Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 25(7): 1231-1244, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898157

RESUMEN

To understand the role of T cells in the pathogenesis of ulcerative colitis (UC), we analyzed colonic T cells isolated from patients with UC and controls. Here we identified colonic CD4+ and CD8+ T lymphocyte subsets with gene expression profiles resembling stem-like progenitors, previously reported in several mouse models of autoimmune disease. Stem-like T cells were increased in inflamed areas compared to non-inflamed regions from the same patients. Furthermore, TCR sequence analysis indicated stem-like T cells were clonally related to proinflammatory T cells, suggesting their involvement in sustaining effectors that drive inflammation. Using an adoptive transfer colitis model in mice, we demonstrated that CD4+ T cells deficient in either BCL-6 or TCF1, transcription factors that promote T cell stemness, had decreased colon T cells and diminished pathogenicity. Our results establish a strong association between stem-like T cell populations and UC pathogenesis, highlighting the potential of targeting this population to improve clinical outcomes.


Asunto(s)
Colitis Ulcerosa , Factor Nuclear 1-alfa del Hepatocito , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Humanos , Animales , Ratones , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD4-Positivos/inmunología , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Células Madre/inmunología , Células Madre/metabolismo , Femenino , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Ratones Noqueados , Colon/inmunología , Colon/patología , Masculino , Ratones Endogámicos C57BL , Traslado Adoptivo , Modelos Animales de Enfermedad , Adulto , Persona de Mediana Edad
2.
J Leukoc Biol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136235

RESUMEN

E-cigarette use has become widespread, and its effects on airway inflammation and disease are not fully delineated. E-cigarette vapor extract (EVE) profoundly affects neutrophil function. We hypothesized that EVE also alters eosinophil function and thus could impact allergic airways disease. We employed RNA-sequencing to measure the ex vivo effect of EVE components on human eosinophil transcription. Blood eosinophils from 9 non-vaping subjects without asthma were isolated by negative selection. Cells were incubated for 48 hours with EVE consisting of glycerin, propylene glycol and nicotine (EVE+), EVE without nicotine ("EVE-"), air-exposed media termed Extract Buffer (EB), or untreated media. Bulk RNA-sequencing was performed. Transcriptomic analysis revealed that the EB, EVE-, and EVE+ conditions showed highly variable gene expression with respect to No Treatment and each other. Differential gene expression analysis comparing a combination of EVE+, EVE-, and EB revealed 3,030 differentially expressed genes (DEG) with adjusted p value < 0.05 and log2 fold change >0.5 or <0.5. There were 645 DEG between EB and EVE-, 1,713 between EB and EVE+, and 404 between EVE- and EVE+. Gene set enrichment analysis demonstrated that DEG between both EVE+ and EVE- and the EB control were positively enriched for heme metabolism and apoptosis and negatively enriched TNFα signaling, IFNγ signaling, and inflammatory response. Thus, EVE significantly alters eosinophil metabolic and inflammatory pathways, mediated by propylene glycol and glycerin with both enhancing and unique effects of nicotine. This study motivates further research into the pathogenic effects of vaping on airway eosinophils and allergic airways disease.

3.
Med ; 4(12): 875-897.e8, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37865091

RESUMEN

BACKGROUND: Patients with severe uncontrolled asthma represent a distinct endotype with persistent airway inflammation and remodeling that is refractory to corticosteroid treatment. CD4+ TH2 cells play a central role in orchestrating asthma pathogenesis, and biologic therapies targeting their cytokine pathways have had promising outcomes. However, not all patients respond well to such treatment, and their effects are not always durable nor reverse airway remodeling. This observation raises the possibility that other CD4+ T cell subsets and their effector molecules may drive airway inflammation and remodeling. METHODS: We performed single-cell transcriptome analysis of >50,000 airway CD4+ T cells isolated from bronchoalveolar lavage samples from 30 patients with mild and severe asthma. FINDINGS: We observed striking heterogeneity in the nature of CD4+ T cells present in asthmatics' airways, with tissue-resident memory T (TRM) cells making a dominant contribution. Notably, in severe asthmatics, a subset of CD4+ TRM cells (CD103-expressing) was significantly increased, comprising nearly 65% of all CD4+ T cells in the airways of male patients with severe asthma when compared to mild asthma (13%). This subset was enriched for transcripts linked to T cell receptor activation (HLA-DRB1, HLA-DPA1) and cytotoxicity (GZMB, GZMA) and, following stimulation, expressed high levels of transcripts encoding for pro-inflammatory non-TH2 cytokines (CCL3, CCL4, CCL5, TNF, LIGHT) that could fuel persistent airway inflammation and remodeling. CONCLUSIONS: Our findings indicate the need to look beyond the traditional T2 model of severe asthma to better understand the heterogeneity of this disease. FUNDING: This research was funded by the NIH.


Asunto(s)
Asma , Células T de Memoria , Humanos , Masculino , Asma/metabolismo , Citocinas/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Inflamación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA