Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(19): 4987-4992, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28439019

RESUMEN

The presence of the endogenous Leishmania RNA virus 1 (LRV1) replicating stably within some parasite species has been associated with the development of more severe forms of leishmaniasis and relapses after drug treatment in humans. Here, we show that the disease-exacerbatory role of LRV1 relies on type I IFN (type I IFNs) production by macrophages and signaling in vivo. Moreover, infecting mice with the LRV1-cured Leishmania guyanensis (LgyLRV1- ) strain of parasites followed by type I IFN treatment increased lesion size and parasite burden, quantitatively reproducing the LRV1-bearing (LgyLRV1+ ) infection phenotype. This finding suggested the possibility that exogenous viral infections could likewise increase pathogenicity, which was tested by coinfecting mice with L. guyanensis and lymphocytic choriomeningitis virus (LCMV), or the sand fly-transmitted arbovirus Toscana virus (TOSV). The type I IFN antiviral response increased the pathology of L. guyanensis infection, accompanied by down-regulation of the IFN-γ receptor normally required for antileishmanial control. Further, LCMV coinfection of IFN-γ-deficient mice promoted parasite dissemination to secondary sites, reproducing the LgyLRV1+ metastatic phenotype. Remarkably, LCMV coinfection of mice that had healed from L. guyanensis infection induced reactivation of disease pathology, overriding the protective adaptive immune response. Our findings establish that type I IFN-dependent responses, arising from endogenous viral elements (dsRNA/LRV1), or exogenous coinfection with IFN-inducing viruses, are able to synergize with New World Leishmania parasites in both primary and relapse infections. Thus, viral infections likely represent a significant risk factor along with parasite and host factors, thereby contributing to the pathological spectrum of human leishmaniasis.


Asunto(s)
Interferón Tipo I/inmunología , Leishmania guyanensis , Leishmaniasis Mucocutánea/inmunología , Leishmaniavirus/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Fiebre por Flebótomos/inmunología , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/inmunología , Animales , Coinfección , Interferón Tipo I/genética , Leishmania guyanensis/inmunología , Leishmania guyanensis/virología , Leishmaniasis Mucocutánea/genética , Leishmaniasis Mucocutánea/patología , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/patología , Ratones , Ratones Noqueados , Fiebre por Flebótomos/genética , Fiebre por Flebótomos/patología
2.
PLoS Pathog ; 12(9): e1005852, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27658195

RESUMEN

Cutaneous leishmaniasis has various outcomes, ranging from self-healing reddened papules to extensive open ulcerations that metastasise to secondary sites and are often resistant to standard therapies. In the case of L. guyanensis (L.g), about 5-10% of all infections result in metastatic complications. We recently showed that a cytoplasmic virus within L.g parasites (LRV1) is able to act as a potent innate immunogen, worsening disease outcome in a murine model. In this study, we investigated the immunophenotype of human patients infected by L.g and found a significant association between the inflammatory cytokine IL-17A, the presence of LRV1 and disease chronicity. Further, IL-17A was inversely correlated to the protective cytokine IFN-γ. These findings were experimentally corroborated in our murine model, where IL-17A produced in LRV1+ L.g infection contributed to parasite virulence and dissemination in the absence of IFN-γ. Additionally, IL-17A inhibition in mice using digoxin or SR1001, showed therapeutic promise in limiting parasite virulence. Thus, this murine model of LRV1-dependent infectious metastasis validated markers of disease chronicity in humans and elucidated the immunologic mechanism for the dissemination of Leishmania parasites to secondary sites. Moreover, it confirms the prognostic value of LRV1 and IL-17A detection to prevent metastatic leishmaniasis in human patients.

3.
Microb Cell ; 5(3): 137-149, 2018 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-29487860

RESUMEN

The various symptomatic outcomes of cutaneous leishmaniasis relates to the type and potency of its underlying inflammatory responses. Presence of the cytoplasmic Leishmania RNA virus-1 (LRV1) within Leishmania guyanensis, worsens lesional inflammation and parasite burden, as the viral dsRNA genome acts as a potent innate immunogen stimulating Toll-Like-Receptor-3 (TLR3). Here we investigated other innate pattern recognition receptors capable of reacting to dsRNA and potentially contributing to LRV1-mediated inflammatory pathology. We included the cytoplasmic dsRNA sensors, namely, the RIG-like receptors (RLRs) and the inflammasome-dependent and -independent Nod-like-receptors (NLRs). Our study found no role for RLRs or inflammasome-dependent NLRs in the pathology of L. guyanensis infection irrespective of its LRV1-status. Further, neither LRV1-bearing L. guyanensis (LgyLRV1+) nor LRV1-negative L. guyanensis (LgyLRV1-) activated the inflammasome in vitro. Interestingly, similarly to L. donovani, L. guyanensis infection induced the up-regulation of the A20 protein, known to be involved in the evasion of inflammasome activation. Moreover, we observed that LgyLRV1+ promoted the transcription of inflammasome-independent NLRC2 (also called NOD2) and NLRC5. However, only NLRC2 showed some contribution to LRV1-dependent pathology. These data confirmed that the endosomal TLR3 pathway is the dominant route of LRV1-dependent signalling, thus excluding the cytosolic and inflammasome pathways. We postulate that avoidance of the inflammasome pathways is likely an important mechanism of virulence in Leishmania infection irrespective of the LRV1-status.

4.
PLoS Negl Trop Dis ; 11(1): e0005240, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28099431

RESUMEN

Recent studies have shown that a cytoplasmic virus called Leishmaniavirus (LRV) is present in some Leishmania species and acts as a potent innate immunogen, aggravating lesional inflammation and development in mice. In humans, the presence of LRV in Leishmania guyanensis and in L. braziliensis was significantly correlated with poor treatment response and symptomatic relapse. So far, no clinical effort has used LRV for prophylactic purposes. In this context, we designed an original vaccine strategy that targeted LRV nested in Leishmania parasites to prevent virus-related complications. To this end, C57BL/6 mice were immunized with a recombinant LRV1 Leishmania guyanensis viral capsid polypeptide formulated with a T helper 1-polarizing adjuvant. LRV1-vaccinated mice had significant reduction in lesion size and parasite load when subsequently challenged with LRV1+ Leishmania guyanensis parasites. The protection conferred by this immunization could be reproduced in naïve mice via T-cell transfer from vaccinated mice but not by serum transfer. The induction of LRV1 specific T cells secreting IFN-γ was confirmed in vaccinated mice and provided strong evidence that LRV1-specific protection arose via a cell mediated immune response against the LRV1 capsid. Our studies suggest that immunization with LRV1 capsid could be of a preventive benefit in mitigating the elevated pathology associated with LRV1 bearing Leishmania infections and possibly avoiding symptomatic relapses after an initial treatment. This novel anti-endosymbiotic vaccine strategy could be exploited to control other infectious diseases, as similar viral infections are largely prevalent across pathogenic pathogens and could consequently open new vaccine opportunities.


Asunto(s)
Proteínas de la Cápside/inmunología , Leishmania guyanensis/virología , Leishmaniasis/prevención & control , Leishmaniavirus/inmunología , Animales , Proteínas de la Cápside/administración & dosificación , Proteínas de la Cápside/genética , Femenino , Humanos , Inmunidad Celular , Leishmania guyanensis/genética , Leishmania guyanensis/inmunología , Leishmania guyanensis/fisiología , Leishmaniasis/inmunología , Leishmaniasis/parasitología , Leishmaniavirus/genética , Leishmaniavirus/fisiología , Ratones , Ratones Endogámicos C57BL , Simbiosis , Linfocitos T/inmunología , Vacunación
5.
Am J Trop Med Hyg ; 94(4): 840-843, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26834198

RESUMEN

Leishmania parasites cause a broad range of disease, with cutaneous afflictions being, by far, the most prevalent. Variations in disease severity and symptomatic spectrum are mostly associated to parasite species. One risk factor for the severity and emergence of leishmaniasis is immunosuppression, usually arising by coinfection of the patient with human immunodeficiency virus (HIV). Interestingly, several species of Leishmania have been shown to bear an endogenous cytoplasmic dsRNA virus (LRV) of the Totiviridae family, and recently we correlated the presence of LRV1 within Leishmania parasites to an exacerbation murine leishmaniasis and with an elevated frequency of drug treatment failures in humans. This raises the possibility of further exacerbation of leishmaniasis in the presence of both viruses, and here we report a case of cutaneous leishmaniasis caused by Leishmania braziliensis bearing LRV1 with aggressive pathogenesis in an HIV patient. LRV1 was isolated and partially sequenced from skin and nasal lesions. Genetic identity of both sequences reinforced the assumption that nasal parasites originate from primary skin lesions. Surprisingly, combined antiretroviral therapy did not impact the devolution of Leishmania infection. The Leishmania infection was successfully treated through administration of liposomal amphotericin B.


Asunto(s)
Infecciones por VIH/complicaciones , Leishmania braziliensis , Leishmaniasis Cutánea/complicaciones , Leishmaniavirus , Coinfección/parasitología , Coinfección/virología , Femenino , Infecciones por VIH/parasitología , Infecciones por VIH/patología , Humanos , Leishmania braziliensis/virología , Leishmaniasis Cutánea/patología , Leishmaniasis Cutánea/virología , Persona de Mediana Edad , Piel/patología
6.
Cell Host Microbe ; 20(3): 318-328, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27593513

RESUMEN

Some strains of the protozoan parasite Leishmania guyanensis (L.g) harbor a viral endosymbiont called Leishmania RNA virus 1 (LRV1). LRV1 recognition by TLR-3 increases parasite burden and lesion swelling in vivo. However, the mechanisms by which anti-viral innate immune responses affect parasitic infection are largely unknown. Upon investigating the mammalian host's response to LRV1, we found that miR-155 was singularly and strongly upregulated in macrophages infected with LRV1+ L.g when compared to LRV1- L.g. LRV1-driven miR-155 expression was dependent on TLR-3/TRIF signaling. Furthermore, LRV1-induced TLR-3 activation promoted parasite persistence by enhancing macrophage survival through Akt activation in a manner partially dependent on miR-155. Pharmacological inhibition of Akt resulted in a decrease in LRV1-mediated macrophage survival and consequently decreased parasite persistence. Consistent with these data, miR-155-deficient mice showed a drastic decrease in LRV1-induced disease severity, and lesional macrophages from these mice displayed reduced levels of Akt phosphorylation.


Asunto(s)
Inmunidad Innata , Leishmania guyanensis/virología , Leishmaniavirus/inmunología , Macrófagos/parasitología , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Toll-Like 3/metabolismo , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Leishmania guyanensis/patogenicidad , Leishmania guyanensis/fisiología , Leishmaniasis Mucocutánea/parasitología , Leishmaniasis Mucocutánea/patología , Macrófagos/inmunología , Ratones , Ratones Noqueados
7.
PLoS One ; 9(5): e96766, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24801628

RESUMEN

Infections with Leishmania parasites of the Leishmania Viannia subgenus give rise to both localized cutaneous (CL), and metastatic leishmaniasis. Metastasizing disease forms including disseminated (DCL) and mutocutaneous (MCL) leishmaniasis result from parasitic dissemination and lesion formation at sites distal to infection and have increased inflammatory responses. The presence of Leishmania RNA virus (LRV) in L. guyanensis parasites contributes to the exacerbation of disease and impacts inflammatory responses via activation of TLR3 by the viral dsRNA. In this study we investigated other innate immune response adaptor protein modulators and demonstrated that both MyD88 and TLR9 played a crucial role in the development of Th1-dependent healing responses against L. guyanensis parasites regardless of their LRV status. The absence of MyD88- or TLR9-dependent signaling pathways resulted in increased Th2 associated cytokines (IL-4 and IL-13), which was correlated with low transcript levels of IL-12p40. The reliance of IL-12 was further confirmed in IL12AB-/- mice, which were completely susceptible to infection. Protection to L. guyanensis infection driven by MyD88- and TLR9-dependent immune responses arises independently to those induced due to high LRV burden within the parasites.


Asunto(s)
Inmunidad Innata , Leishmania guyanensis/virología , Factor 88 de Diferenciación Mieloide/metabolismo , Virus ARN/fisiología , Receptor Toll-Like 9/metabolismo , Animales , Susceptibilidad a Enfermedades , Subunidad p35 de la Interleucina-12/deficiencia , Subunidad p35 de la Interleucina-12/genética , Subunidad p35 de la Interleucina-12/metabolismo , Subunidad p40 de la Interleucina-12/deficiencia , Subunidad p40 de la Interleucina-12/genética , Subunidad p40 de la Interleucina-12/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Leishmania guyanensis/fisiología , Leishmaniasis Mucocutánea/inmunología , Leishmaniasis Mucocutánea/patología , Leishmaniasis Mucocutánea/veterinaria , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Transducción de Señal , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/inmunología , Células Th2/metabolismo , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/genética
8.
PLoS Negl Trop Dis ; 7(1): e2006, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326619

RESUMEN

BACKGROUND: Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence. METHODOLOGY/PRINCIPAL FINDINGS: This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice. CONCLUSIONS/SIGNIFICANCE: We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.


Asunto(s)
Leishmania/virología , Virus ARN/aislamiento & purificación , ARN Bicatenario/aislamiento & purificación , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática/métodos , Técnica del Anticuerpo Fluorescente/métodos , Humanos , Immunoblotting/métodos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , ARN Bicatenario/inmunología , ARN Viral/genética , Análisis de Secuencia de ADN , Virología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA