Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(7): 1578-1595.e8, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37329888

RESUMEN

It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma.


Asunto(s)
Neoplasias Hepáticas , FN-kappa B , Humanos , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo , Necroptosis , Inflamación/patología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Apoptosis
2.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33798093

RESUMEN

The c-Jun N-terminal kinase (JNK) signaling pathway mediates adaptation to stress signals and has been associated with cell death, cell proliferation, and malignant transformation in the liver. However, up to now, its function was experimentally studied mainly in young mice. By generating mice with combined conditional ablation of Jnk1 and Jnk2 in liver parenchymal cells (LPCs) (JNK1/2LPC-KO mice; KO, knockout), we unraveled a function of the JNK pathway in the regulation of liver homeostasis during aging. Aging JNK1/2LPC-KO mice spontaneously developed large biliary cysts that originated from the biliary cell compartment. Mechanistically, we could show that cyst formation in livers of JNK1/2LPC-KO mice was dependent on receptor-interacting protein kinase 1 (RIPK1), a known regulator of cell survival, apoptosis, and necroptosis. In line with this, we showed that RIPK1 was overexpressed in the human cyst epithelium of a subset of patients with polycystic liver disease. Collectively, these data reveal a functional interaction between JNK signaling and RIPK1 in age-related progressive cyst development. Thus, they provide a functional linkage between stress adaptation and programmed cell death (PCD) in the maintenance of liver homeostasis during aging.


Asunto(s)
Envejecimiento/metabolismo , Enfermedades de los Conductos Biliares/etiología , Enfermedades de los Conductos Biliares/metabolismo , Caspasa 8/metabolismo , Quistes/etiología , Quistes/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Animales , Apoptosis , Biopsia , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inmunohistoquímica , Inmunofenotipificación , Hepatopatías/etiología , Hepatopatías/metabolismo , Ratones , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Necroptosis
3.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298585

RESUMEN

Liver diseases represent a significant global health burden, necessitating the development of reliable biomarkers for early detection, prognosis, and therapeutic monitoring. Extracellular vesicles (EVs) have emerged as promising candidates for liver disease biomarkers due to their unique cargo composition, stability, and accessibility in various biological fluids. In this study, we present an optimized workflow for the identification of EVs-based biomarkers in liver disease, encompassing EVs isolation, characterization, cargo analysis, and biomarker validation. Here we show that the levels of microRNAs miR-10a, miR-21, miR-142-3p, miR-150, and miR-223 were different among EVs isolated from patients with nonalcoholic fatty liver disease and autoimmune hepatitis. In addition, IL2, IL8, and interferon-gamma were found to be increased in EVs isolated from patients with cholangiocarcinoma compared with healthy controls. By implementing this optimized workflow, researchers and clinicians can improve the identification and utilization of EVs-based biomarkers, ultimately enhancing liver disease diagnosis, prognosis, and personalized treatment strategies.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Humanos , Flujo de Trabajo , Vesículas Extracelulares/genética , Biomarcadores
4.
J Hepatol ; 71(5): 930-941, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31279900

RESUMEN

BACKGROUND & AIMS: Cerebral oxidative stress plays an important role in the pathogenesis of hepatic encephalopathy (HE), but the underlying mechanisms are incompletely understood. Herein, we analyzed a role of heme oxygenase (HO)1, iron and NADPH oxidase 4 (Nox4) for the induction of oxidative stress and senescence in HE. METHODS: Gene and protein expression in human post-mortem brain samples was analyzed by gene array and western blot analysis. Mechanisms and functional consequences of HO1 upregulation were studied in NH4Cl-exposed astrocytes in vitro by western blot, qPCR and super-resolution microscopy. RESULTS: HO1 and the endoplasmic reticulum (ER) stress marker grp78 were upregulated, together with changes in the expression of multiple iron metabolism-related genes, in post-mortem brain samples from patients with liver cirrhosis and HE. NH4Cl elevated HO1 protein and mRNA in cultured astrocytes through glutamine synthetase (GS)-dependent upregulation of glutamine/fructose amidotransferases 1/2 (GFAT1/2), which blocked the transcription of the HO1-targeting miR326-3p in a O-GlcNAcylation dependent manner. Upregulation of HO1 by NH4Cl triggered ER stress and was associated with elevated levels of free ferrous iron and expression changes in iron metabolism-related genes, which were largely abolished after knockdown or inhibition of GS, GFAT1/2, HO1 or iron chelation. NH4Cl, glucosamine (GlcN) and inhibition of miR326-3p upregulated Nox4, while knockdown of Nox4, GS, GFAT1/2, HO1 or iron chelation prevented NH4Cl-induced RNA oxidation and astrocyte senescence. Elevated levels of grp78 and O-GlcNAcylated proteins were also found in brain samples from patients with liver cirrhosis and HE. CONCLUSION: The present study identified glucosamine synthesis-dependent protein O-GlcNAcylation as a novel mechanism in the pathogenesis of HE that triggers oxidative and ER stress, as well as senescence, through upregulation of HO1 and Nox4. LAY SUMMARY: Patients with liver cirrhosis frequently exhibit hyperammonemia and suffer from cognitive and motoric dysfunctions, which at least in part involve premature ageing of the astrocytes in the brain. This study identifies glucosamine and an O-GlcNAcylation-dependent disruption of iron homeostasis as novel triggers of oxidative stress, thereby mediating ammonia toxicity in the brain.


Asunto(s)
Amoníaco/farmacología , Senescencia Celular/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Encefalopatía Hepática/metabolismo , Proteínas de la Membrana/metabolismo , Estrés Oxidativo/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Regulación hacia Arriba/genética , Adulto , Anciano , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Femenino , Glucosamina/biosíntesis , Hemo-Oxigenasa 1/genética , Encefalopatía Hepática/etiología , Humanos , Cirrosis Hepática/complicaciones , Masculino , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Estrés Oxidativo/genética , Ratas , Ratas Wistar , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología
5.
Biol Chem ; 400(12): 1551-1565, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31152635

RESUMEN

Tauroursodeoxycholate (TUDC) is well known to protect against glycochenodeoxycholate (GCDC)-induced apoptosis in rat hepatocytes. In the present study, we analyzed whether TUDC also exerts protective effects by modulating GCDC-induced gene expression changes. For this, gene array-based transcriptome analysis and quantitative polymerase chain reaction (qPCR) were performed on RNA isolated from rat livers perfused with GCDC, TUDC or a combination of both (each 20 µm for 2 h). GCDC led to a significant increase of lactate dehydrogenase (LDH) into the effluent perfusate, which was prevented by TUDC. GCDC, TUDC and co-perfusion induced distinct gene expression changes. While GCDC upregulated the expression of several pro-inflammatory genes, co-perfusion with TUDC increased the expression of pro-proliferative and anti-apoptotic p53 target genes. In line with this, levels of serine20-phosphorylated p53 and of its target gene p21 were elevated by GCDC in a TUDC-sensitive way. GCDC upregulated the oxidative stress surrogate marker 8OH(d)G and the pro-apoptotic microRNAs miR-15b/16 and these effects were prevented by TUDC. The upregulation of miR-15b and miR-16 in GCDC-perfused livers was accompanied by a downregulation of several potential miR-15b and miR-16 target genes. The present study identified changes in the transcriptome of the rat liver which suggest, that TUDC is hepatoprotective by counteracting GCDC-induced gene expression changes.


Asunto(s)
Ácido Glicoquenodesoxicólico/antagonistas & inhibidores , Ácido Tauroquenodesoxicólico/farmacología , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Ácido Glicoquenodesoxicólico/farmacología , Hígado/efectos de los fármacos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/efectos de los fármacos , ARN/genética , ARN/aislamiento & purificación , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Mol Ther ; 22(12): 2130-2141, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-25189739

RESUMEN

Malaria, caused by protozoan Plasmodium parasites, remains a prevalent infectious human disease due to the lack of an efficient and safe vaccine. This is directly related to the persisting gaps in our understanding of the parasite's interactions with the infected host, especially during the clinically silent yet essential liver stage of Plasmodium development. Previously, we and others showed that genetically attenuated parasites (GAP) that arrest in the liver induce sterile immunity, but only upon multiple administrations. Here, we comprehensively studied hepatic gene and miRNA expression in GAP-injected mice, and found both a broad activation of IFNγ-associated pathways and a significant increase of murine microRNA-155 (miR-155), that was especially pronounced in non-parenchymal cells including liver-resident macrophages (Kupffer cells). Remarkably, ectopic upregulation of this miRNA in the liver of mice using robust hepatotropic adeno-associated virus 8 (AAV8) vectors enhanced GAP's protective capacity substantially. In turn, this AAV8-mediated miR-155 expression permitted a reduction of GAP injections needed to achieve complete protection against infectious parasite challenge from previously three to only one. Our study highlights a crucial role of mammalian miRNAs in Plasmodium liver infection in vivo and concurrently implies their great potential as future immune-augmenting agents in improved vaccination regimes against malaria and other diseases.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/administración & dosificación , Vacunas contra la Malaria/administración & dosificación , Malaria/prevención & control , MicroARNs/genética , ARN Mensajero/inmunología , Animales , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Hígado/metabolismo , Hígado/patología , Malaria/genética , Malaria/patología , Vacunas contra la Malaria/genética , Masculino , Ratones , MicroARNs/metabolismo , Plasmodium berghei/patogenicidad , Regulación hacia Arriba , Vacunas Atenuadas/genética
7.
Nucleic Acids Res ; 41(12): 6018-33, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23625969

RESUMEN

MYCN is a master regulator controlling many processes necessary for tumor cell survival. Here, we unravel a microRNA network that causes tumor suppressive effects in MYCN-amplified neuroblastoma cells. In profiling studies, histone deacetylase (HDAC) inhibitor treatment most strongly induced miR-183. Enforced miR-183 expression triggered apoptosis, and inhibited anchorage-independent colony formation in vitro and xenograft growth in mice. Furthermore, the mechanism of miR-183 induction was found to contribute to the cell death phenotype induced by HDAC inhibitors. Experiments to identify the HDAC(s) involved in miR-183 transcriptional regulation showed that HDAC2 depletion induced miR-183. HDAC2 overexpression reduced miR-183 levels and counteracted the induction caused by HDAC2 depletion or HDAC inhibitor treatment. MYCN was found to recruit HDAC2 in the same complexes to the miR-183 promoter, and HDAC2 depletion enhanced promoter-associated histone H4 pan-acetylation, suggesting epigenetic changes preceded transcriptional activation. These data reveal miR-183 tumor suppressive properties in neuroblastoma that are jointly repressed by MYCN and HDAC2, and suggest a novel way to bypass MYCN function.


Asunto(s)
Histona Desacetilasa 2/metabolismo , MicroARNs/metabolismo , Neuroblastoma/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Animales , Muerte Celular , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/metabolismo , Neuroblastoma/patología , Regiones Promotoras Genéticas , Transducción de Señal
8.
Nucleic Acids Res ; 41(21): e199, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24049077

RESUMEN

As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems.


Asunto(s)
Proteínas Argonautas/genética , Técnicas de Silenciamiento del Gen , Vectores Genéticos , Interferencia de ARN , Animales , Proteínas Argonautas/metabolismo , Línea Celular Tumoral , Dependovirus/genética , Células HEK293 , Humanos , Lentivirus/genética , Hígado/metabolismo , Ratones , Fenotipo , Plásmidos/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción Genética
9.
Am J Gastroenterol ; 109(10): 1662-74, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25070052

RESUMEN

OBJECTIVES: microRNAs (miRNAs) are short RNAs that regulate gene expression in various processes, including immune response. Altered immune response is a pivotal event in the pathogenesis of celiac disease (CD), and miRNAs could have a role in modulating both innate and adaptive response to gluten in celiac patients. METHODS: We compared miRNA profiles in duodenal biopsies of controls and CD patients by miRNA array. Differentially expressed miRNAs were validated in controls, Marsh 3A-B, and Marsh 3C patients by quantitative PCR (qPCR). Target gene expression was assessed by qPCR, western blotting, and immunohistochemistry, and the effect of gliadin was evaluated by in vitro stimulation experiments on duodenal biopsies. RESULTS: Seven miRNAs were identified as significantly downregulated in the duodenum of adult CD patients as compared with controls. qPCR validated the decreased expression of miR-192-5p, miR-31-5p, miR-338-3p, and miR-197, in particular in patients with more severe histological lesions (Marsh 3C). In silico analysis of possible miRNA targets identified several genes involved in innate and adaptive immunity. Among these, chemokine C-X-C motif ligand 2 (CXCL2) and NOD2 showed significantly increased mRNA and protein level in Marsh 3C patients and a significant inverse correlation with the regulatory miR-192-5p. In addition, forkhead box P3 (FOXP3), Run-related transcription factor 1, and interleukin-18 (targets of miR-31-5p, miR-338-3p, and miR-197, respectively) showed upregulation in CD patients. Furthermore, alterations in CXCL2 and NOD2, FOXP3, miR-192-5p, and miR-31-5p expression were triggered by gliadin exposure in CD patients. CONCLUSIONS: miRNA expression is significantly altered in duodenal mucosa of CD patients, and this alteration can increase the expression of molecules involved in immune response.


Asunto(s)
Inmunidad Adaptativa/fisiología , Enfermedad Celíaca/genética , Enfermedad Celíaca/inmunología , Inmunidad Innata/fisiología , MicroARNs/metabolismo , Adulto , Estudios de Casos y Controles , Enfermedad Celíaca/metabolismo , Estudios de Cohortes , Duodeno/metabolismo , Duodeno/patología , Femenino , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Análisis por Micromatrices , Persona de Mediana Edad
10.
Nature ; 456(7224): 980-4, 2008 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19043405

RESUMEN

MicroRNAs comprise a broad class of small non-coding RNAs that control expression of complementary target messenger RNAs. Dysregulation of microRNAs by several mechanisms has been described in various disease states including cardiac disease. Whereas previous studies of cardiac disease have focused on microRNAs that are primarily expressed in cardiomyocytes, the role of microRNAs expressed in other cell types of the heart is unclear. Here we show that microRNA-21 (miR-21, also known as Mirn21) regulates the ERK-MAP kinase signalling pathway in cardiac fibroblasts, which has impacts on global cardiac structure and function. miR-21 levels are increased selectively in fibroblasts of the failing heart, augmenting ERK-MAP kinase activity through inhibition of sprouty homologue 1 (Spry1). This mechanism regulates fibroblast survival and growth factor secretion, apparently controlling the extent of interstitial fibrosis and cardiac hypertrophy. In vivo silencing of miR-21 by a specific antagomir in a mouse pressure-overload-induced disease model reduces cardiac ERK-MAP kinase activity, inhibits interstitial fibrosis and attenuates cardiac dysfunction. These findings reveal that microRNAs can contribute to myocardial disease by an effect in cardiac fibroblasts. Our results validate miR-21 as a disease target in heart failure and establish the therapeutic efficacy of microRNA therapeutic intervention in a cardiovascular disease setting.


Asunto(s)
Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Fibroblastos/metabolismo , Sistema de Señalización de MAP Quinasas , MicroARNs/genética , Animales , Cardiomiopatías/patología , Cardiomiopatías/terapia , Línea Celular , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas
11.
Cell Mol Life Sci ; 69(23): 3945-52, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22678662

RESUMEN

Iron homeostasis is maintained at the cellular and systemic levels to assure adequate iron supply while preventing iron overload. The identification of genes mutated in patients with iron-related disorders or animal models with imbalances of iron homeostasis gave insight into the molecular mechanisms underlying processes critical for balancing iron levels, such as iron uptake, storage, export, and monitoring of available iron. MicroRNAs control genes involved in some of these processes adding an additional level of complexity to the regulation of iron metabolism. This review summarizes recent advances how miRNAs regulate iron homeostasis.


Asunto(s)
Regulación de la Expresión Génica , Homeostasis/genética , Hierro/metabolismo , MicroARNs/genética , Animales , Hemocromatosis/genética , Hemocromatosis/metabolismo , Humanos , MicroARNs/metabolismo , Modelos Genéticos , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Cancers (Basel) ; 15(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37627157

RESUMEN

MicroRNA miR-122 plays a pivotal role in liver function. Despite numerous studies investigating this miRNA, the global network of genes regulated by miR-122 and its contribution to the underlying pathophysiological mechanisms remain largely unknown. To gain a deeper understanding of miR-122 activity, we employed two complementary approaches. Firstly, through transcriptome analysis of polyribosome-bound RNAs, we discovered that miR-122 exhibits potential antagonistic effects on specific transcription factors known to be dysregulated in liver disease, including nuclear respiratory factor-1 (NRF1) and the E2F transcription factor 4 (E2F4). Secondly, through proteome analysis of hepatoma cells transfected with either miR-122 mimic or antagomir, we discovered changes in several proteins associated with increased malignancy. Interestingly, many of these proteins were reported to be transcriptionally regulated by NRF1 and E2F4, six of which we validated as miR-122 targets. Among these, a negative correlation was observed between miR-122 and glucose-6-phosphate dehydrogenase levels in the livers of patients with hepatitis B virus-associated hepatocellular carcinoma. This study provides novel insights into potential alterations of molecular pathway occurring at the early stages of liver disease, driven by the dysregulation of miR-122 and its associated genes.

13.
Cells ; 12(15)2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37566034

RESUMEN

Chronic inflammation is widely recognized as a significant factor that promotes and worsens the development of malignancies, including hepatocellular carcinoma. This study aimed to explore the potential role of microRNAs in inflammation-associated nonresolving hepatocarcinogenesis. By conducting a comprehensive analysis of altered microRNAs in animal models with liver cancer of various etiologies, we identified miR-122 as the most significantly downregulated microRNA in the liver of animals with inflammation-associated liver cancer. Although previous research has indicated the importance of miR-122 in maintaining hepatocyte function, its specific role as either the trigger or the consequence of underlying diseases remains unclear. Through extensive analysis of animals and in vitro models, we have successfully demonstrated that miR-122 transcription is differentially regulated by the immunoregulatory cytokines, by the transforming growth factor-beta 1 (TGFß1), and the bone morphogenetic protein-6 (BMP6). Furthermore, we presented convincing evidence directly linking reduced miR-122 transcription to inflammation and in chronic liver diseases. The results of this study strongly suggest that prolonged activation of pro-inflammatory signaling pathways, leading to disruption of cytokine-mediated regulation of miR-122, may significantly contribute to the onset and exacerbation of chronic liver disease.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Carcinogénesis/genética , Inflamación/genética
14.
Hepatology ; 53(1): 209-18, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20890893

RESUMEN

UNLABELLED: Liver fibrosis is orchestrated by a complex network of signaling pathways regulating the deposition of extracellular matrix proteins during fibrogenesis. MicroRNAs (miRNAs) represent a family of small noncoding RNAs controlling translation and transcription of many genes. Recently, miRNAs have been suggested to crucially modulate cellular processes in the liver such as hepatocarcinogenesis. However, their role in liver fibrosis is not well understood. We systematically analyzed the regulation of miRNAs in a mouse model of carbon tetrachloride-induced hepatic fibrogenesis (CCl(4) ) by gene array analysis, which revealed a panel of miRNA that were specifically regulated in livers of mice undergoing hepatic fibrosis. Within those, all three members of the miR-29-family were significantly down-regulated in livers of CCl(4) -treated mice as well as in mice that underwent bile duct ligation. Specific regulation of miR-29 members in murine fibrosis models correlated with lower expression of miR-29 in livers from patients with advanced liver fibrosis. Moreover, patients with advanced liver cirrhosis showed significantly lower levels of miR-29a in their serum when compared with healthy controls or patients with early fibrosis. On a cellular level, down-regulation of miR-29 in murine hepatic stellate cells (HSCs) was mediated by transforming growth factor beta (TGF-ß) as well as inflammatory signals, namely, lipopolysaccharide (LPS) and nuclear factor kappa B (NF-κB). Furthermore, overexpression of miR-29b in murine HSC resulted in down-regulation of collagen expression. CONCLUSION: Our data indicate that miR-29 mediates the regulation of liver fibrosis and is part of a signaling nexus involving TGF-ß- and NF-κB-dependent down-regulation of miR-29 family members in HSC with subsequent up-regulation of extracellular matrix genes. Thus they may represent targets for novel therapeutic strategies against hepatic fibrogenesis and also might evolve as biomarkers in the diagnosis of liver fibrosis.


Asunto(s)
Cirrosis Hepática/genética , MicroARNs/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Conductos Biliares/fisiología , Intoxicación por Tetracloruro de Carbono/fisiopatología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Matriz Extracelular/genética , Femenino , Células Estrelladas Hepáticas/metabolismo , Humanos , Ligadura , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , FN-kappa B/fisiología , Factor de Crecimiento Transformador beta/fisiología
15.
JHEP Rep ; 4(4): 100440, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35287291

RESUMEN

Background & Aims: MicroRNAs (miRNAs) act as a regulatory mechanism on a post-transcriptional level by repressing gene transcription/translation and play a central role in the cellular stress response. Osmotic changes occur in a variety of diseases including liver cirrhosis and hepatic encephalopathy. Changes in cell hydration and alterations of the cellular volume are major regulators of cell function and gene expression. In this study, the modulation of hepatic gene expression in response to hypoosmolarity was studied. Methods: mRNA analyses of normo- and hypoosmotic perfused rat livers by gene expression arrays were used to identify miRNA and their potential target genes associated with cell swelling preceding cell proliferation. Selected miR-141-3p was also investigated in isolated hepatocytes treated with miRNA mimic, cell stretching, and after partial hepatectomy. Inhibitor perfusion studies were performed to unravel signalling pathways responsible for miRNA upregulation. Results: Using genome-wide transcriptomic analysis, it was shown that hypoosmotic exposure led to differential gene expression in perfused rat liver. Moreover, miR-141-3p was upregulated by hypoosmolarity in perfused rat liver and in primary hepatocytes. In concert with this, miR-141-3p upregulation was prevented after Src-, Erk-, and p38-MAPK inhibition. Furthermore, luciferase reporter assays demonstrated that miR-141-3p targets cyclin dependent kinase 8 (Cdk8) mRNA. Partial hepatectomy transiently upregulated miR-141-3p levels just after the initiation of hepatocyte proliferation, whereas Cdk8 mRNA was downregulated. The mechanical stretching of rat hepatocytes resulted in miR-141-3p upregulation, whereas Cdk8 mRNA tended to decrease. Notably, the overexpression of miR-141-3p inhibited the proliferation of Huh7 cells. Conclusions: Src-mediated upregulation of miR-141-3p was found in hepatocytes in response to hypoosmotic swelling and mechanical stretching. Because of its antiproliferative function, miR-141-3p may counter-regulate the proliferative effects triggered by these stimuli. Lay summary: In this study, we identified microRNA 141-3p as an osmosensitive miRNA, which inhibits proliferation during liver cell swelling. Upregulation of microRNA 141-3p, controlled by Src-, Erk-, and p38-MAPK signalling, results in decreased mRNA levels of various genes involved in metabolic processes, macromolecular biosynthesis, and cell cycle progression.

16.
Cells ; 11(9)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35563834

RESUMEN

Genomic and epigenomic studies revealed dysregulation of long non-coding RNAs in many cancer entities, including liver cancer. We identified an epigenetic mechanism leading to upregulation of the long intergenic non-coding RNA 152 (LINC00152) expression in human hepatocellular carcinoma (HCC). Here, we aimed to characterize a potential competing endogenous RNA (ceRNA) network, in which LINC00152 exerts oncogenic functions by sponging miRNAs, thereby affecting their target gene expression. Database and gene expression data of human HCC were integrated to develop a potential LINC00152-driven ceRNA in silico. RNA immunoprecipitation and luciferase assay were used to identify miRNA binding to LINC00152 in human HCC cells. Functionally active players in the ceRNA network were analyzed using gene editing, siRNA or miRNA mimic transfection, and expression vectors in vitro. RNA expression in human HCC in vivo was validated by RNA in situ hybridization. Let-7c-5p, miR-23a-3p, miR-125a-5p, miR-125b-5p, miR-143a-3p, miR-193-3p, and miR-195-5p were detected as new components of the potential LINC00152 ceRNA network in human HCC. LINC00152 was confirmed to sponge miR143a-3p in human HCC cell lines, thereby limiting its binding to their respective target genes, like KLC2. KLC2 was identified as a central mediator promoting pro-tumorigenic effects of LINC00152 overexpression in HCC cells. Furthermore, co-expression of LINC00152 and KLC2 was observed in human HCC cohorts and high KLC2 expression was associated with shorter patient survival. Functional assays demonstrated that KLC2 promoted cell proliferation, clonogenicity and migration in vitro. The LINC00152-miR-143a-3p-KLC2 axis may represent a therapeutic target in human HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Proliferación Celular/genética , Humanos , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
17.
J Cell Physiol ; 226(9): 2226-34, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21660946

RESUMEN

Long-term culture of human mesenchymal stromal cells (MSC) has implications on their proliferation and differentiation potential and we have demonstrated that this is associated with up-regulation of the five microRNAs miR-29c, miR-369-5p, miR-371, miR-499, and let-7f. In this study, we examined the role of these senescence-associated microRNAs for cellular aging and differentiation of MSC. Proliferation was reduced upon transfection with miR-369-5p, miR-371, and miR-499. Adipogenic differentiation was impaired by miR-369-5p whereas it was highly increased by miR-371. This was accompanied by respective gene expression changes of some adipogenic key molecules (adiponectin and fatty acid-binding protein 4 [FABP4]). Furthermore luciferase reporter assay indicated that FABP4 is a direct target of miR-369-5p. Microarray analysis upon adipogenic or osteogenic differentiation revealed down-regulation of several microRNAs albeit miR-369-5p and miR-371 were not affected. Expression of the de novo DNA methyltransferases DNMT3A and DNMT3B was up-regulated by transfection of miR-371 whereas expression of DNMT3A was down-regulated by miR-369-5p. In summary, we identified miR-369-5p and miR-371 as antagonistic up-stream regulators of adipogenic differentiation and this might be indirectly mediated by epigenetic modifications.


Asunto(s)
Adipogénesis/genética , Regulación hacia Abajo/genética , Células Madre Mesenquimatosas/citología , MicroARNs/genética , Regulación hacia Arriba/genética , Regiones no Traducidas 3'/genética , Biomarcadores/metabolismo , Proliferación Celular , Senescencia Celular/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo , Transfección , ADN Metiltransferasa 3B
18.
Methods ; 50(4): 244-9, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20109550

RESUMEN

We review different methodologies to estimate the expression levels of microRNAs (miRNAs) using real-time quantitative PCR (qPCR). As miRNA analysis is a fast changing research field, we have introduced novel technological approaches and compared them to existing qPCR profiling methodologies. qPCR also remains the method of choice for validating results obtained from whole-genome screening (e.g. with microarray). In contrast to presenting a stepwise description of different platforms, we discuss expression profiling of mature miRNAs by qPCR in four sequential sections: (1) cDNA synthesis; (2) primer design; (3) detection of amplified products; and (4) data normalization. We address technical challenges associated with each of these and outline possible solutions.


Asunto(s)
Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Benzotiazoles , ADN Complementario/biosíntesis , Diaminas , Colorantes Fluorescentes/química , MicroARNs/análisis , Compuestos Orgánicos/química , Quinolinas
19.
PLoS One ; 16(8): e0255983, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34407090

RESUMEN

BACKGROUND: Transarterial chemoembolization (TACE) has evolved as a standard treatment option in patients with intermediate stage, unresectable HCC [Barcelona Clinic Liver Cancer (BCLC) stage B] as well as in patients with liver metastases, when surgery or systemic therapy is considered not appropriate. Concentration and sizes of extracellular vesicles (EVs) recently emerged as novel diagnostic and prognostic biomarkers in patients with liver cancer, but no data on its prognostic relevance in the context of TACE exists. Here, we evaluate pre-interventional EVs as a potential biomarker in patients undergoing TACE for primary and secondary hepatic malignancies. METHODS: Vesicle size distribution and concentration were measured by nanoparticle tracking analysis (NTA) in patient sera before and after TACE in 38 patients. RESULTS: Extracellular vesicle size distribution measured before TACE is of prognostic significance with respect to overall survival in patients after TACE. Overall survival is significantly reduced when initial vesicle size (X50) is in the upper quartile (>145.65nm). Median overall survival in patients in the upper quartile was only 314 days, compared to 799 days in patients with vesicle size in the first to third quartile (<145.65nm; p = 0.007). Vesicle size was also shown to be a significant prognostic marker for overall survival in Cox regression analysis [HR 1.089, 95% CI: 1.021-1.162, p = 0.010]. In addition, a significant correlation was observed between initial EVs concentration/BMI (rS = 0.358, p = 0.029), X50/IL-8-concentration (rS = 0.409, p = 0.011) and X50/CRP-concentration (rS = 0.404, p = 0.016). In contrast, with regard to immediate tumor response after TACE, EVs concentration and size did not differ. SUMMARY: Sizes (but not concentrations) of EVs represent a novel prognostic marker in patients receiving TACE for primary and secondary hepatic malignancies since patients with enlarged EVs display a significantly impaired prognosis after TACE.


Asunto(s)
Quimioembolización Terapéutica/métodos , Vesículas Extracelulares/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Tamaño de la Partícula , Pronóstico , Tasa de Supervivencia , Resultado del Tratamiento
20.
PLoS One ; 16(3): e0247917, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33711036

RESUMEN

BACKGROUND: Early detection of hepatocellular carcinoma (HCC), the most common primary liver malignancy, is crucial to offer patients a potentially curative treatment strategy such as surgical resection or liver transplantation (LT). However, easily accessible biomarkers facilitating an early diagnosis of HCC as well as a reliable risk prediction are currently missing. The microRNA(miR)-107 has recently been described as a driver of HCC in both murine and human HCC but data on circulating miR-107 in HCC patients are scarce. In the present study, we evaluated a potential diagnostic and/or prognostic role of circulating miR-107 in patients undergoing tumor resection or LT for early-stage HCC. METHODS: The Kmplot bioinformatic tool was used to query publicly available databases (including TCGA, GEO and EGA) in order to analyse the prognostic value of tumoral miR-107 expression in HCC patients (n = 372). Serum levels of miR-107 were measured by qPCR in n = 45 HCC patients undergoing surgical tumor resection (n = 37) or LT (n = 8) as well as n = 18 healthy control samples. Results were correlated with clinical data. RESULTS: A high tumoral expression of miR-107 was associated with a significantly better overall survival compared to patients with low miR-107 expression levels (HR 0.69, 95% CI 0.48-0.99, p = 0.041). In addition, serum levels of miR-107 were significantly higher in HCC patients when compared to healthy controls. However, miR-107 serum levels in HCC patients were independent of different disease etiology, tumor stage or tumor grading. HCC patients with baseline miR-107 expression levels above a calculated ideal prognostic cut-off value (9.82) showed a clear trend towards an impaired overall survival (p = 0.119). CONCLUSION: Tumoral miR-107 expression levels are a potential prognostic marker in early stage HCC. Furthermore, we describe a potential role of circulating miR-107 levels as a diagnostic biomarker in patients with early-stage HCC.


Asunto(s)
Carcinoma Hepatocelular/sangre , MicroARN Circulante/sangre , Neoplasias Hepáticas/sangre , MicroARNs/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/cirugía , Femenino , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Trasplante de Hígado , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA