Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Inherit Metab Dis ; 31(1): 44-54, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18213522

RESUMEN

The effect of methylmalonate (MMA) on mitochondrial succinate oxidation has received great attention since it could present an important role in energy metabolism impairment in methylmalonic acidaemia. In the present work, we show that while millimolar concentrations of MMA inhibit succinate-supported oxygen consumption by isolated rat brain or muscle mitochondria, there is no effect when either a pool of NADH-linked substrates or N,N,N',N'-tetramethyl-p-phenylendiamine (TMPD)/ascorbate were used as electron donors. Interestingly, the inhibitory effect of MMA, but not of malonate, on succinate-supported brain mitochondrial oxygen consumption was minimized when nonselective permeabilization of mitochondrial membranes was induced by alamethicin. In addition, only a slight inhibitory effect of MMA was observed on succinate-supported oxygen consumption by inside-out submitochondrial particles. In agreement with these observations, brain mitochondrial swelling experiments indicate that MMA is an important inhibitor of succinate transport by the dicarboxylate carrier. Under our experimental conditions, there was no evidence of malonate production in MMA-treated mitochondria. We conclude that MMA inhibits succinate-supported mitochondrial oxygen consumption by interfering with the uptake of this substrate. Although succinate generated outside the mitochondria is probably not a sig-nificant contributor to mitochondrial energy generation, the physiopathological implications of MMA-induced inhibition of substrate transport by the mitochondrial dicarboxylate carrier are discussed.


Asunto(s)
Ácido Metilmalónico/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Ácido Succínico/farmacología , Animales , Transporte Biológico Activo/efectos de los fármacos , Transportadores de Ácidos Dicarboxílicos/antagonistas & inhibidores , Regulación hacia Abajo/efectos de los fármacos , Femenino , Malonatos/metabolismo , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Succinato Deshidrogenasa/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacocinética
2.
Biochim Biophys Acta ; 1322(2-3): 221-9, 1997 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-9452768

RESUMEN

Mitochondrial permeability transition (MPT) induced by the thiol cross-linker phenylarsine oxide (PhAsO) in Ca(2+)-depleted mitochondria incubated in the presence of ruthenium red, an inhibitor of the Ca2+ uniporter, is stimulated by the addition of extramitochondrial Ca2+. The presence of extramitochondrial Ca2+ stimulates the reaction of mitochondrial membrane protein thiol groups with PhAsO. Both Ca(2+)-induced increase in mitochondrial membrane permeabilization and protein thiol group reaction with PhAsO are dependent on time (5-10 min to be complete) and the concentration of Ca2+ (1-25 microM). Mitochondrial permeabilization induced by PhAsO (15 microM) and extramitochondrial Ca2+ is inhibited by ADP, cyclosporin A, dibucaine and Mg2+, while mitochondrial permeabilization induced by high concentrations of PhAsO (60 microM) in the absence of Ca2+ is inhibited only by ADP and cyclosporin A. These results suggest that dibucaine and Mg2+ can inhibit mitochondrial permeabilization by antagonizing the effect of Ca2+ on the mitochondrial membrane. Once mitochondrial permeabilization induced by 15 microM PhAsO and extramitochondrial Ca2+ has already occurred, the addition of the Ca2+ chelator EGTA restores mitochondrial membrane potential (MPT pore closure), suggesting that the presence of Ca2+ is essential for the maintenance of the permeability of the mitochondrial membrane to protons (MPT pore opening). In conclusion, the results presented indicate that low Ca2+ concentrations acting at the external side of the inner mitochondrial membrane can stimulate mitochondrial permeability transition induced by PhAsO, due to increased accessibility of protein thiol groups to the reaction with PhAsO and increased probability of MPT pore opening.


Asunto(s)
Arsenicales/farmacología , Calcio/fisiología , Reactivos de Enlaces Cruzados/farmacología , Membranas Intracelulares/fisiología , Mitocondrias Hepáticas/metabolismo , Animales , Calcio/farmacología , Canales de Calcio , Proteínas de Unión al Calcio/antagonistas & inhibidores , Quelantes/farmacología , Ácido Egtácico/farmacología , Membranas Intracelulares/efectos de los fármacos , Potenciales de la Membrana , Proteínas de la Membrana/fisiología , Concentración Osmolar , Permeabilidad/efectos de los fármacos , Ratas , Ratas Wistar , Rojo de Rutenio/farmacología , Compuestos de Sulfhidrilo/química
3.
Biochim Biophys Acta ; 1318(3): 395-402, 1997 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-9048976

RESUMEN

The content of mitochondrial membrane protein thiol groups accessible to react with the monofunctional thiol reagents mersalyl or N-ethylmaleimide (NEM) was determined using Ellman's reagent. Deenergized mitochondria incubated in the presence of Ca2+ (0-500 microM) undergo a very significant decrease in the content of membrane protein thiols accessible to NEM, and an increase in the content of thiols accessible to mersalyl. This process is time-dependent and inhibited by Mg2+, ruthenium red and ADP, but not by cyclosporin A. This suggests that Ca2+ binding to the inner mitochondrial membrane promotes extensive alterations in the conformation of membrane proteins that result in location changes of thiol groups. The relationship between these alterations and mitochondrial membrane permeability transition was studied through the effect of NEM and mersalyl on mitochondrial swelling induced by Ca2+ plus t-butyl hydroperoxide (t-bOOH) or Ca2+ plus the thiol cross-linkers 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) or phenylarsine oxide (PhAsO). We observed that the hydrophobic thiol reagent NEM inhibits the effects of t-bOOH, DIDS and PhAsO, while the hydrophilic thiol reagent mersalyl inhibits only the effect of DIDS. Permeability transition in all the situations studied is accompanied by a significant decrease in the total membrane protein thiol content. In addition, mitochondrial membrane permeabilization induced by PhAsO is inhibited by EGTA, but not by ruthenium red. This result suggests that PhAsO leads to permeability transition through a mechanism independent of intramitochondrial Ca2(+)-induced alterations of thiol group reactivity, but dependent on Ca2+ binding to an extramitochondrial site. This site is sensitive to extramitochondrial Ca2+ concentrations in range of 1-50 microM.


Asunto(s)
Calcio/farmacología , Proteínas de la Membrana/metabolismo , Mitocondrias Hepáticas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Animales , Arsenicales/farmacología , Sitios de Unión , Calcio/metabolismo , Etilmaleimida/farmacología , Técnicas In Vitro , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Mersalil/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , Permeabilidad , Peróxidos/farmacología , Ratas , Ratas Wistar , Reactivos de Sulfhidrilo/farmacología , terc-Butilhidroperóxido
4.
Biochim Biophys Acta ; 1180(2): 201-6, 1992 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-1463771

RESUMEN

Swelling of isolated rat liver mitochondria is shown to be induced by metal-catalyzed 5-aminolevulinic acid (ALA) aerobic oxidation, a putative endogenous source of reactive oxygen species (ROS), at concentrations as low as 50-100 microM. In this concentration range, ALA is estimated to occur in the liver of acute intermittent porphyria patients. Removal of Ca2+ (10 microM) from the suspension of isolated rat liver mitochondria by added EGTA abolishes both the ALA-induced transmembrane-potential collapse and mitochondrial swelling. Prevention of the ALA-induced swelling by addition of ruthenium red prior to mitochondrial energization by succinate demonstrates the deleterious involvement of internal Ca2+. Addition of MgCl2 at concentrations higher than 2.5 mM, prevents the ALA-induced mitochondrial swelling, transmembrane potential collapse and Ca2+ efflux. This indicates that Mg2+ protects against the mitochondrial damage promoted by ALA-generated ROS. The ALA-induced mitochondrial damage might be a key event in the liver mitochondrial damage of acute intermittent porphyria patients reported elsewhere.


Asunto(s)
Ácido Aminolevulínico/farmacología , Calcio/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ácido Aminolevulínico/antagonistas & inhibidores , Animales , Permeabilidad de la Membrana Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Ácido Egtácico , Magnesio/farmacología , Masculino , Mitocondrias Hepáticas/metabolismo , Oxidación-Reducción , Porfirias Hepáticas/metabolismo , Ratas , Ratas Wistar
5.
Biochim Biophys Acta ; 1188(1-2): 93-100, 1994 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-7947908

RESUMEN

We have recently shown that the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants is associated with oxidation of protein thiols forming cross-linked protein aggregates (Fagian, M.M., Pereira-da-Silva, L., Martins, I.S. and Vercesi, A.E. (1990) J. Biol. Chem. 265, 19955-19960). In this study we show that the incubation of rat liver mitochondria in the presence of the thiol reagent 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and Ca2+ caused production of membrane protein aggregates, mitochondrial swelling, disruption of membrane potential and Ca2+ release. The presence of DTT prevented but did not reverse the elimination of delta psi induced by DIDS. EGTA prevented delta psi elimination and decreased the amount of protein aggregates, suggesting that the binding of Ca2+ to some membrane protein may expose buried thiols to react with DIDS. Reversal of collapsed delta psi by EGTA indicates that DIDS-induced protein aggregates require the presence of Ca2+ for significant membrane permeabilization. Cyclosporin A prevented mitochondrial swelling, suggesting that DIDS-induced membrane protein polymerization mimics the condition designated as Ca(2+)-induced permeabilization transition of mitochondria. The lack of oxidation of pyridine nucleotides or significant lipid peroxidation by DIDS supports the notion that membrane permeabilization by this compound is mediated by its interaction with membrane proteins.


Asunto(s)
Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Calcio/farmacología , Membranas Intracelulares/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Animales , Calcio/metabolismo , Ditiotreitol , Ácido Egtácico , Membranas Intracelulares/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , NADP/metabolismo , Permeabilidad/efectos de los fármacos , Ratas , Ratas Wistar
6.
Biochim Biophys Acta ; 1188(1-2): 86-92, 1994 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-7947907

RESUMEN

Reactive oxygen species (ROS) generated by metal-catalyzed 5-aminolevulinic acid (ALA) aerobic oxidation have been shown to damage the inner membrane of isolated rat liver mitochondria by a Ca(2+)-dependent mechanism. The present work describes experiments indicating that this damage can be prevented, but not completely reversed by the additions of catalase, ADP, cyclosporin A and dithiothreitol, as judged by the extent of delta psi regeneration by the injured mitochondria. In contrast, the addition of EGTA, which removes free Ca2+ and, possibly, Fe2+ present both in the intra- and extramitochondrial compartments, causes a prompt and complete regeneration of delta psi, even after long periods of mitochondrial incubations in the presence of ALA. This reversibility suggests that protein alterations such as protein thiol cross-linkings, evidenced by SDS-polyacrylamide gel electrophoresis, are the main cause of increased membrane permeability promoted by ALA oxidation. The inhibition of protein aggregation and fast regeneration of delta psi promoted by EGTA suggest that the binding of Ca2+ to some membrane proteins plays a crucial role in the mechanism of both protein polymerization (pore assembly) and pore opening. The implication of these results with the molecular pathology of acute intermittent porphyria is also discussed.


Asunto(s)
Ácido Aminolevulínico/farmacología , Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Compuestos de Sulfhidrilo/metabolismo , Animales , Membranas Intracelulares/metabolismo , Masculino , Potenciales de la Membrana , Mitocondrias Hepáticas/metabolismo , NADP/metabolismo , Oxidación-Reducción , Permeabilidad/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/farmacología
7.
Int J Biochem Cell Biol ; 29(7): 1005-11, 1997 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9375380

RESUMEN

The effect of the herbicide 4,6-dinitro-o-cresol (DNOC), a structural analogue of the classical protonophore 2,4-dinitrophenol, on the bioenergetics and inner membrane permeability of isolated rat liver mitochondria was studied. We observed that DNOC (10-50 microM) acts as a classical uncoupler of oxidative phosphorylation in rat liver mitochondria, promoting both an increase in succinate-supported mitochondrial respiration in the presence or absence of ADP and a decrease in transmembrane potential. The protonophoric activity of DNOC was evidenced by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium, in the presence of valinomycin. At higher concentrations (> 50 microM), DNOC also induces an inhibition of succinate-supported respiration, and a decrease in the activity of the succinate dehydrogenase can be observed. The addition of uncoupling concentrations of DNOC to Ca(2+)-loaded mitochondria treated with Ruthenium Red results in non-specific membrane permeabilization, as evidenced by mitochondrial swelling in isosmotic sucrose medium. Cyclosporin A, which inhibits mitochondrial permeability transition, prevented DNOC-induced mitochondrial swelling in the presence of Ca2+, which was accompanied by a decrease in mitochondrial membrane protein thiol content, owing to protein thiol oxidation. Catalase partially inhibits mitochondrial swelling and protein thiol oxidation, indicating the participation of mitochondrial-generated reactive oxygen species in this process. It is concluded that DNOC is a potent potent protonophore acting as a classical uncoupler of oxidative phosphorylation in rat liver mitochondria by dissipating the proton electrochemical gradient. Treatment of Ca(2+)-loaded mitochondria with uncoupling concentrations of DNOC results in mitochondrial permeability transition, associated with membrane protein thiol oxidation by reactive oxygen species.


Asunto(s)
Dinitrocresoles/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Desacopladores/farmacología , 2,4-Dinitrofenol/farmacología , Animales , Consumo de Oxígeno , Tamaño de la Partícula , Permeabilidad/efectos de los fármacos , Fuerza Protón-Motriz , Ratas , Ratas Wistar
8.
FEBS Lett ; 415(1): 21-4, 1997 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-9326361

RESUMEN

Mitochondrial depolarisation has been reported to enhance the generation of superoxide anion (O2.-) in a number of cell preparations while an inhibition has been observed with isolated mitochondria. Cerebellar granule cells equilibrated with > 1 microM hydroethidine (dihydroethidium) which is oxidised to the fluorescent ethidium cation by O2.- showed a large increase in fluorescence on protonophore addition. However, controls showed the fluorescent enhancement to be a consequence of release of unbound preformed ethidium from the mitochondrial matrix within the cell with resultant fluorescent enhancement. This ambiguity was removed by the use of low (1 microM) concentrations of dye in which case generated ethidium remained bound within the mitochondria. Under these conditions antimycin A, but not protonophore addition, produced an increase in fluorescence. It is concluded that excess ethidium acts as an indicator of mitochondrial membrane potential obscuring the monitoring of O2.- and that certain experiments employing this indicator in cells may require re-evaluation.


Asunto(s)
Cerebelo/citología , Mitocondrias/fisiología , Fenantridinas/metabolismo , Superóxidos/metabolismo , Animales , Antimicina A/farmacología , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Células Cultivadas , Cerebelo/fisiología , Etidio/metabolismo , Colorantes Fluorescentes , Peróxido de Hidrógeno/metabolismo , Potenciales de la Membrana , Microscopía Fluorescente , Oligomicinas/farmacología , Oxidación-Reducción , Ratas , Ratas Wistar , Rotenona/farmacología , Superóxido Dismutasa/metabolismo , Xantina/farmacología , Xantina Oxidasa/metabolismo
9.
FEBS Lett ; 495(1-2): 12-5, 2001 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-11322939

RESUMEN

Mitochondrial permeability transition (MPT) is a non-selective inner membrane permeabilization that may precede necrotic and apoptotic cell death. Although this process has a specific inhibitor, cyclosporin A, little is known about the nature of the proteinaceous pore that results in MPT. Here, we review data indicating that MPT is not a consequence of the opening of a pre-formed pore, but the consequence of oxidative damage to pre-existing membrane proteins.


Asunto(s)
Canales Iónicos , Proteínas de la Membrana/fisiología , Estrés Oxidativo/fisiología , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Calcio/metabolismo , Calcio/farmacología , Humanos , Proteínas de la Membrana/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , NAD/metabolismo , Necrosis , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fosfatos/metabolismo , Fosfatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/antagonistas & inhibidores , Compuestos de Sulfhidrilo/metabolismo
10.
FEBS Lett ; 478(1-2): 29-33, 2000 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-10922464

RESUMEN

Acetoacetate, an NADH oxidant, stimulated the ruthenium red-insensitive rat liver mitochondrial Ca(2+) efflux without significant release of state-4 respiration, disruption of membrane potential (Deltapsi) or mitochondrial swelling. This process is compatible with the opening of the currently designated low conductance state of the permeability transition pore (PTP) and, under our experimental conditions, was associated with a partial oxidation of the mitochondrial pyridine nucleotides. In contrast, diamide, a thiol oxidant, induced a fast mitochondrial Ca(2+) efflux associated with a release of state-4 respiration, a disruption of Deltapsi and a large amplitude mitochondrial swelling. This is compatible with the opening of the high conductance state of the PTP and was associated with extensive oxidation of pyridine nucleotides. Interestingly, the addition of carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone to the acetoacetate experiment promoted a fast shift from the low to the high conductance state of the PTP. Both acetoacetate and diamide-induced mitochondrial permeabilization were inhibited by exogenous catalase. We propose that the shift from a low to a high conductance state of the PTP can be promoted by the oxidation of NADPH. This impairs the antioxidant function of the glutathione reductase/peroxidase system, strongly strengthening the state of mitochondrial oxidative stress.


Asunto(s)
Canales Iónicos , Proteínas de la Membrana/metabolismo , Mitocondrias Hepáticas/metabolismo , NADP/metabolismo , NAD/metabolismo , Estrés Oxidativo , Acetoacetatos/farmacología , Animales , Calcio/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Respiración de la Célula/efectos de los fármacos , Diamida/farmacología , Conductividad Eléctrica , Femenino , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Dilatación Mitocondrial/efectos de los fármacos , Oxidantes/farmacología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Especificidad por Sustrato , Reactivos de Sulfhidrilo/farmacología , Desacopladores/farmacología
11.
FEBS Lett ; 378(2): 150-2, 1996 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-8549822

RESUMEN

In this study, we show that mitochondrial membrane permeability transition in Ca(2+)-loaded mitochondria treated with carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) or inorganic phosphate (P(i)) is preceded by enhanced production of H2O2. This production is inhibited either by ethylene glycobis(b-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA) or Mg2+, but not by cyclosporin A. Permeability transition is prevented either by EGTA, catalase or dithiothreitol, suggesting the involvement of Ca2+, H2O2 and oxidation of membrane protein thiols in this mechanism. When mitochondria are incubated under anaerobiosis, no permeabilization or H2O2 production occurs. Based on these results we conclude that mitochondrial permeability transition induced by P(i) or FCCP-uncoupling is dependent on mitochondrial-generated reactive oxygen species.


Asunto(s)
Calcio/farmacología , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Membranas Intracelulares/metabolismo , Mitocondrias Hepáticas/metabolismo , Fosfatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Desacopladores/farmacología , Animales , Calcio/metabolismo , Catalasa/farmacología , Ditiotreitol/farmacología , Ácido Egtácico/farmacología , Peróxido de Hidrógeno/metabolismo , Membranas Intracelulares/efectos de los fármacos , Magnesio/farmacología , Permeabilidad/efectos de los fármacos , Ratas , Ratas Wistar
12.
Free Radic Biol Med ; 25(4-5): 554-60, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9741592

RESUMEN

The sarcoplasmic reticulum (SR) calcium ATPase carries out active Ca2+ pumping at the expense of ATP hydrolysis. We have previously described the inhibition of SR ATPase by oxidative stress induced by the Fenton reaction (Fe2+ + H2O2 --> HO. + HO- + Fe3+). Inhibition was not related to peroxidation of the SR membrane nor to oxidation of ATPase thiols, and involved fragmentation of the ATPase polypeptide chain. The present study aims at further characterizing the mechanism of inhibition of the Ca2+-ATPase by oxygen reactive species at Fe2+ concentrations possibly found in pathological conditions of iron overload. ATP hydrolysis by SR vesicles was inhibited in a dose-dependent manner by micromolar concentrations of Fe2+, H2O2, and ascorbate. Measuring the rate constants of inactivation (k inact) at different Fe2+ concentrations in the presence of saturating concentrations of H2O2 and ascorbate (100 microM each) revealed a saturation profile with half-maximal inactivation rate at ca. 2 microM Fe2+. Inhibition was not affected by addition of 200 microM Ca2+ to the medium, indicating that it was not related to iron binding to the high affinity Ca2+ binding sites in the ATPase. Furthermore, inhibition was not prevented by the water-soluble hydroxyl radical scavengers mannitol or dimethylsulfoxide, nor by butylated hydroxytoluene (a lipid peroxidation blocker) or dithiothreitol (DTT). However, when Cu2+ was used instead of Fe2+ in the Fenton reaction, ATPase inhibition could be prevented by DTT. We propose that functional impairment of the Ca2+-pump may be related to oxidative protein fragmentation mediated by site-specific Fe2+ binding at submicromolar or low micromolar concentrations, which may occur in pathological conditions of iron overload.


Asunto(s)
ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Compuestos Ferrosos/farmacología , Estrés Oxidativo , Retículo Sarcoplasmático/enzimología , Adenosina Trifosfato/metabolismo , Animales , Ácido Ascórbico/farmacología , Calcio/farmacología , ATPasas Transportadoras de Calcio/metabolismo , Cobre/farmacología , Ditiotreitol/farmacología , Compuestos Ferrosos/administración & dosificación , Peróxido de Hidrógeno/farmacología , Hidrólisis , Oxidación-Reducción , Conejos
13.
Free Radic Biol Med ; 18(3): 479-86, 1995 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9101238

RESUMEN

The extent of swelling undergone by deenergized mitochondria incubated in KCl/sucrose medium in the presence of Ca2+ alone or Ca2+ and t-butyl hydroperoxide decreases by decreasing molecular oxygen concentration in the reaction medium; under anaerobiosis no swelling occurs. This swelling is also inhibited by the presence of exogenous catalase or by the Fe2+ chelator o-phenanthroline in a time-dependent manner. The production of protein thiol cross-linking that leads to the formation of protein aggregates induced by Ca2+ and t-butyl hydroperoxide does not occur when mitochondria are incubated in anaerobic medium or in the presence of o-phenanthroline. In addition, it is also shown that the yield of stable methyl radical adducts, obtained from rat liver mitochondria treated with t-butyl hydroperoxide and the spin trap DMPO, is reduced by addition of EGTA and increases by addition of Ca2+ ions. These data support the hypothesis that Ca2+ ions stimulate electron leakage from the respiratory chain, increasing the mitochondrial production of reactive oxygen species.


Asunto(s)
Calcio/metabolismo , Mitocondrias Hepáticas/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Anaerobiosis , Animales , Calcio/farmacología , Catalasa/farmacología , Reactivos de Enlaces Cruzados/farmacología , Radicales Libres/metabolismo , Técnicas In Vitro , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , Dilatación Mitocondrial/fisiología , Modelos Biológicos , Estrés Oxidativo , Oxígeno/metabolismo , Permeabilidad/efectos de los fármacos , Peróxidos/farmacología , Fenantrolinas/farmacología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , terc-Butilhidroperóxido
14.
Free Radic Biol Med ; 18(1): 55-9, 1995 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-7896171

RESUMEN

The role of coenzyme Q on the process of mitochondrial membrane damage associated with oxidative stress was studied in a suspension of uncoupled mitochondria exposed to Ca2+ in the presence of Fe(II)citrate or t-butyl hydroperoxide. Reduction of coenzyme Q by succinate was shown to inhibit both inner membrane lipid peroxidation and permeabilization induced by Fe(II)citrate. In contrast, the inner membrane permeabilization induced by Ca2+ alone or Ca2+ plus t-butyl hydroperoxide was potentiated by the presence of succinate. These results support our previous proposition that the mitochondrial damage associated with oxidative stress generated by these pro-oxidants in the presence of Ca2+ is mediated by different mechanisms.


Asunto(s)
Calcio/farmacología , Compuestos Ferrosos/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Estrés Oxidativo , Peróxidos/farmacología , Ubiquinona/metabolismo , Animales , Antimicina A/farmacología , Hidroxitolueno Butilado/farmacología , Ácido Cítrico , Radicales Libres , Dilatación Mitocondrial/efectos de los fármacos , Oxidación-Reducción , Ratas , Ratas Wistar , Succinatos/metabolismo , Succinatos/farmacología , Ácido Succínico , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , terc-Butilhidroperóxido
15.
Biochem Soc Symp ; 66: 55-67, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10989657

RESUMEN

Excitotoxicity is the process whereby a massive glutamate release in the central nervous system in response to ischaemia or related trauma leads to the delayed, predominantly necrotic death of neurons. Excitotoxicity is also implicated in a variety of slow neurodegenerative disorders. Mitochondria accumulate much of the post-ischaemic calcium entering the neurons via the chronically activated N-methyl-D-aspartate receptor. This calcium accumulation plays a key role in the subsequent death of the neuron. Cultured cerebellar granule cells demonstrate delayed calcium de-regulation (DCD) followed by necrosis upon exposure to glutamate. DCD is unaffected by the ATP synthase inhibitor oligomycin but is inhibited by the further addition of a respiratory chain inhibitor to depolarize the mitochondria and inhibit mitochondrial calcium accumulation without depleting ATP [Budd and Nicholls (1996) J. Neurochem. 67, 2282-2291]. Mitochondrial depolarization paradoxically decreases the cytoplasmic calcium elevation following glutamate addition, probably due to an enhanced calcium efflux from the cell. Cells undergo immediate calcium de-regulation in the presence of glutamate if the respiratory chain is inhibited; this is due to ATP depletion following ATP synthase reversal and can be reversed by oligomycin. In contrast, DCD is irreversible. Elevated cytoplasmic calcium is not excitotoxic as long as mitochondria are depolarized; alternative substrates do not rescue cells about to undergo DCD, suggesting that glycolytic failure is not involved. Mitochondria in situ remain sufficiently polarized during granule cell glutamate exposure to continue to generate ATP and show a classic mitochondrial state 3-state 4 hyperpolarization on inhibiting ATP synthesis; mitochondrial depolarization follows, and may be a consequence of rather than a cause of DCD. In addition, our studies show no evidence of the mitochondrial permeability transition prior to DCD. The mitochondrial generation of superoxide anions is enhanced during glutamate exposure and a working hypothesis is that DCD may be caused by oxidative damage to calcium extrusion pathways at the plasma membrane.


Asunto(s)
Mitocondrias/metabolismo , Receptores de Glutamato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
16.
Ann N Y Acad Sci ; 893: 1-12, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10672225

RESUMEN

The bioenergetic properties of the in situ mitochondria play a central role in controlling the susceptibility of neurons to acute or chronic neurodegenerative stress. The mitochondrial membrane potential, delta psi m is the parameter that controls three interrelated mitochondrial functions of great relevance to neuronal survival: namely, ATP synthesis, Ca2+ accumulation, and superoxide generation. The in vitro model we study is the rat cerebellar granule cell in primary culture and its susceptibility to NMDA receptor-mediated necrosis, which is preceded by a delayed failure of cytoplasmic Ca2+ homeostasis ("delayed Ca2+ deregulation," DCD). DCD is not caused by a failure of mitochondrial ATP synthesis since it also occurs in cells maintained purely by glycolysis. The in situ mitochondria maintain a delta psi m sufficient for ATP synthesis throughout the exposure of the cells to glutamate until DCD occurs. Even at that stage it appears that mitochondrial depolarization may be an effect of DCD rather than a primary cause. This somewhat unorthodox view resolves a number of apparent paradoxes, such as observations of enhanced superoxide generation by in situ mitochondria during excitotoxic exposure, since isolated mitochondria generate superoxide only under conditions of high delta psi m. Mitochondrial depolarization by selective inhibitors that do not deplete cellular ATP is acutely neuroprotective.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Ácido Glutámico/farmacología , Mitocondrias/fisiología , Neuronas/fisiología , Neurotoxinas/farmacología , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/citología , Cerebelo/fisiología , Metabolismo Energético/fisiología , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Mitocondrias/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Ratas , Receptores de N-Metil-D-Aspartato/fisiología
17.
Cell Transplant ; 9(2): 179-95, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10811392

RESUMEN

Neural transplantation is developing into a therapeutic alternative in Parkinson's disease. A major limiting factor is that only 3-20% of grafted dopamine neurons survive the procedure. Recent advances regarding how and when the neurons die indicate that events preceding actual tissue implantation and during the first week thereafter are crucial, and that apoptosis plays a pivotal role. Triggers that may initiate neuronal death in grafts include donor tissue hypoxia and hypoglycemia, mechanical trauma, free radicals, growth factor deprivation, and excessive extracellular concentrations of excitatory amino acids in the host brain. Four distinct phases during grafting that can involve cell death have been identified: retrieval of the embryo; dissection and preparation of the donor tissue; implantation procedure followed by the immediate period after graft injection; and later stages of graft maturation. During these phases, cell death processes involving free radicals and caspase activation (leading to apoptosis) may be triggered, possibly involving an increase in intracellular calcium. We review different approaches that reduce cell death and increase survival of grafted neurons, typically by a factor of 2-4. For example, changes in transplantation procedure such as improved media and implantation technique can be beneficial. Calcium channel antagonists such as nimodipine and flunarizine improve nigral graft survival. Agents that counteract oxidative stress and its consequences, such as superoxide dismutase overexpression, and lazaroids can significantly increase the survival of transplanted dopamine neurons. Also, the inhibition of apoptosis by a caspase inhibitor has marked positive effects. Finally, basic fibroblast growth factor and members of the transforming growth factor-beta superfamily, such as glial cell line-derived neurotrophic factor, significantly improve the outcome of nigral transplants. These recent advances provide hope for improved survival of transplanted neurons in patients with Parkinson's disease, reducing the need for human embryonic donor tissue and increasing the likelihood of a successful outcome.


Asunto(s)
Trasplante de Tejido Encefálico , Trasplante de Células , Neuronas/trasplante , Animales , Trasplante de Tejido Encefálico/métodos , Muerte Celular/efectos de los fármacos , Supervivencia Celular , Trasplante de Células/métodos , Dopamina/metabolismo , Trasplante de Tejido Fetal/métodos , Humanos , Factores de Crecimiento Nervioso/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Enfermedad de Parkinson/terapia , Ratas
18.
Brain Res ; 857(1-2): 20-9, 2000 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-10700549

RESUMEN

Disruption of intracellular calcium homeostasis is thought to play a role in neurodegenerative disorders such as Huntington's disease (HD). To study different aspects of putative pathogenic mechanisms in HD, we aimed to establish an in vitro model of calcium-induced toxicity in striatal neurons. The calcium ionophore A23187 induced a concentration- and time-dependent cell death in cultures of embryonic striatal neurons, causing both apoptosis and necrosis. Cell death was significantly reduced by the cell-permeant antioxidant manganese(III)tetrakis(4-benzoic acid) porphyrin (MnTBAP). Cyclosporin A and its analogue N-MeVal-4-cyclosporin also reduced the incidence of cell death, suggesting the participation of mitochondrial permeability transition in this process. Furthermore, addition of either of two types of caspase inhibitors, Ac-YVAD-CHO (acetyl-Tyr-Val-Ala-Asp-aldehyde) and Ac-DEVD-CHO (acetyl-Asp-Glu-Val-Asp-aldehyde), to the striatal cells blocked A23187-induced striatal cell death in a concentration-dependent manner. These results suggest that oxidative stress, opening of the mitochondrial permeability transition pore and activation of caspases are important steps in A23187-induced cell death.


Asunto(s)
Calcimicina/toxicidad , Calcio/metabolismo , Caspasas/efectos de los fármacos , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/fisiología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Ionóforos/toxicidad , Dilatación Mitocondrial/efectos de los fármacos , Dilatación Mitocondrial/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Animales , Trastornos del Metabolismo del Calcio/fisiopatología , Técnicas de Cultivo de Célula , Cuerpo Estriado/citología , Ciclosporina/farmacología , Inhibidores de Cisteína Proteinasa , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Depuradores de Radicales Libres/farmacología , Metaloporfirinas/farmacología , Oligopéptidos/farmacología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
19.
Eur J Pharmacol ; 428(1): 37-44, 2001 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-11779035

RESUMEN

Pyridoxal isonicotinoyl hydrazone (PIH) is able to prevent iron-mediated hydroxyl radical formation by means of iron chelation and inhibition of redox cycling of the metal. In this study, we investigated the effect of PIH on Fe(II)-citrate-mediated lipid peroxidation and damage to isolated rat liver mitochondria. Lipid peroxidation was quantified by the production of thiobarbituric acid-reactive substances (TBARS) and by antimycin A-insensitive oxygen consumption. PIH at 300 microM induced full protection against 50 microM Fe(II)-citrate-induced loss of mitochondrial transmembrane potential (deltapsi) and mitochondrial swelling. In addition, PIH prevented the Fe(II)-citrate-dependent formation of TBARS and antimycin A-insensitive oxygen consumption. The antioxidant effectiveness of 100 microM PIH (on TBARS formation and mitochondrial swelling) was greater in the presence of 20 or 50 microM Fe(II)-citrate than in the presence of 100 microM Fe(II)-citrate, suggesting that the mechanism of PIH antioxidant action is linked with its Fe(II) chelating property. Finally, PIH increased the rate of Fe(II) autoxidation by sequestering iron from the Fe(II)-citrate complex, forming a Fe(III)-PIH, complex that does not participate in Fenton-type reactions and lipid peroxidation. These results are of pharmacological relevance since PIH is a potential candidate for chelation therapy in diseases related to abnormal intracellular iron distribution and/or iron overload.


Asunto(s)
Antioxidantes/farmacología , Compuestos Férricos/antagonistas & inhibidores , Quelantes del Hierro/farmacología , Isoniazida/análogos & derivados , Isoniazida/farmacología , Peroxidación de Lípido/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Piridoxal/análogos & derivados , Piridoxal/farmacología , Animales , Quelantes/farmacología , Compuestos Férricos/farmacología , Técnicas In Vitro , Indicadores y Reactivos , Hierro/química , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Oxidación-Reducción , Consumo de Oxígeno/efectos de los fármacos , Ratas , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
20.
Free Radic Res ; 28(3): 301-18, 1998 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9688216

RESUMEN

In the present study we show that K+/H+ hydroxyl-containing ionophores lasalocid-A (LAS) and nigericin (NIG) in the nanomolar concentration range, inhibit Fe2+-citrate and 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP)-induced lipid peroxidation in intact rat liver mitochondria and in egg phosphatidylcholine (PC) liposomes containing negatively charged lipids--dicetyl phosphate (DCP) or cardiolipin (CL)--and KCl as the osmotic support. In addition, monensin (MON), a hydroxyl-containing ionophore with higher affinity for Na+ than for K+, promotes a similar effect when NaCl is the osmotic support. The protective effect of the ionophores is not observed when the osmolyte is sucrose. Lipid peroxidation was evidenced by mitochondrial swelling, antimycin A-insensitive O2 consumption, formation of thiobarbituric acid-reactive substances (TBARS), conjugated dienes, and electron paramagnetic resonance (EPR) spectra of an incorporated lipid spin probe. A time-dependent decay of spin label EPR signal is observed as a consequence of lipid peroxidation induced by both inductor systems in liposomes. Nitroxide destruction is inhibited by butylated hydroxytoluene, a known antioxidant, and by the hydroxyl-containing ionophores. In contrast, valinomycin (VAL), which does not possess alcoholic groups, does not display this protective effect. Effective order parameters (Seff), determined from the spectra of an incorporated spin label are larger in the presence of salt and display a small increase upon addition of the ionophores, as a result of the increase of counter ion concentration at the negatively charged bilayer surface. This condition leads to increased formation of the ion-ionophore complex, the membrane binding (uncharged) species. The membrane-incorporated complex is the active species in the lipid peroxidation inhibiting process. Studies in aqueous solution (in the absence of membranes) showed that NIG and LAS, but not VAL, decrease the Fe2+-citrate-induced production of radicals derived from piperazine-based buffers, demonstrating their property as radical scavengers. Both Fe2+-citrate and ABAP promote a much more pronounced decrease of LAS fluorescence in PC/CL liposomes than in dimyristoyl phosphatidylcholine (DMPC, saturated phospholipid)-DCP liposomes, indicating that the ionophore also scavenges lipid peroxyl radicals. A slow decrease of fluorescence is observed in the latter system, for all lipid compositions in sucrose medium, and in the absence of membranes, indicating that the primary radicals stemming from both inductors also attack the ionophore. Altogether, the data lead to the conclusion that the membrane-incorporated cation complexes of NIG, LAS and MON inhibit lipid peroxidation by blocking initiation and propagation reactions in the lipid phase via a free radical scavenging mechanism, very likely due to the presence of alcoholic hydroxyl groups in all three molecules and to the attack of the aromatic moiety of LAS.


Asunto(s)
Depuradores de Radicales Libres/metabolismo , Ionóforos/farmacología , Lasalocido/farmacología , Metabolismo de los Lípidos , Peroxidación de Lípido/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Nigericina/farmacología , Amidinas/farmacología , Animales , Ácido Cítrico , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Ferrosos/farmacología , Liposomas/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Oxidantes/farmacología , Consumo de Oxígeno , Ratas , Ratas Wistar , Marcadores de Spin , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA