Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; 37(8): e5142, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38494895

RESUMEN

Integrating datasets from multiple sites and scanners can increase statistical power for neuroimaging studies but can also introduce significant inter-site confounds. We evaluated the effectiveness of ComBat, an empirical Bayes approach, to combine longitudinal preclinical MRI data acquired at 4.7 or 9.4 T at two different sites in Australia. Male Sprague Dawley rats underwent MRI on Days 2, 9, 28, and 150 following moderate/severe traumatic brain injury (TBI) or sham injury as part of Project 1 of the NIH/NINDS-funded Centre Without Walls EpiBioS4Rx project. Diffusion-weighted and multiple-gradient-echo images were acquired, and outcomes included QSM, FA, and ADC. Acute injury measures including apnea and self-righting reflex were consistent between sites. Mixed-effect analysis of ipsilateral and contralateral corpus callosum (CC) summary values revealed a significant effect of site on FA and ADC values, which was removed following ComBat harmonization. Bland-Altman plots for each metric showed reduced variability across sites following ComBat harmonization, including for QSM, despite appearing to be largely unaffected by inter-site differences and no effect of site observed. Following harmonization, the combined inter-site data revealed significant differences in the imaging metrics consistent with previously reported outcomes. TBI resulted in significantly reduced FA and increased susceptibility in the ipsilateral CC, and significantly reduced FA in the contralateral CC compared with sham-injured rats. Additionally, TBI rats also exhibited a reversal in ipsilateral CC ADC values over time with significantly reduced ADC at Day 9, followed by increased ADC 150 days after injury. Our findings demonstrate the need for harmonizing multi-site preclinical MRI data and show that this can be successfully achieved using ComBat while preserving phenotypical changes due to TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Ratas Sprague-Dawley , Animales , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Masculino , Ratas , Teorema de Bayes
2.
Epilepsia ; 65(2): e20-e26, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38031503

RESUMEN

The transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) regulatory proteins (TARPs), γ2 (stargazin), γ3, γ4, γ5, γ7, and γ8, are a family of proteins that regulate AMPAR trafficking, expression, and biophysical properties that could have a role in the development of absence seizures. Here, we evaluated the expression of TARPs and AMPARs across the development of epilepsy in the genetic absence epilepsy rats from Strasbourg (GAERS) model of idiopathic generalized epilepsy (IGE) with absence seizures. Pre-epileptic (7-day-old), early epileptic (6-week-old), and chronically epileptic (16-week-old) GAERS, and age-matched male nonepileptic control rats (NEC) were used. Electroencephalographic (EEG) recordings were acquired from the 6- and 16-week-old animals to quantify seizure expression. Somatosensory cortex (SCx) and whole thalamus were collected from all the animals to evaluate TARP and AMPAR mRNA expression. Analysis of the EEG demonstrated a gradual increase in the number and duration of seizures across GAERS development. mRNA expression of the TARPs γ2, γ3, γ4, γ5, and γ8 in the SCx, and γ4 and γ5 in the thalamus, increased as the seizures started and progressed in the GAERS compared to NEC. There was a temporal association between increased TARP expression and seizures in GAERS, highlighting TARPs as potential targets for developing novel treatments for IGE with absence seizures.


Asunto(s)
Epilepsia Tipo Ausencia , Epilepsia Generalizada , Ratas , Masculino , Animales , Epilepsia Tipo Ausencia/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Convulsiones/genética , ARN Mensajero , Inmunoglobulina E , Modelos Animales de Enfermedad
3.
Epilepsia ; 65(8): 2238-2247, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38829313

RESUMEN

Epilepsy's myriad causes and clinical presentations ensure that accurate diagnoses and targeted treatments remain a challenge. Advanced neurotechnologies are needed to better characterize individual patients across multiple modalities and analytical techniques. At the XVIth Workshop on Neurobiology of Epilepsy: Early Onset Epilepsies: Neurobiology and Novel Therapeutic Strategies (WONOEP 2022), the session on "advanced tools" highlighted a range of approaches, from molecular phenotyping of genetic epilepsy models and resected tissue samples to imaging-guided localization of epileptogenic tissue for surgical resection of focal malformations. These tools integrate cutting edge research, clinical data acquisition, and advanced computational methods to leverage the rich information contained within increasingly large datasets. A number of common challenges and opportunities emerged, including the need for multidisciplinary collaboration, multimodal integration, potential ethical challenges, and the multistage path to clinical translation. Despite these challenges, advanced epilepsy neurotechnologies offer the potential to improve our understanding of the underlying causes of epilepsy and our capacity to provide patient-specific treatment.


Asunto(s)
Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/diagnóstico por imagen , Epilepsia/fisiopatología , Epilepsia/genética , Neuroimagen/métodos
4.
Epilepsia ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302576

RESUMEN

Early onset epilepsies occur in newborns and infants, and to date, genetic aberrations and variants have been identified in approximately one quarter of all patients. With technological sequencing advances and ongoing research, the genetic diagnostic yield for specific seizure disorders and epilepsies is expected to increase. Genetic variants associated with epilepsy include chromosomal abnormalities and rearrangements of various sizes as well as single gene variants. Among these variants, a distinction can be made between germline and somatic, with the latter being increasingly identified in epilepsies with focal cortical malformations in recent years. The identification of the underlying genetic mechanisms of epilepsy syndromes not only revolutionizes the diagnostic schemes but also leads to a better understanding of the diseases and their interrelationships, ultimately providing new opportunities for therapeutic targeting. At the XVI Workshop on Neurobiology of Epilepsy (WONOEP 2022, Talloires, France, July 2022), various etiologies, research models, and mechanisms of genetic early onset epilepsies were presented and discussed.

5.
Epilepsia ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302665

RESUMEN

OBJECTIVE: E2730, an uncompetitive γ-aminobutyric acid (GABA) transporter-1 (GAT-1) inhibitor, has potent anti-seizure effects in a rodent model of chronic temporal lobe epilepsy, the kainic acid status epilepticus (KASE) rat model. In this study, we examined purported neuroimaging and physiological surrogate biomarkers of the effect of E2730 on brain GABAergic function. METHODS: We conducted a randomized cross-over study, incorporating 1-week treatments with E2730 (100 mg/kg/day subcutaneous infusion) or vehicle in epileptic post-KASE rats. KASE rats underwent serial 9.4 T magnetic resonance spectroscopy (MRS) measuring GABA and other brain metabolites, [18F]Flumazenil positron emission tomography (PET) quantifying GABAA receptor availability, quantitative electroencephalography (qEEG) and transcranial magnetic stimulation (TMS)-mediated motor activity, as well as continuous video-EEG recording to measure spontaneous seizures during each treatment. Age-matched, healthy control animals treated with E2730 or vehicle were also studied. RESULTS: E2730 treatment significantly reduced spontaneous seizures, with 8 of 11 animals becoming seizure-free. MRS revealed that E2730-treated animals had significantly reduced taurine levels. [18F]Flumazenil PET imaging revealed no changes in GABA receptor affinity or density during E2730 treatment. The power of gamma frequency oscillations in the EEG was decreased significantly in the auditory cortex and hippocampus of KASE and control rats during E2730 treatment. Auditory evoked gamma frequency power was enhanced by E2730 treatment in the auditory cortex of KASE and healthy controls, but only in the hippocampus of KASE rats. E2730 did not influence motor evoked potentials triggered by TMS. SIGNIFICANCE: This study identified clinically relevant changes in multimodality imaging and functional purported biomarkers of GABAergic activity during E2730 treatment in epileptic and healthy control animals. These biomarkers could be utilized in clinical trials of E2730 and potentially other GABAergic drugs to provide surrogate endpoints, thereby reducing the cost of such trials.

6.
Neurobiol Dis ; 184: 106217, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37391087

RESUMEN

RATIONALE: Low-voltage-activated or T-type Ca2+ channels play a key role in the generation of seizures in absence epilepsy. We have described a homozygous, gain of function substitution mutation (R1584P) in the CaV3.2 T-type Ca2+ channel gene (Cacna1h) in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS). The non-epileptic control (NEC) rats, derived from the same original Wistar strains as GAERS but selectively in-breed not to express seizures, are null for the R1584P mutation. To study the effects of this mutation in rats who otherwise have a GAERS or NEC genetic background, we bred congenic GAERS-Cacna1hNEC (GAERS null for R1584P mutation) and congenic NEC-Cacna1hGAERS (NEC homozygous for R1584P mutation) and evaluated the seizure and behavioral phenotype of these strains in comparison to the original GAERS and NEC strains. METHODS: To evaluate seizure expression in the congenic strains, EEG electrodes were implanted in NEC, GAERS, GAERS-Cacna1hNEC without the R1584P mutation, and NEC-Cacna1hGAERS with the R1584P mutation rats. In the first study, continuous EEG recordings were acquired from week 4 (when seizures begin to develop in GAERS) to week 14 of age (when GAERS display hundreds of seizures per day). In the second study, the seizure and behavioral phenotype of GAERS and NEC-Cacna1hGAERS strains were evaluated during young age (6 weeks of age) and adulthood (16 weeks of age) of GAERS, NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The Open field test (OFT) and sucrose preference test (SPT) were performed to evaluate anxiety-like and depressive-like behavior, respectively. This was followed by EEG recordings at 18 weeks of age to quantify the seizures, and spike-wave discharge (SWD) cycle frequency. At the end of the study, the whole thalamus was collected for T-type calcium channel mRNA expression analysis. RESULTS: GAERS had a significantly shorter latency to first seizures and an increased number of seizures per day compared to GAERS-Cacna1hNEC. On the other hand, the presence of the R1584P mutation in the NEC-Cacna1hGAERS was not enough to generate spontaneous seizures in their seizure-resistant background. 6 and 16-week-old GAERS and GAERS-Cacna1hNEC rats showed anxiety-like behavior in the OFT, in contrast to NEC and NEC-Cacna1hGAERS. Results from the SPT showed that the GAERS developed depressive-like in the SPT compared to GAERS-Cacna1hNEC, NEC, and NEC-Cacna1hGAERS. Analysis of the EEG at 18 weeks of age showed that the GAERS had an increased number of seizures per day, increased total seizure duration and a higher cycle frequency of SWD relative to GAERS-Cacna1hNEC. However, the average seizure duration was not significantly different between strains. Quantitative real-time PCR showed that the T-type Ca2+ channel isoform CaV3.2 channel expression was significantly increased in GAERS compared to NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The presence of the R1584P mutation increased the total ratio of CaV3.2 + 25/-25 splice variants in GAERS and NEC-Cacna1hGAERS compared to NEC and GAERS-Cacna1hNEC. DISCUSSION: The data from this study demonstrate that the R1584P mutation in isolation on a seizure-resistant NEC genetic background was insufficient to generate absence seizures, and that a GAERS genetic background can cause seizures even without the mutation. However, the study provides evidence that the R1584P mutation acts as a modulator of seizures development and expression, and depressive-like behavior in the SPT, but not the anxiety phenotype of the GAERS model of absence epilepsy.


Asunto(s)
Canales de Calcio Tipo T , Epilepsia Tipo Ausencia , Animales , Ratas , Canales de Calcio Tipo T/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Epilepsia Tipo Ausencia/genética , Mutación/genética , Ratas Wistar , Convulsiones/genética
7.
J Pharmacol Exp Ther ; 386(2): 259-265, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316328

RESUMEN

Post-traumatic epilepsy (PTE) occurs in some patients after moderate/severe traumatic brain injury (TBI). Although there are no approved therapies to prevent epileptogenesis, levetiracetam (LEV) is commonly given for seizure prophylaxis due to its good safety profile. This led us to study LEV as part of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) Project. The objective of this work is to characterize the pharmacokinetics (PK) and brain uptake of LEV in naïve control rats and in the lateral fluid percussion injury (LFPI) rat model of TBI after either single intraperitoneal doses or a loading dose followed by a 7-day subcutaneous infusion. Sprague-Dawley rats were used as controls and for the LFPI model induced at the left parietal region using injury parameters optimized for moderate/severe TBI. Naïve and LFPI rats received either a bolus injection (intraperitoneal) or a bolus injection followed by subcutaneous infusion over 7 days. Blood and parietal cortical samples were collected at specified time points throughout the study. LEV concentrations in plasma and brain were measured using validated high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) methods. Noncompartmental analysis and a naive-pooled compartmental PK modeling approach were used. Brain-to-plasma ratios ranged from 0.54 to 1.4 to 1. LEV concentrations were well fit by one-compartment, first-order absorption PK models with a clearance of 112 ml/h per kg and volume of distribution of 293 ml/kg. The single-dose pharmacokinetic data were used to guide dose selection for the longer-term studies, and target drug exposures were confirmed. Obtaining LEV PK information early in the screening phase allowed us to guide optimal treatment protocols in EpiBioS4Rx. SIGNIFICANCE STATEMENT: The characterization of levetiracetam pharmacokinetics and brain uptake in an animal model of post-traumatic epilepsy is essential to identify target concentrations and guide optimal treatment for future studies.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Epilepsia Postraumática , Ratas , Animales , Levetiracetam , Epilepsia Postraumática/tratamiento farmacológico , Percusión , Espectrometría de Masas en Tándem , Ratas Sprague-Dawley , Encéfalo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico , Modelos Animales de Enfermedad
8.
Epilepsia ; 64(10): 2806-2817, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37539645

RESUMEN

OBJECTIVE: More than one third of mesial temporal lobe epilepsy (MTLE) patients are resistant to current antiseizure medications (ASMs), and half experience mild-to-moderate adverse effects of ASMs. There is therefore a strong need to develop and test novel ASMs. The objective of this work is to evaluate the pharmacokinetics and neurological toxicity of E2730, a novel uncompetitive inhibitor of γ-aminobutyric acid transporter-1, and to test its seizure suppression effects in a rat model of chronic MTLE. METHODS: We first examined plasma levels and adverse neurological effects of E2730 in healthy Wistar rats. Adult male rats were implanted with osmotic pumps delivering either 10, 20, or 100 mg/kg/day of E2730 subcutaneously for 1 week. Blood sampling and behavioral assessments were performed at several timepoints. We next examined whether E2730 suppressed seizures in rats with chronic MTLE. These rats were exposed to kainic acid-induced status epilepticus, and 9 weeks later, when chronic epilepsy was established, were assigned to receive one of the three doses of E2730 or vehicle for 1 week in a randomized crossover design. Continuous video-electroencephalographic monitoring was acquired during the treatment period to evaluate epileptic seizures. RESULTS: Plasma levels following continuous infusion of E2730 showed a clear dose-related increase in concentration. The drug was well tolerated at all doses, and any sedation or neuromotor impairment was mild and transient, resolving within 48 h of treatment initiation. Remarkably, E2730 treatment in chronically epileptic rats led to seizure suppression in a dose-dependent manner, with 65% of rats becoming seizure-free at the highest dose tested. Mean seizure class did not differ between the treatment groups. SIGNIFICANCE: This study shows that continuous subcutaneous infusion of E2730 over 7 days results in a marked, dose-dependent suppression of spontaneous recurrent seizures, with minimal adverse neurological effects, in a rat model of chronic MTLE. E2730 shows strong promise as an effective new ASM to be translated into clinical trials.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Adulto , Ratas , Masculino , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Ratas Wistar , Convulsiones/tratamiento farmacológico , Electroencefalografía , Ácido gamma-Aminobutírico , Modelos Animales de Enfermedad , Hipocampo
9.
Brain Behav Immun ; 100: 29-47, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34808288

RESUMEN

Traumatic brain injury (TBI) is a major contributor to death and disability worldwide. Children are at particularly high risk of both sustaining a TBI and experiencing serious long-term consequences, such as cognitive deficits, mental health problems and post-traumatic epilepsy. Severe TBI patients are highly susceptible to nosocomial infections, which are mostly acquired within the first week of hospitalization post-TBI. Yet the potential chronic impact of such acute infections following pediatric TBI remains unclear. In this study, we hypothesized that a peripheral immune challenge, such as lipopolysaccharide (LPS)-mimicking a hospital-acquired infection-would worsen inflammatory, neurobehavioral, and seizure outcomes after experimental pediatric TBI. To test this, three-week old male C57Bl/6J mice received a moderate controlled cortical impact or sham surgery, followed by 1 mg/kg i.p. LPS (or 0.9% saline vehicle) at 4 days TBI. Mice were randomized to four groups; sham-saline, sham-LPS, TBI-saline or TBI-LPS (n = 15/group). Reduced general activity and increased anxiety-like behavior were observed within 24 h in LPS-treated mice, indicating a transient sickness response. LPS-treated mice also exhibited a reduction in body weights, which persisted chronically. From 2 months post-injury, mice underwent a battery of tests for sensorimotor, cognitive, and psychosocial behaviors. TBI resulted in hyperactivity and spatial memory deficits, independent of LPS; whereas LPS resulted in subtle deficits in spatial memory retention. At 5 months post-injury, video-electroencephalographic recordings were obtained to evaluate both spontaneous seizure activity as well as the evoked seizure response to pentylenetetrazol (PTZ). TBI increased susceptibility to PTZ-evoked seizures; whereas LPS appeared to increase the incidence of spontaneous seizures. Post-mortem analyses found that TBI, but not LPS, resulted in robust glial reactivity and loss of cortical volume. A TBI × LPS interaction in hippocampal volume suggested that TBI-LPS mice had a subtle increase in ipsilateral hippocampus tissue loss; however, this was not reflected in neuronal cell counts. Both TBI and LPS independently had modest effects on chronic hippocampal gene expression. Together, contrary to our hypothesis, we observed minimal synergy between TBI and LPS. Instead, pediatric TBI and a subsequent transient immune challenge independently influenced chronic outcomes. These findings have implications for future preclinical modeling as well as acute post-injury patient management.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Trastornos del Conocimiento , Animales , Masculino , Ratones , Lesiones Traumáticas del Encéfalo/metabolismo , Trastornos del Conocimiento/complicaciones , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Convulsiones/etiología , Memoria Espacial
10.
Int J Mol Sci ; 23(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35682742

RESUMEN

Absence epilepsy syndromes are part of the genetic generalized epilepsies, the pathogenesis of which remains poorly understood, although a polygenic architecture is presumed. Current focus on single molecule or gene identification to elucidate epileptogenic drivers is unable to fully capture the complex dysfunctional interactions occurring at a genetic/proteomic/metabolomic level. Here, we employ a multi-omic, network-based approach to characterize the molecular signature associated with absence epilepsy-like phenotype seen in a well validated rat model of genetic generalized epilepsy with absence seizures. Electroencephalographic and behavioral data was collected from Genetic Absence Epilepsy Rats from Strasbourg (GAERS, n = 6) and non-epileptic controls (NEC, n = 6), followed by proteomic and metabolomic profiling of the cortical and thalamic tissue of rats from both groups. The general framework of weighted correlation network analysis (WGCNA) was used to identify groups of highly correlated proteins and metabolites, which were then functionally annotated through joint pathway enrichment analysis. In both brain regions a large protein-metabolite module was found to be highly associated with the GAERS strain, absence seizures and associated anxiety and depressive-like phenotype. Quantitative pathway analysis indicated enrichment in oxidative pathways and a downregulation of the lysine degradation pathway in both brain regions. GSTM1 and ALDH2 were identified as central regulatory hubs of the seizure-associated module in the somatosensory cortex and thalamus, respectively. These enzymes are involved in lysine degradation and play important roles in maintaining oxidative balance. We conclude that the dysregulated pathways identified in the seizure-associated module may be involved in the aetiology and maintenance of absence seizure activity. This dysregulated activity could potentially be modulated by targeting one or both central regulatory hubs.


Asunto(s)
Epilepsia Tipo Ausencia , Epilepsia Generalizada , Animales , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/genética , Epilepsia Generalizada/genética , Lisina , Proteómica , Ratas , Convulsiones/metabolismo
11.
Neurobiol Dis ; 148: 105151, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127468

RESUMEN

A history of mild traumatic brain injury (mTBI) is linked to a number of chronic neurological conditions, however there is still much unknown about the underlying mechanisms. To provide new insights, this study used a clinically relevant model of repeated mTBI in rats to characterize the acute and chronic neuropathological and neurobehavioral consequences of these injuries. Rats were given four sham-injuries or four mTBIs and allocated to 7-day or 3.5-months post-injury recovery groups. Behavioral analysis assessed sensorimotor function, locomotion, anxiety, and spatial memory. Neuropathological analysis included serum quantification of neurofilament light (NfL), mass spectrometry of the hippocampal proteome, and ex vivo magnetic resonance imaging (MRI). Repeated mTBI rats had evidence of acute cognitive deficits and prolonged sensorimotor impairments. Serum NfL was elevated at 7 days post injury, with levels correlating with sensorimotor deficits; however, no NfL differences were observed at 3.5 months. Several hippocampal proteins were altered by repeated mTBI, including those associated with energy metabolism, neuroinflammation, and impaired neurogenic capacity. Diffusion MRI analysis at 3.5 months found widespread reductions in white matter integrity. Taken together, these findings provide novel insights into the nature and progression of repeated mTBI neuropathology that may underlie lingering or chronic neurobehavioral deficits.


Asunto(s)
Conducta Animal , Conmoción Encefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Animales , Ansiedad , Conmoción Encefálica/metabolismo , Conmoción Encefálica/patología , Conmoción Encefálica/fisiopatología , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Locomoción , Imagen por Resonancia Magnética , Proteínas de Neurofilamentos/sangre , Proteómica , Ratas , Recurrencia , Memoria Espacial , Sustancia Blanca/diagnóstico por imagen
12.
Neurobiol Dis ; 159: 105505, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34520843

RESUMEN

OBJECTIVE: This study aimed to prospectively examine cardiac structure and function in the kainic acid-induced post-status epilepticus (post-KA SE) model of chronic acquired temporal lobe epilepsy (TLE), specifically to examine for changes between the pre-epileptic, early epileptogenesis and the chronic epilepsy stages. We also aimed to examine whether any changes related to the seizure frequency in individual animals. METHODS: Four hours of SE was induced in 9 male Wistar rats at 10 weeks of age, with 8 saline treated matched control rats. Echocardiography was performed prior to the induction of SE, two- and 10-weeks post-SE. Two weeks of continuous video-EEG and simultaneous ECG recordings were acquired for two weeks from 11 weeks post-KA SE. The video-EEG recordings were analyzed blindly to quantify the number and severity of spontaneous seizures, and the ECG recordings analyzed for measures of heart rate variability (HRV). PicroSirius red histology was performed to assess cardiac fibrosis, and intracellular Ca2+ levels and cell contractility were measured by microfluorimetry. RESULTS: All 9 post-KA SE rats were demonstrated to have spontaneous recurrent seizures on the two-week video-EEG recording acquired from 11 weeks SE (seizure frequency ranging from 0.3 to 10.6 seizures/day with the seizure durations from 11 to 62 s), and none of the 8 control rats. Left ventricular wall thickness was thinner, left ventricular internal dimension was shorter, and ejection fraction was significantly decreased in chronically epileptic rats, and was negatively correlated to seizure frequency in individual rats. Diastolic dysfunction was evident in chronically epileptic rats by a decrease in mitral valve deceleration time and an increase in E/E` ratio. Measures of HRV were reduced in the chronically epileptic rats, indicating abnormalities of cardiac autonomic function. Cardiac fibrosis was significantly increased in epileptic rats, positively correlated to seizure frequency, and negatively correlated to ejection fraction. The cardiac fibrosis was not a consequence of direct effect of KA toxicity, as it was not seen in the 6/10 rats from separate cohort that received similar doses of KA but did not go into SE. Cardiomyocyte length, width, volume, and rate of cell lengthening and shortening were significantly reduced in epileptic rats. SIGNIFICANCE: The results from this study demonstrate that chronic epilepsy in the post-KA SE rat model of TLE is associated with a progressive deterioration in cardiac structure and function, with a restrictive cardiomyopathy associated with myocardial fibrosis. Positive correlations between seizure frequency and the severity of the cardiac changes were identified. These results provide new insights into the pathophysiology of cardiac disease in chronic epilepsy, and may have relevance for the heterogeneous mechanisms that place these people at risk of sudden unexplained death.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Válvula Mitral/fisiopatología , Miocardio/patología , Estado Epiléptico/fisiopatología , Disfunción Ventricular/fisiopatología , Remodelación Ventricular/fisiología , Animales , Enfermedad Crónica , Diástole , Modelos Animales de Enfermedad , Ecocardiografía , Electrocardiografía , Electroencefalografía , Epilepsia del Lóbulo Temporal/inducido químicamente , Agonistas de Aminoácidos Excitadores/toxicidad , Fibrosis , Frecuencia Cardíaca/fisiología , Ácido Kaínico/toxicidad , Válvula Mitral/diagnóstico por imagen , Ratas , Estado Epiléptico/inducido químicamente , Muerte Súbita e Inesperada en la Epilepsia , Disfunción Ventricular/diagnóstico por imagen , Disfunción Ventricular/patología , Grabación en Video
13.
Neurobiol Dis ; 123: 8-19, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30121231

RESUMEN

Posttraumatic epilepsy (PTE) is one of the most debilitating and understudied consequences of traumatic brain injury (TBI). It is challenging to study the effects, underlying pathophysiology, biomarkers, and treatment of TBI and PTE purely in human patients for a number of reasons. Rodent models can complement human PTE studies as they allow for the rigorous investigation into the causal relationship between TBI and PTE, the pathophysiological mechanisms of PTE, the validation and implementation of PTE biomarkers, and the assessment of PTE treatments, in a tightly controlled, time- and cost-efficient manner in experimental subjects known to be experiencing epileptogenic processes. This article will review several common rodent models of TBI and/or PTE, including their use in previous studies and discuss their relative strengths, limitations, and avenues for future research to advance our understanding and treatment of PTE.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Epilepsia Postraumática/fisiopatología , Animales , Biomarcadores , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico , Epilepsia Postraumática/diagnóstico , Epilepsia Postraumática/etiología , Humanos , Ratones , Ratas , Factores de Riesgo , Investigación Biomédica Traslacional
14.
Neurobiol Dis ; 123: 86-99, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29936231

RESUMEN

Post-traumatic epilepsy (PTE) is diagnosed in 20% of individuals with acquired epilepsy, and can impact significantly the quality of life due to the seizures and other functional or cognitive and behavioral outcomes of the traumatic brain injury (TBI) and PTE. There is no available antiepileptogenic or disease modifying treatment for PTE. Animal models of TBI and PTE have been developed, offering useful insights on the value of inflammatory, neurodegenerative pathways, hemorrhages and iron accumulation, calcium channels and other target pathways that could be used for treatment development. Most of the existing preclinical studies test efficacy towards pathologies of functional recovery after TBI, while a few studies are emerging testing the effects towards induced or spontaneous seizures. Here we review the existing preclinical trials testing new candidate treatments for TBI sequelae and PTE, and discuss future directions for efforts aiming at developing antiepileptogenic and disease-modifying treatments.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Epilepsia Postraumática/terapia , Animales , Anticonvulsivantes/uso terapéutico , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Encefalitis/etiología , Epilepsia Postraumática/etiología , Epilepsia Postraumática/metabolismo , Humanos , Transducción de Señal
15.
Brain Behav Immun ; 80: 536-550, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31039431

RESUMEN

Initial studies suggest that increased age is associated with worse outcomes after traumatic brain injury (TBI), though the pathophysiological mechanisms responsible for this remain unclear. Immunosenescence (i.e., dysregulation of the immune system due to aging) may play a significant role in influencing TBI outcomes. This study therefore examined neurological outcomes and immune response in young-adult (i.e., 10 weeks old) compared to middle-aged (i.e., 1 year old) rats following a TBI (i.e., fluid percussion) or sham-injury. Rats were euthanized at either 24 h or one-week post-injury to analyze immune cell populations in the brain and periphery via flow cytometry, as well as telomere length (i.e., a biomarker of neurological health). Behavioral testing, as well as volumetric and diffusion-weighted MRI, were also performed in the one-week recovery rats to assess for functional deficits and brain damage. Middle-aged rats had worse sensorimotor deficits and shorter telomeres after TBI compared to young rats. Both aging and TBI independently worsened cognitive function and cortical volume. These changes occurred in the presence of fewer total leukocytes, fewer infiltrating myeloid cells, and fewer microglia in the brains of middle-aged TBI rats compared to young rats. These findings indicate that middle-aged rats have worse sensorimotor deficits and shorter telomeres after TBI than young rats, and this may be related to an altered neuroimmune response. Although further studies are required, these findings have important implications for understanding the pathophysiology and optimal treatment strategies in TBI patients across the life span.


Asunto(s)
Lesiones Traumáticas del Encéfalo/inmunología , Neuroinmunomodulación/inmunología , Recuperación de la Función/inmunología , Factores de Edad , Animales , Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/metabolismo , Cognición/fisiología , Trastornos del Conocimiento/complicaciones , Modelos Animales de Enfermedad , Masculino , Microglía/inmunología , Microglía/metabolismo , Ratas , Ratas Wistar , Recuperación de la Función/fisiología , Homeostasis del Telómero/inmunología , Resultado del Tratamiento
16.
Epilepsia ; 60(4): 783-791, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30866062

RESUMEN

OBJECTIVE: Prolonged electroencephalographic (EEG) monitoring in chronic epilepsy rodent models has become an important tool in preclinical drug development of new therapies, in particular those for antiepileptogenesis, disease modification, and treating drug-resistant epilepsy. We have developed an easy-to-use, reliable, computational tool for automated detection of electrographic seizures from prolonged EEG recordings in rodent models of epilepsy. METHODS: We applied a novel method based on advanced time-frequency analysis that detects EEG episodes with excessive activity in certain frequency bands. The method uses an innovative technique of short-term spectral analysis, the Similar Basis Function algorithm. The method was applied for offline seizure detection from long-term EEG recordings from four spontaneously seizing, chronic epilepsy rat models: the fluid percussion injury (n = 5 rats, n = 49 seizures) and post-status epilepticus models (n = 119 rats, n = 993 seizures) of acquired epilepsy, and two genetic models of absence epilepsy, Genetic Absence Epilepsy Rats from Strasbourg and Wistar Albino Glaxo from Rijswijk (n = 41 and 14 rats, n = 8733 and 825 seizures, respectively). RESULTS: Our comparative analysis revealed that the EEG amplitude spectra of these four rat models are remarkably similar during epileptiform activity and have a single expressed peak within the 17- to 25-Hz frequency range. Focusing on this band, our computer program detected all seizures in the 179 rats. A quick semiautomated user inspection of the EEGs for the period of each identified event allowed quick rejection of artifact events. The overall processing time for 12-day-long recordings varied from a few minutes (5-10) to 30 minutes, depending on the number of artifact events, which was strongly correlated with the signal quality of the raw EEG data. SIGNIFICANCE: Our automated seizure detection tool provides high sensitivity, with acceptable specificity, for long- and short-term EEG recordings from both acquired and genetic chronic epilepsy rat models. This tool has the potential to improve the efficiency and rigor of preclinical research and therapy development using these models.


Asunto(s)
Simulación por Computador , Electroencefalografía/métodos , Epilepsia/fisiopatología , Convulsiones/fisiopatología , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar
17.
Epilepsy Behav ; 97: 229-243, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31254843

RESUMEN

OBJECTIVE: The objective of the study were to investigate patterns of multiunit cluster firing in the piriform cortex (PC) and mediodorsal thalamus (MDT) in a rat model of genetic generalized epilepsy (GGE) with absence seizures and to assess whether these regions contribute to the initiation or spread of generalized epileptiform discharges. METHODS: Multiunit clusters and their corresponding local field potentials (LFPs) were recorded from microelectrode arrays implanted in the PC and MDT in urethane anesthetized Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and nonepileptic control (NEC) rats. Peristimulus time histograms (PSTHs) and cross-correlograms were used to observe transient changes in both the rate of firing and synchrony over time. The phase locking of multiunit clusters to LFP signals (spike-LFP phase locking) was calculated for frequency bands associated with olfactory communication between the two brain regions. RESULTS: There were significant increases in both rate of firing and synchronous activity at the onset of generalized epileptiform discharges in both PC and MDT. Prior to and following these increases in synchronous activity, there were periods of suppression. Significant increases in spike-LFP phase locking were observed within the PC prior to the onset of epileptiform discharges across all spectral bands. There were also significant increases in spike-LFP phase locking within the theta band of the MDT prior to onset. Between the two brain regions, there was a significant decrease in spike-LFP phase locking -0.5 s prior to onset in the theta band which coincided with a significant elevation in spike-LFP phase locking in the gamma band. CONCLUSIONS: Both the PC and MDT are engaged in the absence epilepsy network. Early spike-LFP phase locking between these two brain regions suggests potential involvement in the initiation of seizure activity.


Asunto(s)
Epilepsia Tipo Ausencia/fisiopatología , Núcleo Talámico Mediodorsal/fisiopatología , Corteza Piriforme/fisiopatología , Animales , Análisis por Conglomerados , Progresión de la Enfermedad , Electroencefalografía , Fenómenos Electrofisiológicos , Epilepsia Generalizada/fisiopatología , Lateralidad Funcional/fisiología , Potenciales de la Membrana , Ratas , Convulsiones/fisiopatología , Olfato/fisiología , Ritmo Teta
18.
J Neurosci ; 37(33): 7864-7877, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28724747

RESUMEN

Epilepsy after pediatric traumatic brain injury (TBI) is associated with poor quality of life. This study aimed to characterize post-traumatic epilepsy in a mouse model of pediatric brain injury, and to evaluate the role of interleukin-1 (IL-1) signaling as a target for pharmacological intervention. Male mice received a controlled cortical impact or sham surgery at postnatal day 21, approximating a toddler-aged child. Mice were treated acutely with an IL-1 receptor antagonist (IL-1Ra; 100 mg/kg, s.c.) or vehicle. Spontaneous and evoked seizures were evaluated from video-EEG recordings. Behavioral assays tested for functional outcomes, postmortem analyses assessed neuropathology, and brain atrophy was detected by ex vivo magnetic resonance imaging. At 2 weeks and 3 months post-injury, TBI mice showed an elevated seizure response to the convulsant pentylenetetrazol compared with sham mice, associated with abnormal hippocampal mossy fiber sprouting. A robust increase in IL-1ß and IL-1 receptor were detected after TBI. IL-1Ra treatment reduced seizure susceptibility 2 weeks after TBI compared with vehicle, and a reduction in hippocampal astrogliosis. In a chronic study, IL-1Ra-TBI mice showed improved spatial memory at 4 months post-injury. At 5 months, most TBI mice exhibited spontaneous seizures during a 7 d video-EEG recording period. At 6 months, IL-1Ra-TBI mice had fewer evoked seizures compared with vehicle controls, coinciding with greater preservation of cortical tissue. Findings demonstrate this model's utility to delineate mechanisms underlying epileptogenesis after pediatric brain injury, and provide evidence of IL-1 signaling as a mediator of post-traumatic astrogliosis and seizure susceptibility.SIGNIFICANCE STATEMENT Epilepsy is a common cause of morbidity after traumatic brain injury in early childhood. However, a limited understanding of how epilepsy develops, particularly in the immature brain, likely contributes to the lack of efficacious treatments. In this preclinical study, we first demonstrate that a mouse model of traumatic injury to the pediatric brain reproduces many neuropathological and seizure-like hallmarks characteristic of epilepsy. Second, we demonstrate that targeting the acute inflammatory response reduces cognitive impairments, the degree of neuropathology, and seizure susceptibility, after pediatric brain injury in mice. These findings provide evidence that inflammatory cytokine signaling is a key process underlying epilepsy development after an acquired brain insult, which represents a feasible therapeutic target to improve quality of life for survivors.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Encéfalo/fisiopatología , Susceptibilidad a Enfermedades/fisiopatología , Receptores de Interleucina-1/antagonistas & inhibidores , Convulsiones/fisiopatología , Factores de Edad , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Susceptibilidad a Enfermedades/diagnóstico por imagen , Humanos , Inyecciones Subcutáneas , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroimagen/tendencias , Proteínas Recombinantes/administración & dosificación , Convulsiones/diagnóstico por imagen , Convulsiones/tratamiento farmacológico
19.
Epilepsia Open ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096485

RESUMEN

OBJECTIVE: We evaluated huperzine A treatment in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS) model of genetic generalized epilepsy (GGE) with absence seizures. METHODS: Adult male GAERS (N = 15) were implanted with EEG recording electrodes 10 days before receiving study drug. Each animal received the following six treatments as a single, intraperitoneal dose, 7 days apart (in random order): huperzine A (0.3, 1.0, or 3.0 mg/kg), two periods of vehicle (0.9% NaCl), or ethosuximide (100 mg/kg) as a positive control. Electroencephalograms (EEGs) were acquired for 24 h before and after each treatment and analyzed for seizure activity during the 90-min period immediately post-treatment, including 30-min intervals at 30, 60, and 90 min. Additional analyses evaluated seizure activity over the 24-h post-treatment period using 60-min intervals at 6, 12, and 24 h. The cumulative 24-h periods before and after each administered treatment were also compared. RESULTS: Two-way ANOVA showed a treatment difference [F(91,182) = 3.592, p < 0.0001] on the number of seizures over the first 90-min post-treatment (primary outcome); Tukey's post hoc analyses showed that, compared to vehicle, huperzine A (3.0 mg/kg) significantly reduced seizures in the 30-min (p = 0.02) and 60-min (p = 0.001) intervals, and ethosuximide significantly reduced seizures at all measured time intervals except the 1-h blocks at 12 and 24 h. Huperzine A 3.0 mg/kg and ethosuximide significantly reduced seizures during the cumulative 24-h post-treatment period relative to pretreatment baseline. While huperzine A 3.0 mg/kg did not differ significantly from ethosuximide at any time point, the study was not designed to evaluate non-inferiority. The only adverse event after huperzine A or ethosuximide was mild, dose-dependent sedation. SIGNIFICANCE: Huperzine A potently suppressed absence-like seizures in GAERS, albeit with a shorter duration of action relative to ethosuximide, showing promise for clinical efficacy in GGE. PLAIN LANGUAGE SUMMARY: This study looked at how huperzine A affects seizures in rats with similar abnormal brain activity as seen in humans with absence epilepsy. Rats received different treatments, placebo (i.e., saline solution), huperzine A, and ethosuximide. Ethosuximide is considered a gold standard treatment for absence epilepsy. We recorded brain activity to measure seizures before and after each treatment. We found that huperzine A (3.0 mg/kg) reduced seizures soon after treatment, like ethosuximide. Both treatments appeared safe, causing only mild sleepiness. The study shows that huperzine A could be a good new treatment for a type of absence epilepsy.

20.
Epilepsy Res ; 199: 107263, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056191

RESUMEN

OBJECTIVE: Project 1 of the Preclinical Multicenter Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) consortium aims to identify preclinical biomarkers for antiepileptogenic therapies following traumatic brain injury (TBI). The international participating centers in Finland, Australia, and the United States have made a concerted effort to ensure protocol harmonization. Here, we evaluate the success of harmonization process by assessing the timing, coverage, and performance between the study sites. METHOD: We collected data on animal housing conditions, lateral fluid-percussion injury model production, postoperative care, mortality, post-TBI physiological monitoring, timing of blood sampling and quality, MR imaging timing and protocols, and duration of video-electroencephalography (EEG) follow-up using common data elements. Learning effect in harmonization was assessed by comparing procedural accuracy between the early and late stages of the project. RESULTS: The animal housing conditions were comparable between the study sites but the postoperative care procedures varied. Impact pressure, duration of apnea, righting reflex, and acute mortality differed between the study sites (p < 0.001). The severity of TBI on D2 post TBI assessed using the composite neuroscore test was similar between the sites, but recovery of acute somato-motor deficits varied (p < 0.001). A total of 99% of rats included in the final cohort in UEF, 100% in Monash, and 79% in UCLA had blood samples taken at all time points. The timing of sampling differed on day (D)2 (p < 0.05) but not D9 (p > 0.05). Plasma quality was poor in 4% of the samples in UEF, 1% in Monash and 14% in UCLA. More than 97% of the final cohort were MR imaged at all timepoints in all study sites. The timing of imaging did not differ on D2 and D9 (p > 0.05), but varied at D30, 5 months, and ex vivo timepoints (p < 0.001). The percentage of rats that completed the monthly high-density video-EEG follow-up and the duration of video-EEG recording on the 7th post-injury month used for seizure detection for diagnosis of post-traumatic epilepsy differed between the sites (p < 0.001), yet the prevalence of PTE (UEF 21%, Monash 22%, UCLA 23%) was comparable between the sites (p > 0.05). A decrease in acute mortality and increase in plasma quality across time reflected a learning effect in the TBI production and blood sampling protocols. SIGNIFICANCE: Our study is the first demonstration of the feasibility of protocol harmonization for performing powered preclinical multi-center trials for biomarker and therapy discovery of post-traumatic epilepsy.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Epilepsia Postraumática , Epilepsia , Animales , Ratas , Biomarcadores , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Epilepsia/etiología , Epilepsia/diagnóstico , Epilepsia Postraumática/etiología , Epilepsia Postraumática/tratamiento farmacológico , Convulsiones , Estudios Multicéntricos como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA