Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Small ; 11(34): 4229-36, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26113221

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Imagen Óptica/métodos , Diamante/química , Campos Magnéticos , Polimetil Metacrilato/química , Espectroscopía de Protones por Resonancia Magnética
2.
Opt Express ; 23(9): 11327-33, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25969227

RESUMEN

In this paper we investigate at room temperature the excited state lifetime of single NV(-)/NV0 in nanodiamonds at a variety of excitation wavelengths from 510 to 570 nm. The average lifetimes of 25 nanodiamonds with similar sizes exhibit constant values over the entire investigated spectral window. We conclude that the variation observed can be attributed to the specific nanodiamonds. Therefore it is sample dependent, rather than related to the photo-physical properties of the defects. Our study is relevant for the potential use of nanodiamonds containing NV in application where the lifetime is used for sensing the local nano-environment.

3.
Opt Express ; 21(15): 17639-46, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23938636

RESUMEN

In this paper, we show super-resolving single nitrogen vacancy (NV) centers with a sub-20 nanometer resolution in a wide-field localization microscope based on the discovery of photoluminescence blinking in high-pressure high-temperature nanodiamonds (NDs). The photon statistics reveals that NDs containing not only single but also multiple NV centers show photoluminescence blinking. The combination of an atomic force microscope and an optical localization microscope built on the blinking feature enables the optically resolved two NV centers within single NDs for the first time. Our method establishes new avenues for studying nanoscale photon dynamics associated with single NV centers within NDs together with ND-based ultra-sensitive bioimaging devices.


Asunto(s)
Aumento de la Imagen/métodos , Mediciones Luminiscentes/métodos , Microscopía/métodos , Nanopartículas/química , Nanopartículas/ultraestructura , Nitrógeno/química
4.
Opt Lett ; 38(20): 4170-3, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24321951

RESUMEN

Nanodiamonds (NDs) containing silicon vacancy (SiV) defects were evaluated as a potential biomarker for the labeling and fluorescent imaging of neural precursor cells (NPCs). SiV-containing NDs were synthesized using chemical vapor deposition and silicon ion implantation. Spectrally, SiV-containing NDs exhibited extremely stable fluorescence and narrow bandwidth emission with an excellent signal to noise ratio exceeding that of NDs containing nitrogen-vacancy centers. NPCs labeled with NDs exhibited normal cell viability and proliferative properties consistent with biocompatibility. We conclude that SiV-containing NDs are a promising biomedical research tool for cellular labeling and optical imaging in stem cell research.


Asunto(s)
Colorantes Fluorescentes/química , Nanodiamantes/química , Células-Madre Neurales/metabolismo , Silicio/química , Coloración y Etiquetado/métodos , Animales , Encéfalo/citología , Colorantes Fluorescentes/metabolismo , Ratones
5.
Nanomaterials (Basel) ; 13(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36616105

RESUMEN

A yet unresolved challenge in developing quantum technologies based on color centres in high refractive index semiconductors is the efficient fluorescence enhancement of point defects in bulk materials. Optical resonators and antennas have been designed to provide directional emission, spontaneous emission rate enhancement and collection efficiency enhancement at the same time. While collection efficiency enhancement can be achieved by individual nanopillars or nanowires, fluorescent emission enhancement is achieved using nanoresonators or nanoantennas. In this work, we optimise the design of a metal-dielectric nanopillar-based antenna/resonator fabricated in a silicon carbide (SiC) substrate with integrated quantum emitters. Here we consider various color centres known in SiC such as silicon mono-vacancy and the carbon antisite vacancy pair, that show single photon emission and quantum sensing functionalities with optical electron spin read-out, respectively. We model the dipole emission fluorescence rate of these color centres into the metal-dielectric nanopillar hybrid antenna resonator using multi-polar electromagnetic scattering resonances and near-field plasmonic field enhancement and confinement. We calculate the fluorescence collected photon rate enhancement for these solid state vacancy-centers in SiC in these metal-dielectric nanopillar resonators, showing a trade-off effect between the collection efficiency and radiative Purcell factor enhancement. We obtained a collected photon rate enhancement from a silicon monovacancy vacancy center embedded in an optimised hybrid antenna-resonator two orders of magnitude larger compared to the case of the color centres in bulk material.

6.
Micromachines (Basel) ; 14(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36838048

RESUMEN

The ability to manipulate a liquid meniscus using electrowetting has many applications. In any electrowetting design, at least two electrodes are required: one forms the field to change the contact angle and the other functions as a ground electrode. The contribution of the ground electrode (GE) to the dynamics of electrowetting has not yet been thoroughly investigated. In this paper, we discovered that with a bare ground electrode, the contact angle of a sessile drop increases instead of decreases when a direct current (DC) voltage varying from zero to the threshold voltage is applied. This phenomenon is opposite to what occurs when the GE is coated with a dielectric, where the contact-angle change follows the Lippmann-Young equation above the threshold voltage of electrowetting. However, this behaviour is not observed with either a dielectric-coated electrode using direct current (DC) or a bare ground electrode using alternating current (AC) voltage electrowetting. This study explains this phenomenon with finite element simulation and theory. From previous research work, the ground electrode configuration is inconsistent. In some studies, the ground electrode is exposed to water; in other studies, the ground electrode is covered with dielectric. This study identified that an exposed ground electrode is not required in electrowetting. Moreover, this research work suggests that for applications where precise control of the contact angle is paramount, a dielectric-coated ground electrode should be used since it prevents the increase in the contact angle when increasing the applied potential from zero to the threshold voltage. This study also identified that contact angle hysteresis is lower with a Cytop-coated ground electrode and DC voltage than with a bare ground electrode using AC or DC voltages.

7.
RSC Adv ; 11(14): 7981-8002, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35423337

RESUMEN

The potential of novel 2D carbon materials such as nanoporous single-layer graphene and multilayer graphene oxide membranes is based on their possible advantages such as high water permeability, high selectivity capable of rejecting monovalent ions, with high salt rejection, reduced fouling, and high chemical and physical stability. Here we review how the field has advanced in the study of their performances in various desalination approaches such as reverse osmosis, forward osmosis, nanofiltration, membrane distillation, and solar water purification. The research on making high-performance graphene membranes which started with reverse osmosis applications is seemingly evolving towards other directions.

8.
Nanoscale Res Lett ; 16(1): 44, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33689036

RESUMEN

The negatively charged nitrogen-vacancy ([Formula: see text]) centre in nanodiamonds (NDs) has been recently studied for applications in cellular imaging due to its better photo-stability and biocompatibility if compared to other fluorophores. Super-resolution imaging achieving 20-nm resolution of [Formula: see text] in NDs has been proved over the years using sub-diffraction limited imaging approaches such as single molecule stochastic localisation microscopy and stimulated emission depletion microscopy. Here we show the first demonstration of ground-state depletion (GSD) nanoscopy of these centres in NDs using three beams, a probe beam, a depletion beam and a reset beam. The depletion beam at 638 nm forces the [Formula: see text] centres to the metastable dark state everywhere but in the local minimum, while a Gaussian beam at 594 nm probes the [Formula: see text] centres and a 488-nm reset beam is used to repopulate the excited state. Super-resolution imaging of a single [Formula: see text] centre with a full width at half maximum of 36 nm is demonstrated, and two adjacent [Formula: see text] centres separated by 72 nm are resolved. GSD microscopy is here applied to [Formula: see text] in NDs with a much lower optical power compared to bulk diamond. This work demonstrates the need to control the NDs nitrogen concentration to tailor their application in super-resolution imaging methods and paves the way for studies of [Formula: see text] in NDs' nanoscale interactions.

9.
Clin Rev Allergy Immunol ; 60(2): 259-270, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33026601

RESUMEN

Ultraviolet blood irradiation (UBI) was used with success in the 1930s and 1940s for a variety of diseases. Despite the success, the lack of understanding of the detailed mechanisms of actions, and the achievements of antibiotics, phased off the use of UBI from the 1950s. The emergence of novel viral infections, from HIV/AIDS to Ebola, from SARS and MERS, and SARS-CoV-2, bring back the attention to this therapeutical opportunity. UBI has a complex virucidal activity, mostly acting on the immune system response. It has effects on lymphocytes (T-cells and B-cells), macrophages, monocytes, dendritic cells, low-density lipoprotein (LDL), and lipids. The Knott technique was applied for bacterial infections such as tuberculosis to viral infections such as hepatitis or influenza. The more complex extracorporeal photopheresis (ECP) is also being applied to hematological cancers such as T-cell lymphomas. Further studies of UBI may help to create a useful device that may find applications for novel viruses that are resistant to known antivirals or vaccines, or also bacteria that are resistant to known antibiotics.


Asunto(s)
COVID-19/terapia , Fotoféresis/métodos , SARS-CoV-2/efectos de la radiación , Rayos Ultravioleta , Bacterias/efectos de la radiación , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/terapia , COVID-19/virología , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/efectos de la radiación , Humanos , Linfocitos/inmunología , Linfocitos/efectos de la radiación , Macrófagos/inmunología , Macrófagos/efectos de la radiación , Monocitos/inmunología , Monocitos/efectos de la radiación , Transducción de Señal/inmunología , Transducción de Señal/efectos de la radiación , Resultado del Tratamiento
10.
Nano Lett ; 9(9): 3191-5, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19670845

RESUMEN

The fabrication of stable ultrabright single photon sources operating at room temperature is reported. The emitter is based on a color center within a diamond nanocrystal grown on a sapphire substrate by chemical vapor deposition method and exhibits a two-level electronic behavior with a maximum measured count rate of 3.2 x 10(6) counts/s at saturation. The emission is centered at approximately 756 nm with a full width at half-maximum approximately 11 nm and an excited state lifetime of 3.7 ns. These unique properties make it a leading candidate for quantum photonics and communication applications as well as for cellular biomarking.


Asunto(s)
Nanoestructuras/química , Fotones , Ensayo de Materiales , Nanotecnología , Tamaño de la Partícula , Teoría Cuántica , Propiedades de Superficie , Temperatura , Factores de Tiempo
11.
Sci Rep ; 10(1): 2978, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32076061

RESUMEN

The statistic of wind energy in the US is presently based on annual average capacity factors, and construction cost (CAPEX). This approach suffers from one major downfall, as it does not include any parameter describing the variability of the wind energy generation. As a grid wind and solar only requires significant storage in terms of both power and energy to compensate for the variability of the resource, there is a need to account also for a parameter describing the variability of the power generation. While higher frequency data every minute or less is needed to design the storage, low-frequency monthly values are considered for different wind energy facilities. The annual capacity factors have an average of 0.34. They vary significantly from facility to facility, from a minimum of 0.15 to a maximum of 0.5. They also change year-by-year and are subjected to large month-by-month variability. It is concluded that a better estimation of performance and cost of wind energy facilities should include a parameter describing the variability, and an allowance for storage should be added to the cost. When high-frequency data will be eventually made available over a full year for all the wind and solar facilities connected to the same grid of given demand, then it will be possible to compute growth factors for wind and solar capacity, total power and energy of the storage, cost of the storage, and finally, attribute this cost to every facility inversely proportional to the annual mean capacity factor and directly proportional to the standard deviation about this value. The novelty of the present work is the recognition of the variability of wind power generation as a performance and cost parameter, and the proposal of a practical way to progress the design of the storage and its cost attribution to the generating facilities.

12.
Micromachines (Basel) ; 11(11)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228118

RESUMEN

Traditional tracking devices for solar energy applications have several disadvantages, such as bulky mechanical structure, large wind loads, and ease of misalignment. This study aims to design a flat, thin, and adaptive beam steering device to eliminate these drawbacks. A proof of concept device was fabricated to demonstrate this design. The novelty of the proof of concept device is the hexagonal structure of the electrowetting cell design. The hexagonal cell was dosed with two immiscible liquids with different refractive indices. The hypothesis of this design is that by deforming the liquid shape with the application of voltage, light can be steered and concentrated for solar energy applications. A maximum contact angle change of 44° was observed with the application of 26 V to one of the electrodes of the hexagonal cell. The device demonstrated a 4.5° change of laser beam path with only a 0.2 refractive index difference of the liquids. The 3D simulation model developed in this study shows that a tilted and flat interface can be achieved using higher dielectric constant dielectric materials. The device can facilitate the planer steering and concentration of sunlight for rooftop applications without moving mechanical parts.

13.
Beilstein J Nanotechnol ; 11: 740-769, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32461875

RESUMEN

Single-photon sources and their optical spin readout are at the core of applications in quantum communication, quantum computation, and quantum sensing. Their integration in photonic structures such as photonic crystals, microdisks, microring resonators, and nanopillars is essential for their deployment in quantum technologies. While there are currently only two material platforms (diamond and silicon carbide) with proven single-photon emission from the visible to infrared, a quantum spin-photon interface, and ancilla qubits, it is expected that other material platforms could emerge with similar characteristics in the near future. These two materials also naturally lead to monolithic integrated photonics as both are good photonic materials. While so far the verification of single-photon sources was based on discovery, assignment and then assessment and control of their quantum properties for applications, a better approach could be to identify applications and then search for the material that could address the requirements of the application in terms of quantum properties of the defects. This approach is quite difficult as it is based mostly on the reliability of modeling and predicting of color center properties in various materials, and their experimental verification is challenging. In this paper, we review some recent advances in an emerging material, low-dimensional (2D, 1D, 0D) hexagonal boron nitride (h-BN), which could lead to establishing such a platform. We highlight the recent achievements of the specific material for the expected applications in quantum technologies, indicating complementary outstanding properties compared to the other 3D bulk materials.

14.
Nanomaterials (Basel) ; 11(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396227

RESUMEN

Color centers in silicon carbide are relevant for applications in quantum technologies as they can produce single photon sources or can be used as spin qubits and in quantum sensing applications. Here, we have applied femtosecond laser writing in silicon carbide and gallium nitride to generate vacancy-related color centers, giving rise to photoluminescence from the visible to the infrared. Using a 515 nm wavelength 230 fs pulsed laser, we produce large arrays of silicon vacancy defects in silicon carbide with a high localization within the confocal diffraction limit of 500 nm and with minimal material damage. The number of color centers formed exhibited power-law scaling with the laser fabrication energy indicating that the color centers are created by photoinduced ionization. This work highlights the simplicity and flexibility of laser fabrication of color center arrays in relevant materials for quantum applications.

15.
Nanoscale ; 12(16): 8847-8857, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32254877

RESUMEN

Nanodiamonds containing the nitrogen vacancy centre (NV) have a significant role in biosensing, bioimaging, drug delivery, and as biomarkers in fluorescence imaging, due to their photo-stability and biocompatibility. The optical read out of the NV unpaired electron spin has been used in diamond magnetometry to image living cells and magnetically labelled cells. Diamond magnetometry is mostly based on the use of bulk diamond with a large concentration of NV centres in a wide field fluorescence microscope equipped with microwave excitation. It is possible to correlate the fluorescence maps with the magnetic field maps of magnetically labelled cells with diffraction limit resolution. Nanodiamonds have not as yet been implemented to image magnetic fields within complex biological systems at the nanometre scale. Here we demonstrate the suitability of nanodiamonds to correlate the fluorescence map with the magnetic imaging map of magnetically labelled cells. Nanoscale optical images with 17 nm resolution of nanodiamonds labelling fixed cells bound to iron oxide magnetic nanoparticles are demonstrated by using a single molecule localisation microscope. Nanoscale magnetic field images of the magnetised magnetic nanoparticles spatially assigned to individual cells are superresolved by the NV centres within nanodiamonds conjugated with the magnetic nanoparticles with 20 nm resolutions. Our method offers a new platform for the super-resolution of optical magnetic imaging in biological samples conjugated with nanodiamonds and iron-oxide magnetic nanoparticles.


Asunto(s)
Hierro/química , Nanopartículas de Magnetita/química , Nanodiamantes/química , Nitrógeno/química , Imagen Óptica/métodos , Biotina/química , Biotina/metabolismo , Línea Celular Tumoral , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Óxidos/química , Estreptavidina/química , Estreptavidina/metabolismo
16.
Beilstein J Nanotechnol ; 10: 2128-2151, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31807400

RESUMEN

The nitrogen-vacancy (NV) center is a point defect in diamond with unique properties for use in ultra-sensitive, high-resolution magnetometry. One of the most interesting and challenging applications is nanoscale magnetic resonance imaging (nano-MRI). While many review papers have covered other NV centers in diamond applications, there is no survey targeting the specific development of nano-MRI devices based on NV centers in diamond. Several different nano-MRI methods based on NV centers have been proposed with the goal of improving the spatial and temporal resolution, but without any coordinated effort. After summarizing the main NV magnetic imaging methods, this review presents a survey of the latest advances in NV center nano-MRI.

17.
Beilstein J Nanotechnol ; 10: 2383-2395, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31886115

RESUMEN

We report the enhancement of the optical emission between 850 and 1400 nm of an ensemble of silicon mono-vacancies (VSi), silicon and carbon divacancies (VCVSi), and nitrogen vacancies (NCVSi) in an n-type 4H-SiC array of micropillars. The micropillars have a length of ca. 4.5 µm and a diameter of ca. 740 nm, and were implanted with H+ ions to produce an ensemble of color centers at a depth of approximately 2 µm. The samples were in part annealed at different temperatures (750 and 900 °C) to selectively produce distinct color centers. For all these color centers we saw an enhancement of the photostable fluorescence emission of at least a factor of 6 using micro-photoluminescence systems. Using custom confocal microscopy setups, we characterized the emission of VSi measuring an enhancement by up to a factor of 20, and of NCVSi with an enhancement up to a factor of 7. The experimental results are supported by finite element method simulations. Our study provides the pathway for device design and fabrication with an integrated ultra-bright ensemble of VSi and NCVSi for in vivo imaging and sensing in the infrared.

18.
Light Sci Appl ; 6(11): e17085, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30167213

RESUMEN

Due to their exceptional optical and magnetic properties, negatively charged nitrogen-vacancy (NV-) centers in nanodiamonds (NDs) have been identified as an indispensable tool for imaging, sensing and quantum bit manipulation. The investigation of the emission behaviors of single NV- centers at the nanoscale is of paramount importance and underpins their use in applications ranging from quantum computation to super-resolution imaging. Here, we report on a spin-manipulated nanoscopy method for nanoscale resolutions of the collectively blinking NV- centers confined within the diffraction-limited region. Using wide-field localization microscopy combined with nanoscale spin manipulation and the assistance of a microwave source tuned to the optically detected magnetic resonance (ODMR) frequency, we discovered that two collectively blinking NV- centers can be resolved. Furthermore, when the collective emitters possess the same ground state spin transition frequency, the proposed method allows the resolving of each single NV- center via an external magnetic field used to split the resonant dips. In spin manipulation, the three-level blinking dynamics provide the means to resolve two NV- centers separated by distances of 23 nm. The method presented here offers a new platform for studying and imaging spin-related quantum interactions at the nanoscale with super-resolution techniques.

19.
Microsyst Nanoeng ; 3: 17061, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31057885

RESUMEN

This paper reviews some of the major recent advances in single-crystal diamond nanofabrication and its impact in nano- and micro-mechanical, nanophotonics and optomechanical components. These constituents of integrated devices incorporating specific dopants in the material provide the capacity to enhance the sensitivity in detecting mass and forces as well as magnetic field down to quantum mechanical limits and will lead pioneering innovations in ultrasensitive sensing and precision measurements in the realm of the medical sciences, quantum sciences and related technologies.

20.
MethodsX ; 3: 297-306, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27144128

RESUMEN

This contribution highlights and compares some recent achievements in the use of k-space and real space imaging (scanning probe and wide-filed microscope techniques), when applied to a luminescent color center in diamond, known as nitrogen vacancy (NV) center. These techniques combined with the optically detected magnetic resonance of NV, provide a unique platform to achieve nanometric magnetic resonance imaging (MRI) resolution of nearby nuclear spins (known as nanoMRI), and nanometric NV real space localization. •Atomic size optically detectable spin probe.•High magnetic field sensitivity and nanometric resolution.•Non-invasive mapping of functional activity in neuronal networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA