed by gene set enrichment and IPA analyses, were performed to study the differences in the constitutive expression profiles of GBM vs MM-BM cells, compared to the extracranial MM cells and to investigate the modulatory effects of the DNA hypomethylating agent (DHA) guadecitabine among the different tumor cells. The prognostic relevance of DHA-modulated genes was tested by Cox analysis in a TCGA GBM patients' cohort. RESULTS: The most striking differences between GBM and MM-BM cells were found to be the enrichment of biological processes associated with tumor growth, invasion, and extravasation with the inhibition of MHC class II antigen processing/presentation in GBM cells. Treatment with guadecitabine reduced these biological differences, shaping GBM cells towards a more immunogenic phenotype. Indeed, in GBM cells, promoter hypomethylation by guadecitabine led to the up-regulation of genes mainly associated with activation, proliferation, and migration of T and B cells and with MHC class II antigen processing/presentation. Among DHA-modulated genes in GBM, 7.6% showed a significant prognostic relevance. Moreover, a large set of immune-related upstream-regulators (URs) were commonly modulated by DHA in GBM, MM-BM, and MM cells: DHA-activated URs enriched for biological processes mainly involved in the regulation of cytokines and chemokines production, inflammatory response, and in Type I/II/III IFN-mediated signaling; conversely, DHA-inhibited URs were involved in metabolic and proliferative pathways. CONCLUSIONS: Epigenetic remodeling by guadecitabine represents a promising strategy to increase the efficacy of cancer immunotherapy of GBM, supporting the rationale to develop new epigenetic-based immunotherapeutic approaches for the treatment of this still highly deadly disease.


Asunto(s)
Azacitidina/análogos & derivados , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Azacitidina/uso terapéutico , Epigénesis Genética , Inmunoterapia
3.
Pancreatology ; 24(6): 899-908, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942662

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading cause of cancer death worldwide. PDACs are characterized by centrosome aberrations, but whether centrosome-related genes influence patient outcomes has not been tested. METHODS: Publicly available RNA-sequencing data of patients diagnosed with PDAC were interrogated with unsupervised approaches to identify centrosome protein-encoding genes with prognostic relevance. Candidate genes were validated by immunohistochemistry and multiplex immunofluorescence in a set of clinical PDAC and normal pancreatic tissues. RESULTS: Results showed that two genes CEP250 and CEP170, involved in centrosome linker and centriolar subdistal appendages, were expressed at high levels in PDAC tissues and were correlated with prognosis of PDAC patients in independent databases. Large clustered γ-tubulin-labelled centrosomes were linked together by aberrant circular and planar-shaped CEP250 arrangements in CEP250-high expressing PDACs. Furthermore, PDACs displayed prominent centrosome separation and reduced CEP164-centrosomal labelling associated with acetylated-tubulin staining compared to normal pancreatic tissues. Interestingly, in a small validation cohort, CEP250-high expressing patients had shorter disease free- and overall-survival and almost none of those who received gemcitabine plus nab-paclitaxel first-line therapy achieved a clinical response. In contrast, weak CEP250 expression was associated with long-term survivors or responses to medical treatments. CONCLUSIONS: Alteration of the centriolar cohesion and appendages has effect on the survival of patients with PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas de Ciclo Celular , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Pronóstico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Resultado del Tratamiento , Centrosoma/metabolismo
4.
Brief Bioinform ; 22(2): 701-713, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33279954

RESUMEN

The stratification of patients at risk of progression of COVID-19 and their molecular characterization is of extreme importance to optimize treatment and to identify therapeutic options. The bioinformatics community has responded to the outbreak emergency with a set of tools and resource to identify biomarkers and drug targets that we review here. Starting from a consolidated corpus of 27 570 papers, we adopt latent Dirichlet analysis to extract relevant topics and select those associated with computational methods for biomarker identification and drug repurposing. The selected topics span from machine learning and artificial intelligence for disease characterization to vaccine development and to therapeutic target identification. Although the way to go for the ultimate defeat of the pandemic is still long, the amount of knowledge, data and tools generated so far constitutes an unprecedented example of global cooperation to this threat.


Asunto(s)
Biomarcadores/sangre , Tratamiento Farmacológico de COVID-19 , Sistemas de Liberación de Medicamentos , Antivirales/uso terapéutico , COVID-19/sangre , COVID-19/virología , Reposicionamiento de Medicamentos/métodos , Humanos , Aprendizaje Automático , SARS-CoV-2/aislamiento & purificación
5.
J Transl Med ; 20(1): 469, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243798

RESUMEN

BACKGROUND: Melanoma is the deadliest form of skin cancer and metastatic disease is associated with a significant survival rate drop. There is an urgent need for consistent tumor biomarkers to scale precision medicine and reduce cancer mortality. Here, we aimed to identify a melanoma-specific circulating microRNA signature and assess its value as a diagnostic tool. METHODS: The study consisted of a discovery phase and two validation phases. Circulating plasma extracellular vesicles (pEV) associated microRNA profiles were obtained from a discovery cohort of metastatic melanoma patients and normal subjects as controls. A pEV-microRNA signature was obtained using a LASSO penalized logistic regression model. The pEV-microRNA signature was subsequently validated both in a publicly available dataset and in an independent internal cohort. RESULTS: We identified and validated in three independent cohorts a panel of melanoma-specific circulating microRNAs that showed high accuracy in differentiating melanoma patients from healthy subjects with an area under the curve (AUC) of 1.00, 0.94 and 0.75 respectively. Investigation of the function of the pEV-microRNA signature evidenced their possible immune suppressive role in melanoma patients. CONCLUSIONS: We demonstrate that a blood test based on circulating microRNAs can non-invasively detect melanoma, offering a novel diagnostic tool for improving standard care. Moreover, we revealed an immune suppressive role for melanoma pEV-microRNAs.


Asunto(s)
MicroARN Circulante , Melanoma , MicroARNs , Biomarcadores de Tumor/genética , MicroARN Circulante/genética , Perfilación de la Expresión Génica , Humanos , Biopsia Líquida , Melanoma/diagnóstico , Melanoma/genética , MicroARNs/genética
6.
Cancer Cell Int ; 22(1): 253, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953834

RESUMEN

In addition to being novel biomarkers for poor cancer prognosis, members of Lymphocyte antigen-6 (Ly6) gene family also play a crucial role in avoiding immune responses to tumors. However, it has not been possible to identify the underlying mechanism of how Ly6 gene regulation operates in human cancers. Transcriptome, epigenome and proteomic data from independent cancer databases were analyzed in silico and validated independently in 334 colorectal cancer tissues (CRC). RNA mediated gene silencing of regulatory genes, and treatment with MEK and p38 MAPK inhibitors were also tested in vitro. We report here that the Lymphocyte antigen 6G6D is universally downregulated in mucinous CRC, while its activation progresses through the classical adenoma-carcinoma sequence. The DNA methylation changes in LY6G6D promoter are intimately related to its transcript regulation, epigenomic and histological subtypes. Depletion of DNA methyltransferase 1 (DNMT1), which maintains DNA methylation, results in the derepression of LY6G6D expression. RNA-mediated gene silencing of p38α MAPK or its selective chemical inhibition, however, reduces LY6G6D expression, reducing trametinib's anti-inflammatory effects. Patients treated with FOLFOX-based first-line therapy experienced decreased survival due to hypermethylation of the LY6G6D promoter and decreased p38α MAPK signaling. We found that cancer-specific immunodominant epitopes are controlled by p38α MAPKs signaling and suppressed by DNA methylation in histological variants with Mucinous differentiation. This work provides a promising prospective for clinical application in diagnosis and personalized therapeutic strategies of colorectal cancer.

7.
Neurol Sci ; 42(4): 1515-1521, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33439393

RESUMEN

BACKGROUND AND AIM: Peginterferon beta-1a (Plegridy) offers the advantage of a prolonged half-life with less-frequent administration and a higher patient adherence. However, the use of an interferon may lead to flu-like symptoms (FLS) and injection-site reactions (ISR) that results in drug discontinuation. The objective of this Delphi analysis was to obtain consensus on the characteristics and management of FLS/ISR of peginterferon beta-1a in patients with relapsing-remitting MS based on real-world clinical experiences.4 METHODS: A steering committee of MS neurologists and nurses identified issues regarding the features and management of adverse events and generated a questionnaire used to conduct three rounds of the Delphi web survey with an Italian expert panel (54 neurologists and nurses). RESULTS: Fifty-three (100%), fifty-one (96.22%), and forty-two (79.24%) responders completed questionnaires 1, 2, and 3 respectively. Responders reported that, during the first 6 months of treatment, FLS generally occurred 6-12 h after injection; the fever tended to resolve after 12-24 h; otherwise, FLS lasted up to 48 h. FLS improved or disappeared after 6 months of treatment in most cases. Paracetamol was recommended as the first choice for managing FLS. Erythema was the most common ISR and usually resolved within 1 week after injection. Responders reported that the adherence to treatment increases after adequate patient education on the drug's tolerability profile. CONCLUSIONS: Patient education and counseling play a key role in promoting adherence to treatment especially in the first months also in patients switching from nonpegylated IFNs to peginterferon beta-1a.


Asunto(s)
Interferón beta , Polietilenglicoles , Humanos , Interferón beta-1a , Interferón beta/administración & dosificación , Italia , Polietilenglicoles/administración & dosificación
8.
Glia ; 68(12): 2486-2502, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32621641

RESUMEN

Radiation therapy is part of the standard of care for gliomas and kills a subset of tumor cells, while also altering the tumor microenvironment. Tumor cells with stem-like properties preferentially survive radiation and give rise to glioma recurrence. Various techniques for enriching and quantifying cells with stem-like properties have been used, including the fluorescence activated cell sorting (FACS)-based side population (SP) assay, which is a functional assay that enriches for stem-like tumor cells. In these analyses, mouse models of glioma have been used to understand the biology of this disease and therapeutic responses, including the radiation response. We present combined SP analysis and single-cell RNA sequencing of genetically-engineered mouse models of glioma to show a time course of cellular response to radiation. We identify and characterize two distinct tumor cell populations that are inherently radioresistant and also distinct effects of radiation on immune cell populations within the tumor microenvironment.


Asunto(s)
Neoplasias Encefálicas , Glioma , Células Madre , Animales , Neoplasias Encefálicas/radioterapia , Ratones , Células Madre Neoplásicas , Análisis de la Célula Individual , Microambiente Tumoral
10.
Nat Commun ; 15(1): 7362, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191725

RESUMEN

We evaluate deconvolution methods, which infer levels of immune infiltration from bulk expression of tumor samples, through a community-wide DREAM Challenge. We assess six published and 22 community-contributed methods using in vitro and in silico transcriptional profiles of admixed cancer and healthy immune cells. Several published methods predict most cell types well, though they either were not trained to evaluate all functional CD8+ T cell states or do so with low accuracy. Several community-contributed methods address this gap, including a deep learning-based approach, whose strong performance establishes the applicability of this paradigm to deconvolution. Despite being developed largely using immune cells from healthy tissues, deconvolution methods predict levels of tumor-derived immune cells well. Our admixed and purified transcriptional profiles will be a valuable resource for developing deconvolution methods, including in response to common challenges we observe across methods, such as sensitive identification of functional CD4+ T cell states.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Neoplasias , Humanos , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Perfilación de la Expresión Génica/métodos , Transcriptoma , Aprendizaje Profundo , Biología Computacional/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Regulación Neoplásica de la Expresión Génica
11.
Nat Commun ; 14(1): 1074, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841879

RESUMEN

Single-cell RNA sequencing is the reference technology to characterize the composition of the tumor microenvironment and to study tumor heterogeneity at high resolution. Here we report Single CEll Variational ANeuploidy analysis (SCEVAN), a fast variational algorithm for the deconvolution of the clonal substructure of tumors from single-cell RNA-seq data. It uses a multichannel segmentation algorithm exploiting the assumption that all the cells in a given copy number clone share the same breakpoints. Thus, the smoothed expression profile of every individual cell constitutes part of the evidence of the copy number profile in each subclone. SCEVAN can automatically and accurately discriminate between malignant and non-malignant cells, resulting in a practical framework to analyze tumors and their microenvironment. We apply SCEVAN to datasets encompassing 106 samples and 93,322 cells from different tumor types and technologies. We demonstrate its application to characterize the intratumor heterogeneity and geographic evolution of malignant brain tumors.


Asunto(s)
Neoplasias Encefálicas , Variaciones en el Número de Copia de ADN , Humanos , Variaciones en el Número de Copia de ADN/genética , Análisis de Expresión Génica de una Sola Célula , Algoritmos , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Microambiente Tumoral/genética
12.
iScience ; 26(5): 106602, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37250316

RESUMEN

Ribonucleoprotein (RNP) condensates are crucial for controlling RNA metabolism and splicing events in animal cells. We used spatial proteomics and transcriptomic to elucidate RNP interaction networks at the centrosome, the main microtubule-organizing center in animal cells. We found a number of cell-type specific centrosome-associated spliceosome interactions localized in subcellular structures involved in nuclear division and ciliogenesis. A component of the nuclear spliceosome BUD31 was validated as an interactor of the centriolar satellite protein OFD1. Analysis of normal and disease cohorts identified the cholangiocarcinoma as target of centrosome-associated spliceosome alterations. Multiplexed single-cell fluorescent microscopy for the centriole linker CEP250 and spliceosome components including BCAS2, BUD31, SRSF2 and DHX35 recapitulated bioinformatic predictions on the centrosome-associated spliceosome components tissue-type specific composition. Collectively, centrosomes and cilia act as anchor for cell-type specific spliceosome components, and provide a helpful reference for explore cytoplasmic condensates functions in defining cell identity and in the origin of rare diseases.

13.
Nat Commun ; 14(1): 5914, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37739939

RESUMEN

Association with hypomethylating agents is a promising strategy to improve the efficacy of immune checkpoint inhibitors-based therapy. The NIBIT-M4 was a phase Ib, dose-escalation trial in patients with advanced melanoma of the hypomethylating agent guadecitabine combined with the anti-CTLA-4 antibody ipilimumab that followed a traditional 3 + 3 design (NCT02608437). Patients received guadecitabine 30, 45 or 60 mg/m2/day subcutaneously on days 1 to 5 every 3 weeks starting on week 0 for a total of four cycles, and ipilimumab 3 mg/kg intravenously starting on day 1 of week 1 every 3 weeks for a total of four cycles. Primary outcomes of safety, tolerability, and maximum tolerated dose of treatment were previously reported. Here we report the 5-year clinical outcome for the secondary endpoints of overall survival, progression free survival, and duration of response, and an exploratory integrated multi-omics analysis on pre- and on-treatment tumor biopsies. With a minimum follow-up of 45 months, the 5-year overall survival rate was 28.9% and the median duration of response was 20.6 months. Re-expression of immuno-modulatory endogenous retroviruses and of other repetitive elements, and a mechanistic signature of guadecitabine are associated with response. Integration of a genetic immunoediting index with an adaptive immunity signature stratifies patients/lesions into four distinct subsets and discriminates 5-year overall survival and progression free survival. These results suggest that coupling genetic immunoediting with activation of adaptive immunity is a relevant requisite for achieving long term clinical benefit by epigenetic immunomodulation in advanced melanoma patients.


Asunto(s)
Melanoma , Multiómica , Humanos , Ipilimumab/uso terapéutico , Estudios de Seguimiento , Melanoma/tratamiento farmacológico , Melanoma/genética
14.
Nat Commun ; 14(1): 6066, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770427

RESUMEN

Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.


Asunto(s)
Productos Biológicos , Neoplasias Encefálicas , Glioma , Imágenes de Resonancia Magnética Multiparamétrica , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Homocigoto , Eliminación de Secuencia , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/patología , Imagen por Resonancia Magnética/métodos
15.
J Exp Clin Cancer Res ; 41(1): 325, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36397155

RESUMEN

BACKGROUND: Improvement of efficacy of immune checkpoint blockade (ICB) remains a major clinical goal. Association of ICB with immunomodulatory epigenetic drugs is an option. However, epigenetic inhibitors show a heterogeneous landscape of activities. Analysis of transcriptional programs induced in neoplastic cells by distinct classes of epigenetic drugs may foster identification of the most promising agents. METHODS: Melanoma cell lines, characterized for mutational and differentiation profile, were treated with inhibitors of DNA methyltransferases (guadecitabine), histone deacetylases (givinostat), BET proteins (JQ1 and OTX-015), and enhancer of zeste homolog 2 (GSK126). Modulatory effects of epigenetic drugs were evaluated at the gene and protein levels. Master molecules explaining changes in gene expression were identified by Upstream Regulator (UR) analysis. Gene set enrichment and IPA were used respectively to test modulation of guadecitabine-specific gene and UR signatures in baseline and on-treatment tumor biopsies from melanoma patients in the Phase Ib NIBIT-M4 Guadecitabine + Ipilimumab Trial. Prognostic significance of drug-specific immune-related genes was tested with Timer 2.0 in TCGA tumor datasets. RESULTS: Epigenetic drugs induced different profiles of gene expression in melanoma cell lines. Immune-related genes were frequently upregulated by guadecitabine, irrespective of the mutational and differentiation profiles of the melanoma cell lines, to a lesser extent by givinostat, but mostly downregulated by JQ1 and OTX-015. GSK126 was the least active drug. Quantitative western blot analysis confirmed drug-specific modulatory profiles. Most of the guadecitabine-specific signature genes were upregulated in on-treatment NIBIT-M4 tumor biopsies, but not in on-treatment lesions of patients treated only with ipilimumab. A guadecitabine-specific UR signature, containing activated molecules of the TLR, NF-kB, and IFN innate immunity pathways, was induced in drug-treated melanoma, mesothelioma and hepatocarcinoma cell lines and in a human melanoma xenograft model. Activation of guadecitabine-specific UR signature molecules in on-treatment tumor biopsies discriminated responding from non-responding NIBIT-M4 patients. Sixty-five % of the immune-related genes upregulated by guadecitabine were prognostically significant and conferred a reduced risk in the TCGA cutaneous melanoma dataset. CONCLUSIONS: The DNMT inhibitor guadecitabine emerged as the most promising immunomodulatory agent among those tested, supporting the rationale for usage of this class of epigenetic drugs in combinatorial immunotherapy approaches.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Ipilimumab/uso terapéutico , Neoplasias Cutáneas/genética , Inmunoterapia , Epigénesis Genética
16.
Nat Cancer ; 2(2): 141-156, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33681822

RESUMEN

The transcriptomic classification of glioblastoma (GBM) has failed to predict survival and therapeutic vulnerabilities. A computational approach for unbiased identification of core biological traits of single cells and bulk tumors uncovered four tumor cell states and GBM subtypes distributed along neurodevelopmental and metabolic axes, classified as proliferative/progenitor, neuronal, mitochondrial and glycolytic/plurimetabolic. Each subtype was enriched with biologically coherent multiomic features. Mitochondrial GBM was associated with the most favorable clinical outcome. It relied exclusively on oxidative phosphorylation for energy production, whereas the glycolytic/plurimetabolic subtype was sustained by aerobic glycolysis and amino acid and lipid metabolism. Deletion of the glucose-proton symporter SLC45A1 was the truncal alteration most significantly associated with mitochondrial GBM, and the reintroduction of SLC45A1 in mitochondrial glioma cells induced acidification and loss of fitness. Mitochondrial, but not glycolytic/plurimetabolic, GBM exhibited marked vulnerability to inhibitors of oxidative phosphorylation. The pathway-based classification of GBM informs survival and enables precision targeting of cancer metabolism.


Asunto(s)
Glioblastoma , Glioma , Glioblastoma/genética , Glioma/metabolismo , Glucólisis/genética , Humanos , Mitocondrias/genética , Fosforilación Oxidativa
17.
Cancers (Basel) ; 12(12)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297397

RESUMEN

(1) Purpose: The methyl donor S-Adenosylmethionine (AdoMet) has been widely explored as a therapeutic compound, and its application-alone or in combination with other molecules-is emerging as a potential effective strategy for the treatment and chemoprevention of tumours. In this study, we investigated the antitumor activity of AdoMet in Laryngeal Squamous Cell Carcinoma (LSCC), exploring the underlying mechanisms. (2) Results: We demonstrated that AdoMet induced ROS generation and triggered autophagy with a consistent increase in LC3B-II autophagy-marker in JHU-SCC-011 and HNO210 LSCC cells. AdoMet induced ER-stress and activated UPR signaling through the upregulation of the spliced form of XBP1 and CHOP. To gain new insights into the molecular mechanisms underlying the antitumor activity of AdoMet, we evaluated the regulation of miRNA expression profile and we found a downregulation of miR-888-5p. We transfected LSCC cells with miR-888-5p inhibitor and exposed the cells to AdoMet for 48 and 72 h. The combination of AdoMet with miR-888-5p inhibitor synergistically induced both apoptosis and inhibited cell migration paralleled by the up-regulation of MYCBP and CDH1 genes and of their targets. (3) Conclusion: Overall, these data highlighted that epigenetic reprogramming of miRNAs by AdoMet play an important role in inhibiting apoptosis and migration in LSCC cell lines.

18.
Gigascience ; 9(10)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33155039

RESUMEN

BACKGROUND: Single-cell RNA sequencing is the reference technique for characterizing the heterogeneity of the tumor microenvironment. The composition of the various cell types making up the microenvironment can significantly affect the way in which the immune system activates cancer rejection mechanisms. Understanding the cross-talk signals between immune cells and cancer cells is of fundamental importance for the identification of immuno-oncology therapeutic targets. RESULTS: We present a novel method, single-cell Tumor-Host Interaction tool (scTHI), to identify significantly activated ligand-receptor interactions across clusters of cells from single-cell RNA sequencing data. We apply our approach to uncover the ligand-receptor interactions in glioma using 6 publicly available human glioma datasets encompassing 57,060 gene expression profiles from 71 patients. By leveraging this large-scale collection we show that unexpected cross-talk partners are highly conserved across different datasets in the majority of the tumor samples. This suggests that shared cross-talk mechanisms exist in glioma. CONCLUSIONS: Our results provide a complete map of the active tumor-host interaction pairs in glioma that can be therapeutically exploited to reduce the immunosuppressive action of the microenvironment in brain tumor.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Comunicación Celular , Glioma/genética , Humanos , Análisis de Secuencia de ARN , Microambiente Tumoral
19.
Neurooncol Adv ; 2(1): vdaa078, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32743548

RESUMEN

BACKGROUND: Tumor heterogeneity underlies resistance and disease progression in glioblastoma (GBM), and tumors most commonly recur adjacent to the surgical resection margins in contrast non-enhancing (NE) regions. To date, no targeted therapies have meaningfully altered overall patient survival in the up-front setting. The aim of this study was to characterize intratumoral heterogeneity in recurrent GBM using bulk samples from primary resection and recurrent samples taken from contrast-enhancing (EN) and contrast NE regions. METHODS: Whole exome and RNA sequencing were performed on matched bulk primary and multiple recurrent EN and NE tumor samples from 16 GBM patients who received standard of care treatment alone or in combination with investigational clinical trial regimens. RESULTS: Private mutations emerge across multi-region sampling in recurrent tumors. Genomic clonal analysis revealed increased enrichment in gene alterations regulating the G2M checkpoint, Kras signaling, Wnt signaling, and DNA repair in recurrent disease. Subsequent functional studies identified augmented PI3K/AKT transcriptional and protein activity throughout progression, validated by phospho-protein levels. Moreover, a mesenchymal transcriptional signature was observed in recurrent EN regions, which differed from the proneural signature in recurrent NE regions. CONCLUSIONS: Subclonal populations observed within bulk resected primary GBMs transcriptionally evolve across tumor recurrence (EN and NE regions) and exhibit aberrant gene expression of common signaling pathways that persist despite standard or targeted therapy. Our findings provide evidence that there are both adaptive and clonally mediated dependencies of GBM on key pathways, such as the PI3K/AKT axis, for survival across recurrences.

20.
Genome Biol ; 21(1): 216, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32847614

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a complex disease with extensive molecular and transcriptional heterogeneity. GBM can be subcategorized into four distinct subtypes; tumors that shift towards the mesenchymal phenotype upon recurrence are generally associated with treatment resistance, unfavorable prognosis, and the infiltration of pro-tumorigenic macrophages. RESULTS: We explore the transcriptional regulatory networks of mesenchymal-associated tumor-associated macrophages (MA-TAMs), which drive the malignant phenotypic state of GBM, and identify macrophage receptor with collagenous structure (MARCO) as the most highly differentially expressed gene. MARCOhigh TAMs induce a phenotypic shift towards mesenchymal cellular state of glioma stem cells, promoting both invasive and proliferative activities, as well as therapeutic resistance to irradiation. MARCOhigh TAMs also significantly accelerate tumor engraftment and growth in vivo. Moreover, both MA-TAM master regulators and their target genes are significantly correlated with poor clinical outcomes and are often associated with genomic aberrations in neurofibromin 1 (NF1) and phosphoinositide 3-kinases/mammalian target of rapamycin/Akt pathway (PI3K-mTOR-AKT)-related genes. We further demonstrate the origination of MA-TAMs from peripheral blood, as well as their potential association with tumor-induced polarization states and immunosuppressive environments. CONCLUSIONS: Collectively, our study characterizes the global transcriptional profile of TAMs driving mesenchymal GBM pathogenesis, providing potential therapeutic targets for improving the effectiveness of GBM immunotherapy.


Asunto(s)
Redes Reguladoras de Genes , Glioblastoma/genética , Macrófagos Asociados a Tumores , Animales , Carcinogénesis , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Glioma/genética , Humanos , Inmunoterapia , Macrófagos/metabolismo , Ratones , Neurofibromina 1/genética , Fenotipo , Pronóstico , Células Madre , Transcriptoma , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA