Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Gastric Cancer ; 25(4): 783-793, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35352176

RESUMEN

BACKGROUND: EOX (epirubicin, oxaliplatin, and capecitabine) is one of the standard regimens for metastatic or locally advanced gastric cancer (GC). A new combination based on fractional docetaxel (low-TOX) has been developed in an attempt to increase the efficacy of EOX and reduce the heavy toxicity of classical docetaxel regimens. METHODS: Overall, 169 previously untreated GC patients were randomized between EOX (arm A) and low-TOX (arm B). The primary endpoint was progression-free survival (PFS), while secondary ones were overall survival (OS), overall response rate (ORR), disease control rate (DCR), and tolerability. The study was designed to detect a 35% (80% power at a two-sided 5% significance level) PFS increase with low-TOX and an interim analysis for futility was planned after the first 127 events. RESULTS: At the cut-off date of interim analysis, median PFS was 6.3 months [95% confidence interval (CI) 5.0-8.1] in arm A vs 6.3 months (95% CI 5.0-7.8) in arm B, without statistical difference. OS was comparable in the two arms: 12.4 in arm A (95% CI 9.1-19.2) vs 11.5 months in arm B (95% CI 8.6-15.0). ORR was 33% and 24%, while DCR was 68% and 67%, respectively. Treatment modification (91% vs 78%, P = 0.017) and number of patients with CTC grade ≥ 3 adverse events (42 vs 35) were higher in arm B. CONCLUSIONS: A triplet regimen based on the fractional dose of docetaxel achieves no improvement over EOX which remains a potential standard treatment in many patients with inoperable, locally advanced or metastatic GC.


Asunto(s)
Neoplasias Gástricas , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Capecitabina/efectos adversos , Docetaxel , Epirrubicina , Fluorouracilo/efectos adversos , Humanos , Oxaliplatino , Neoplasias Gástricas/patología , Resultado del Tratamiento
2.
PLoS One ; 8(3): e58424, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23520509

RESUMEN

CD56 is expressed in 15-20% of acute myeloid leukaemias (AML) and is associated with extramedullary diffusion, multidrug resistance and poor prognosis. We describe the establishment and characterisation of a novel disseminated model of AML (AML-NS8), generated by injection into mice of leukaemic blasts freshly isolated from a patient with an aggressive CD56(+) monoblastic AML (M5a). The model reproduced typical manifestations of this leukaemia, including presence of extramedullary masses and central nervous system involvement, and the original phenotype, karyotype and genotype of leukaemic cells were retained in vivo. Recently Polo-Like Kinase 1 (PLK1) has emerged as a new candidate drug target in AML. We therefore tested our PLK1 inhibitor NMS-P937 in this model either in the engraftment or in the established disease settings. Both schedules showed good efficacy compared to standard therapies, with a significant increase in median survival time (MST) expecially in the established disease setting (MST = 28, 36, 62 days for vehicle, cytarabine and NMS-P937, respectively). Importantly, we could also demonstrate that NMS-P937 induced specific biomarker modulation in extramedullary tissues. This new in vivo model of CD56(+) AML that recapitulates the human tumour lends support for the therapeutic use of PLK1 inhibitors in AML.


Asunto(s)
Antígeno CD56 , Proteínas de Ciclo Celular/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Neoplasias Experimentales/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pirazoles/farmacología , Quinazolinas/farmacología , Adulto , Animales , Proteínas de Ciclo Celular/metabolismo , Humanos , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Tipo Polo 1
3.
Mol Cancer Ther ; 11(4): 1006-16, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22319201

RESUMEN

Polo-like kinase 1 (PLK1) is a serine/threonine protein kinase considered to be the master player of cell-cycle regulation during mitosis. It is indeed involved in centrosome maturation, bipolar spindle formation, chromosome separation, and cytokinesis. PLK1 is overexpressed in a variety of human tumors and its overexpression often correlates with poor prognosis. Although five different PLKs are described in humans, depletion or inhibition of kinase activity of PLK1 is sufficient to induce cell-cycle arrest and apoptosis in cancer cell lines and in xenograft tumor models. NMS-P937 is a novel, orally available PLK1-specific inhibitor. The compound shows high potency in proliferation assays having low nanomolar activity on a large number of cell lines, both from solid and hematologic tumors. NMS-P937 potently causes a mitotic cell-cycle arrest followed by apoptosis in cancer cell lines and inhibits xenograft tumor growth with clear PLK1-related mechanism of action at well-tolerated doses in mice after oral administration. In addition, NMS-P937 shows potential for combination in clinical settings with approved cytotoxic drugs, causing tumor regression in HT29 human colon adenocarcinoma xenografts upon combination with irinotecan and prolonged survival of animals in a disseminated model of acute myelogenous leukemia in combination with cytarabine. NMS-P937, with its favorable pharmacologic parameters, good oral bioavailability in rodent and nonrodent species, and proven antitumor activity in different preclinical models using a variety of dosing regimens, potentially provides a high degree of flexibility in dosing schedules and warrants investigation in clinical settings.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Leucemia/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pirazoles/farmacología , Quinazolinas/farmacología , Administración Oral , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Perros , Femenino , Células HL-60 , Haplorrinos , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patología , Ratones , Ratones Desnudos , Ratones SCID , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Tipo Polo 1
4.
Exp Hematol ; 38(4): 259-269.e2, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20167248

RESUMEN

OBJECTIVE: The aim of the work was to determine and characterize, in vitro and in vivo, the therapeutic activity of PHA-793887, a new potent pan-cdk inhibitor, in the context of hematopoietic neoplasms. MATERIALS AND METHODS: Thirteen leukemic cell lines bearing different cytogenetic abnormalities and normal hematopoietic cells were used in cytotoxicity and colony assays. The drug activity at the molecular level was analyzed by Western blotting. PHA-793887 was also tested in vivo in several leukemia xenograft models. RESULTS: PHA-793887 was cytotoxic for leukemic cell lines in vitro, with IC(50) ranging from 0.3 to 7 microM (mean: 2.9 microM), regardless of any specific chromosomal aberration. At these doses, the drug was not cytotoxic for normal unstimulated peripheral blood mononuclear cells or CD34(+) hematopoietic stem cells. Interestingly, in colony assays PHA-793887 showed very high activity against leukemia cell lines, with an IC(50) <0.1 microM (mean: 0.08 microM), indicating that it has efficient and prolonged antiproliferative activity. PHA-793887 induced cell-cycle arrest, inhibited Rb and nucleophosmin phosphorylation, and modulated cyclin E and cdc6 expression at low doses (0.2-1 microM) and induced apoptosis at the highest dose (5 microM). It was also effective in vivo in both subcutaneous xenograft and primary leukemic disseminated models that better mimic naturally occurring human disease. Interestingly, in one disseminated model derived from a relapsed Philadelphia-positive acute lymphoid leukemia patient, PHA-793887 showed strong therapeutic activity also when treatment was started after establishment of high disease burden. CONCLUSIONS: We conclude that PHA-793887 has promising therapeutic activity against acute leukemias in vitro and in vivo.


Asunto(s)
Antineoplásicos/uso terapéutico , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Leucemia/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Apoptosis , Western Blotting , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Inmunohistoquímica , Concentración 50 Inhibidora , Ratones , Ratones SCID
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA