Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 160(6): 1099-110, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25768906

RESUMEN

Hepatitis C virus (HCV) uniquely requires the liver-specific microRNA-122 for replication, yet global effects on endogenous miRNA targets during infection are unexplored. Here, high-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) experiments of human Argonaute (AGO) during HCV infection showed robust AGO binding on the HCV 5'UTR at known and predicted miR-122 sites. On the human transcriptome, we observed reduced AGO binding and functional mRNA de-repression of miR-122 targets during virus infection. This miR-122 "sponge" effect was relieved and redirected to miR-15 targets by swapping the miRNA tropism of the virus. Single-cell expression data from reporters containing miR-122 sites showed significant de-repression during HCV infection depending on expression level and site number. We describe a quantitative mathematical model of HCV-induced miR-122 sequestration and propose that such miR-122 inhibition by HCV RNA may result in global de-repression of host miR-122 targets, providing an environment fertile for the long-term oncogenic potential of HCV.


Asunto(s)
Hepacivirus/metabolismo , Hepatitis C/metabolismo , Hepatitis C/virología , MicroARNs/metabolismo , ARN Viral/metabolismo , Proteínas Argonautas/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Factores Eucarióticos de Iniciación/metabolismo , Hepacivirus/genética , Humanos , Hígado/metabolismo , Hígado/virología , Datos de Secuencia Molecular , ARN Viral/química , Replicación Viral
2.
Nature ; 501(7466): 237-41, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23903655

RESUMEN

More than 130 million people worldwide chronically infected with hepatitis C virus (HCV) are at risk of developing severe liver disease. Antiviral treatments are only partially effective against HCV infection, and a vaccine is not available. Development of more efficient therapies has been hampered by the lack of a small animal model. Building on the observation that CD81 and occludin (OCLN) comprise the minimal set of human factors required to render mouse cells permissive to HCV entry, we previously showed that transient expression of these two human genes is sufficient to allow viral uptake into fully immunocompetent inbred mice. Here we demonstrate that transgenic mice stably expressing human CD81 and OCLN also support HCV entry, but innate and adaptive immune responses restrict HCV infection in vivo. Blunting antiviral immunity in genetically humanized mice infected with HCV results in measurable viraemia over several weeks. In mice lacking the essential cellular co-factor cyclophilin A (CypA), HCV RNA replication is markedly diminished, providing genetic evidence that this process is faithfully recapitulated. Using a cell-based fluorescent reporter activated by the NS3-4A protease we visualize HCV infection in single hepatocytes in vivo. Persistently infected mice produce de novo infectious particles, which can be inhibited with directly acting antiviral drug treatment, thereby providing evidence for the completion of the entire HCV life cycle in inbred mice. This genetically humanized mouse model opens new opportunities to dissect genetically HCV infection in vivo and provides an important preclinical platform for testing and prioritizing drug candidates and may also have utility for evaluating vaccine efficacy.


Asunto(s)
Modelos Animales de Enfermedad , Ingeniería Genética , Hepacivirus/fisiología , Hepatitis C/genética , Hepatitis C/virología , Replicación Viral , Animales , Línea Celular , Ciclofilina A/genética , Ciclofilina A/metabolismo , Hepacivirus/inmunología , Hepatitis C/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ocludina/genética , Ocludina/metabolismo , Factor de Transcripción STAT1/deficiencia , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Viremia/virología , Virión/crecimiento & desarrollo , Virión/fisiología
3.
Proc Natl Acad Sci U S A ; 113(9): 2484-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26884193

RESUMEN

Hepatitis C virus (HCV) is a unique enveloped virus that assembles as a hybrid lipoviral particle by tightly interacting with host lipoproteins. As a result, HCV virions display a characteristic low buoyant density and a deceiving coat, with host-derived apolipoproteins masking viral epitopes. We previously described methods to produce high-titer preparations of HCV particles with tagged envelope glycoproteins that enabled ultrastructural analysis of affinity-purified virions. Here, we performed proteomics studies of HCV isolated from culture media of infected hepatoma cells to define viral and host-encoded proteins associated with mature virions. Using two different affinity purification protocols, we detected four viral and 46 human cellular proteins specifically copurifying with extracellular HCV virions. We determined the C terminus of the mature capsid protein and reproducibly detected low levels of the viral nonstructural protein, NS3. Functional characterization of virion-associated host factors by RNAi identified cellular proteins with either proviral or antiviral roles. In particular, we discovered a novel interaction between HCV capsid protein and the nucleoporin Nup98 at cytosolic lipid droplets that is important for HCV propagation. These results provide the first comprehensive view to our knowledge of the protein composition of HCV and new insights into the complex virus-host interactions underlying HCV infection.


Asunto(s)
Hepacivirus/fisiología , Proteínas de Complejo Poro Nuclear/fisiología , Proteómica , Proteínas Virales/metabolismo , Virión/metabolismo , Secuencia de Aminoácidos , Línea Celular , Hepacivirus/metabolismo , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Morfogénesis , Proteínas Virales/química
4.
Nature ; 474(7350): 208-11, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21654804

RESUMEN

Hepatitis C virus (HCV) remains a major medical problem. Antiviral treatment is only partially effective and a vaccine does not exist. Development of more effective therapies has been hampered by the lack of a suitable small animal model. Although xenotransplantation of immunodeficient mice with human hepatocytes has shown promise, these models are subject to important challenges. Building on the previous observation that CD81 and occludin comprise the minimal human factors required to render mouse cells permissive to HCV entry in vitro, we attempted murine humanization via a genetic approach. Here we show that expression of two human genes is sufficient to allow HCV infection of fully immunocompetent inbred mice. We establish a precedent for applying mouse genetics to dissect viral entry and validate the role of scavenger receptor type B class I for HCV uptake. We demonstrate that HCV can be blocked by passive immunization, as well as showing that a recombinant vaccinia virus vector induces humoral immunity and confers partial protection against heterologous challenge. This system recapitulates a portion of the HCV life cycle in an immunocompetent rodent for the first time, opening opportunities for studying viral pathogenesis and immunity and comprising an effective platform for testing HCV entry inhibitors in vivo.


Asunto(s)
Modelos Animales de Enfermedad , Hepacivirus/fisiología , Hepatitis C/genética , Hepatitis C/virología , Hepatocitos/metabolismo , Hepatocitos/virología , Adenoviridae/genética , Adenoviridae/fisiología , Animales , Anticuerpos Bloqueadores/inmunología , Antígenos CD/genética , Antígenos CD/metabolismo , Células Cultivadas , Claudina-1 , Genotipo , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatocitos/citología , Humanos , Inmunización Pasiva , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Receptores Virales/genética , Receptores Virales/metabolismo , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Tetraspanina 28 , Transfección , Tropismo Viral
5.
Proc Natl Acad Sci U S A ; 110(23): 9505-10, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23690609

RESUMEN

Hepatitis C virus (HCV) is a major cause of chronic liver disease, with an estimated 170 million people infected worldwide. Low yields, poor stability, and inefficient binding to conventional EM grids have posed significant challenges to the purification and structural analysis of HCV. In this report, we generated an infectious HCV genome with an affinity tag fused to the E2 envelope glycoprotein. Using affinity grids, previously described to isolate proteins and macromolecular complexes for single-particle EM, we were able to purify enveloped particles directly from cell culture media. This approach allowed for rapid in situ purification of virions and increased particle density that were instrumental for cryo-EM and cryoelectron tomography (cryo-ET). Moreover, it enabled ultrastructural analysis of virions produced by primary human hepatocytes. HCV appears to be the most structurally irregular member of the Flaviviridae family. Particles are spherical, with spike-like projections, and heterogeneous in size ranging from 40 to 100 nm in diameter. Exosomes, although isolated from unfractionated culture media, were absent in highly infectious, purified virus preparations. Cryo-ET studies provided low-resolution 3D structural information of highly infectious virions. In addition to apolipoprotein (apo)E, HCV particles also incorporate apoB and apoA-I. In general, host apolipoproteins were more readily accessible to antibody labeling than HCV glycoproteins, suggesting either lower abundance or masking by host proteins.


Asunto(s)
Hepacivirus/ultraestructura , Proteínas del Envoltorio Viral/ultraestructura , Virión/ultraestructura , Apolipoproteínas/metabolismo , Línea Celular Tumoral , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico , Hepatocitos/virología , Humanos , Inmunohistoquímica , Marcaje Isotópico , Especificidad de la Especie , Proteínas del Envoltorio Viral/genética , Virión/aislamiento & purificación
6.
J Virol ; 88(21): 12644-55, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25142595

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) particles associate with lipoproteins and infect cells by using at least four cell entry factors. These factors include scavenger receptor class B type I (SR-BI), CD81, claudin 1 (CLDN1), and occludin (OCLN). Little is known about specific functions of individual host factors during HCV cell entry and viral domains that mediate interactions with these factors. Hypervariable region 1 (HVR1) within viral envelope protein 2 (E2) is involved in the usage of SR-BI and conceals the viral CD81 binding site. Moreover, deletion of this domain alters the density of virions. We compared lipoprotein interaction, surface attachment, receptor usage, and cell entry between wild-type HCV and a viral mutant lacking this domain. Deletion of HVR1 did not affect CD81, CLDN1, and OCLN usage. However, unlike wild-type HCV, HVR1-deleted viruses were not neutralized by antibodies and small molecules targeting SR-BI. Nevertheless, modulation of SR-BI cell surface expression altered the infection efficiencies of both viruses to similar levels. Analysis of affinity-purified virions revealed comparable levels of apolipoprotein E (ApoE) incorporation into viruses with or without HVR1. However, ApoE incorporated into these viruses was differentially recognized by ApoE-specific antibodies. Thus, SR-BI has at least two functions during cell entry. One of them can be neutralized by SR-BI-targeting molecules, and it is critical only for wild-type HCV. The other one is important for both viruses but apparently is not inactivated by the SR-BI binding antibodies and small molecules evaluated here. In addition, HVR1 modulates the conformation and/or epitope exposure of virus particle-associated ApoE. IMPORTANCE: HCV cell entry is SR-BI dependent irrespective of the presence or absence of HVR1. Moreover, this domain modulates the properties of ApoE on the surface of virus particles. These findings have implications for the development of SR-BI-targeting antivirals. Furthermore, these findings highlight separable functions of SR-BI during HCV cell entry and reveal a novel role of HVR1 for the properties of virus-associated lipoproteins.


Asunto(s)
Claudina-1/metabolismo , Hepacivirus/fisiología , Ocludina/metabolismo , Receptores Depuradores de Clase B/metabolismo , Tetraspanina 28/metabolismo , Proteínas Virales/metabolismo , Internalización del Virus , Línea Celular , Eliminación de Gen , Hepatocitos/virología , Interacciones Huésped-Patógeno , Humanos , Lipoproteínas/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Virales/genética
7.
Hepatology ; 60(5): 1508-18, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24797654

RESUMEN

UNLABELLED: Hepatitis C virus (HCV)-induced endstage liver disease is currently a major indication for liver transplantation. After transplantation the donor liver inevitably becomes infected with the circulating virus. Monoclonal antibodies (mAbs) against the HCV coreceptor scavenger receptor class B type I (SR-BI) inhibit HCV infection of different genotypes, both in cell culture and in humanized mice. Anti-SR-BI mAb therapy is successful even when initiated several days after HCV exposure, supporting its potential applicability to prevent HCV reinfection of liver allografts. However, HCV variants with reduced SR-BI dependency have been described in the literature, which could potentially limit the use of SR-BI targeting therapy. In this study we show, both in a preventative and postexposure setting, that humanized mice infected with HCV variants exhibiting increased in vitro resistance to SR-BI-targeting molecules remain responsive to anti-SR-BI mAb therapy in vivo. A 2-week antibody therapy readily cleared HCV RNA from the circulation of infected humanized mice. We found no evidence supporting increased SR-BI-receptor dependency of viral particles isolated from humanized mice compared to cell culture-produced virus. However, we observed that, unlike wild-type virus, the in vitro infectivity of the resistant variants was inhibited by both human high density lipoprotein (HDL) and very low density lipoprotein (VLDL). The combination of mAb1671 with these lipoproteins further increased the antiviral effect. CONCLUSION: HCV variants that are less dependent on SR-BI in vitro can still be efficiently blocked by an anti-SR-BI mAb in humanized mice. Since these variants are also more susceptible to neutralization by anti-HCV envelope antibodies, their chance of emerging during anti-SR-BI therapy is severely reduced. Our data indicate that anti-SR-BI receptor therapy could be an effective way to prevent HCV infection in a liver transplant setting.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Hepatitis C/tratamiento farmacológico , Receptores Depuradores de Clase B/inmunología , Animales , Línea Celular Tumoral , Hepacivirus/efectos de los fármacos , Hepacivirus/patogenicidad , Hepatitis C/virología , Humanos , Lipoproteínas/farmacología , Lipoproteínas/uso terapéutico , Ratones SCID , Resultado del Tratamiento , Ácidos Triyodobenzoicos
8.
J Virol ; 87(15): 8282-93, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23698298

RESUMEN

Hepatitis C virus (HCV) is believed to initially infect the liver through the basolateral side of hepatocytes, where it engages attachment factors and the coreceptors CD81 and scavenger receptor class B type I (SR-BI). Active transport toward the apical side brings the virus in close proximity of additional entry factors, the tight junction molecules claudin-1 and occludin. HCV is also thought to propagate via cell-to-cell spread, which allows highly efficient virion delivery to neighboring cells. In this study, we compared an adapted HCV genome, clone 2, characterized by superior cell-to cell spread, to its parental genome, J6/JFH-1, with the goal of elucidating the molecular mechanisms of HCV cell-to-cell transmission. We show that CD81 levels on the donor cells influence the efficiency of cell-to-cell spread and CD81 transfer between neighboring cells correlates with the capacity of target cells to become infected. Spread of J6/JFH-1 was blocked by anti-SR-BI antibody or in cells knocked down for SR-BI, suggesting a direct role for this receptor in HCV cell-to-cell transmission. In contrast, clone 2 displayed a significantly reduced dependence on SR-BI for lateral spread. Mutations in E1 and E2 responsible for the enhanced cell-to-cell spread phenotype of clone 2 rendered cell-free virus more susceptible to antibody-mediated neutralization. Our results indicate that although HCV can lose SR-BI dependence for cell-to-cell spread, vulnerability to neutralizing antibodies may limit this evolutionary option in vivo. Combination therapies targeting both the HCV glycoproteins and SR-BI may therefore hold promise for effective control of HCV dissemination.


Asunto(s)
Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Receptores Virales/metabolismo , Receptores Depuradores de Clase B/metabolismo , Internalización del Virus , Técnicas de Silenciamiento del Gen , Humanos , Receptores Virales/antagonistas & inhibidores , Receptores Virales/genética , Receptores Depuradores de Clase B/antagonistas & inhibidores , Receptores Depuradores de Clase B/genética , Tetraspanina 28/metabolismo
9.
Hepatology ; 55(2): 364-72, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21953761

RESUMEN

UNLABELLED: Endstage liver disease caused by chronic hepatitis C virus (HCV) infection is the leading indication for liver transplantation in the Western world. However, immediate reinfection of the grafted donor liver by circulating virus is inevitable and liver disease progresses much faster than the original disease. Standard antiviral therapy is not well tolerated and usually ineffective in liver transplant patients, whereas anti-HCV immunotherapy is hampered by the extreme genetic diversity of the virus and its ability to spread by way of cell-cell contacts. We generated a human monoclonal antibody against scavenger receptor class B type I (SR-BI), monoclonal antibody (mAb)16-71, which can efficiently prevent infection of Huh-7.5 hepatoma cells and primary hepatocytes by cell-culture-derived HCV (HCVcc). Using an Huh7.5 coculture system we demonstrated that mAb16-71 interferes with direct cell-to-cell transmission of HCV. Finally we evaluated the in vivo efficacy of mAb16-71 in "human liver urokinase-type plasminogen activator, severe combined immune deficiency (uPA-SCID) mice" (chimeric mice). A 2-week anti-SR-BI therapy that was initiated 1 day before viral inoculation completely protected all chimeric mice from infection with serum-derived HCV of different genotypes. Moreover, a 9-day postexposure therapy that was initiated 3 days after viral inoculation (when viremia was already observed in the animals) suppressed the rapid viral spread observed in untreated control animals. After cessation of anti-SR-BI-specific antibody therapy, a rise of the viral load was observed. CONCLUSION: Using in vitro cell culture and human liver-chimeric mouse models, we show that a human mAb targeting the HCV coreceptor SR-BI completely prevents infection and intrahepatic spread of multiple HCV genotypes. This strategy may be an efficacious way to prevent infection of allografts following liver transplantation in chronic HCV patients, and may even hold promise for the prevention of virus rebound during or following antiviral therapy.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígenos CD36/inmunología , Hepatitis C/prevención & control , Animales , Línea Celular Tumoral , Quimera , Genotipo , Humanos , Trasplante de Hígado , Ratones , Ratones SCID , Prevención Secundaria
10.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37808646

RESUMEN

Scanning electron microscopy (SEM) offers an unparalleled view of the membrane topography of mammalian cells by using a conventional osmium (OsO4) and ethanol-based tissue preparation. However, conventional SEM methods limit optimal resolution due to ethanol and lipid interactions and interfere with visualization of fluorescent reporter proteins. Therefore, SEM correlative light and electron microscopy (CLEM) has been hindered by the adverse effects of ethanol and OsO4 on retention of fluorescence signals. To overcome this technological gap in achieving high-resolution SEM and retain fluorescent reporter signals, we developed a freeze-drying method with gaseous nitrogen (FDGN). We demonstrate that FDGN preserves cyto-architecture to allow visualization of detailed membrane topography while retaining fluorescent signals and that FDGN processing can be used in conjunction with a variety of high-resolution imaging systems to enable collection and validation of unique, high-quality data from these approaches. In particular, we show that FDGN coupled with high resolution microscopy provided detailed insight into viral or tumor-derived extracellular vesicle (TEV)-host cell interactions and may aid in designing new approaches to intervene during viral infection or to harness TEVs as therapeutic agents.

11.
Hepatology ; 54(6): 1901-12, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22144107

RESUMEN

UNLABELLED: Here we demonstrate that primary cultures of human fetal liver cells (HFLC) reliably support infection with laboratory strains of hepatitis C virus (HCV), although levels of virus replication vary significantly between different donor cell preparations and frequently decline in a manner suggestive of active viral clearance. To investigate possible contributions of the interferon (IFN) system to control HCV infection in HFLC, we exploited the well-characterized ability of paramyxovirus (PMV) V proteins to counteract both IFN induction and antiviral signaling. The V proteins of measles virus (MV) and parainfluenza virus 5 (PIV5) were introduced into HFLC using lentiviral vectors encoding a fluorescent reporter for visualization of HCV-infected cells. V protein-transduced HFLC supported enhanced (10 to 100-fold) levels of HCV infection relative to untransduced or control vector-transduced HFLC. Infection was assessed by measurement of virus-driven luciferase, by assays for infectious HCV and viral RNA, and by direct visualization of HCV-infected hepatocytes. Live cell imaging between 48 and 119 hours postinfection demonstrated little or no spread of infection in the absence of PMV V protein expression. In contrast, V protein-transduced HFLC showed numerous HCV infection events. V protein expression efficiently antagonized the HCV-inhibitory effects of added IFNs in HFLC. In addition, induction of the type III IFN, IL29, following acute HCV infection was inhibited in V protein-transduced cultures. CONCLUSION: These studies suggest that the cellular IFN response plays a significant role in limiting the spread of HCV infection in primary hepatocyte cultures. Strategies aimed at dampening this response may be key to further development of robust HCV culture systems, enabling studies of virus pathogenicity and the mechanisms by which HCV spreads in its natural host cell population.


Asunto(s)
Hepatocitos/virología , Proteínas Virales/biosíntesis , Hepacivirus/fisiología , Hepatitis C/etiología , Hepatitis C/virología , Hepatocitos/metabolismo , Humanos , Interferones/biosíntesis , Interleucinas/antagonistas & inhibidores , Interleucinas/biosíntesis , Lentivirus/genética , Hígado/embriología , Cultivo Primario de Células , Transducción Genética , Replicación Viral/efectos de los fármacos
12.
J Virol ; 84(1): 34-43, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19828610

RESUMEN

Scavenger receptor class B type I (SR-BI) is an essential receptor for hepatitis C virus (HCV) and a cell surface high-density-lipoprotein (HDL) receptor. The mechanism of SR-BI-mediated HCV entry, however, is not clearly understood, and the specific protein determinants required for the recognition of the virus envelope are not known. HCV infection is strictly linked to lipoprotein metabolism, and HCV virions may initially interact with SR-BI through associated lipoproteins before subsequent direct interactions of the viral glycoproteins with SR-BI occur. The kinetics of inhibition of cell culture-derived HCV (HCVcc) infection with an anti-SR-BI monoclonal antibody imply that the recognition of SR-BI by HCV is an early event of the infection process. Swapping and single-substitution mutants between mouse and human SR-BI sequences showed reduced binding to the recombinant soluble E2 (sE2) envelope glycoprotein, thus suggesting that the SR-BI interaction with the HCV envelope is likely to involve species-specific protein elements. Most importantly, SR-BI mutants defective for sE2 binding, although retaining wild-type activity for receptor oligomerization and binding to the physiological ligand HDL, were impaired in their ability to fully restore HCVcc infectivity when transduced into an SR-BI-knocked-down Huh-7.5 cell line. These findings suggest a specific and direct role for the identified residues in binding HCV and mediating virus entry. Moreover, the observation that different regions of SR-BI are involved in HCV and HDL binding supports the hypothesis that new therapeutic strategies aimed at interfering with virus/SR-BI recognition are feasible.


Asunto(s)
Hepacivirus/fisiología , Receptores Virales , Receptores Depuradores de Clase B/fisiología , Internalización del Virus , Animales , Anticuerpos Monoclonales , Células Cultivadas , Hepacivirus/inmunología , Hepatitis C/inmunología , Humanos , Cinética , Lipoproteínas HDL/metabolismo , Ratones , Receptores Depuradores de Clase B/metabolismo , Especificidad de la Especie
13.
Methods Enzymol ; 631: 159-194, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31948546

RESUMEN

Recent advances in next generation sequencing expanded the availability of tumor mutanome data that list the mutations present in cancer cells. Mutated proteins are an interesting source of neoantigens that can be used to specifically target tumor cells in the context of immunotherapy. However, identifying new antigenic peptides from mutated proteins remains challenging. In this chapter, we present Reverse Immunology as an approach to identify potential antigens from any given polypeptide sequence. First, we explain the rationale behind the identification of candidate HLA-binding peptides through mass spectrometry or in silico approaches. Then, we describe the isolation of low-frequency T-cell precursors specific for the candidate peptides using peptide-HLA multimers. Finally, we discuss validation steps leading to the identification of a T-cell clone recognizing tumor cells that endogenously process the candidate peptide. We also present approaches to study the impact of the proteasome complex on candidate peptide processing.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Antígenos HLA/inmunología , Técnicas Inmunológicas/métodos , Inmunoterapia , Neoplasias/terapia , Secuencia de Aminoácidos , Antígenos de Neoplasias/química , Simulación por Computador , Humanos , Espectrometría de Masas , Péptidos/química , Péptidos/inmunología , Análisis de Secuencia de Proteína
14.
Cancer Res ; 80(18): 3972-3982, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32690723

RESUMEN

Tumors with microsatellite instability (MSI) are caused by a defective DNA mismatch repair system that leads to the accumulation of mutations within microsatellite regions. Indels in microsatellites of coding genes can result in the synthesis of frameshift peptides (FSP). FSPs are tumor-specific neoantigens shared across patients with MSI. In this study, we developed a neoantigen-based vaccine for the treatment of MSI tumors. Genetic sequences from 320 MSI tumor biopsies and matched healthy tissues in The Cancer Genome Atlas database were analyzed to select shared FSPs. Two hundred nine FSPs were selected and cloned into nonhuman Great Ape Adenoviral and Modified Vaccinia Ankara vectors to generate a viral-vectored vaccine, referred to as Nous-209. Sequencing tumor biopsies of 20 independent patients with MSI colorectal cancer revealed that a median number of 31 FSPs out of the 209 encoded by the vaccine was detected both in DNA and mRNA extracted from each tumor biopsy. A relevant number of peptides encoded by the vaccine were predicted to bind patient HLA haplotypes. Vaccine immunogenicity was demonstrated in mice with potent and broad induction of FSP-specific CD8 and CD4 T-cell responses. Moreover, a vaccine-encoded FSP was processed in vitro by human antigen-presenting cells and was subsequently able to activate human CD8 T cells. Nous-209 is an "off-the-shelf" cancer vaccine encoding many neoantigens shared across sporadic and hereditary MSI tumors. These results indicate that Nous-209 can induce the optimal breadth of immune responses that might achieve clinical benefit to treat and prevent MSI tumors. SIGNIFICANCE: These findings demonstrate the feasibility of an "off-the-shelf" vaccine for treatment and prevention of tumors harboring frameshift mutations and neoantigenic peptides as a result of microsatellite instability.


Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Neoplasias Colorrectales/terapia , Inmunogenicidad Vacunal/inmunología , Inestabilidad de Microsatélites , Animales , Células Presentadoras de Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Femenino , Mutación del Sistema de Lectura , Humanos , Ratones , Proteínas de Neoplasias/análisis , Proteínas de Neoplasias/inmunología
15.
Methods Mol Biol ; 1911: 105-119, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30593621

RESUMEN

Hepatitis C virus (HCV) is a peculiar member of the Flaviviridae family, with features in between an enveloped virus and a human lipoprotein and, consequently, unusual biophysical properties that made its production and purification rather challenging.Here we describe methods to generate HCV stocks in cell culture by electroporating in vitro transcribed viral RNA into permissive cell lines as well as downstream concentration and purification strategies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Electroporación/métodos , Hepacivirus/aislamiento & purificación , Hepacivirus/fisiología , Hepatitis C/virología , ARN Viral/genética , Transfección/métodos , Técnicas de Cultivo de Célula/instrumentación , Línea Celular , Diseño de Equipo , Regulación Viral de la Expresión Génica , Genoma Viral , Hepacivirus/genética , Humanos , Transcripción Genética , Ultrafiltración/instrumentación , Ultrafiltración/métodos , Replicación Viral
16.
Nat Microbiol ; 4(3): 539, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30670794

RESUMEN

In the version of Supplementary Fig. 5a originally published with this Letter, the authors mistakenly duplicated images of LAMP1 staining in place of CD63 staining; this has now been amended to the correct version shown below.

17.
Nat Commun ; 10(1): 2688, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217437

RESUMEN

Neoantigens (nAgs) are promising tumor antigens for cancer vaccination with the potential of inducing robust and selective T cell responses. Genetic vaccines based on Adenoviruses derived from non-human Great Apes (GAd) elicit strong and effective T cell-mediated immunity in humans. Here, we investigate for the first time the potency and efficacy of a novel GAd encoding multiple neoantigens. Prophylactic or early therapeutic vaccination with GAd efficiently control tumor growth in mice. In contrast, combination of the vaccine with checkpoint inhibitors is required to eradicate large tumors. Gene expression profile of tumors in regression shows abundance of activated tumor infiltrating T cells with a more diversified TCR repertoire in animals treated with GAd and anti-PD1 compared to anti-PD1. Data suggest that effectiveness of vaccination in the presence of high tumor burden correlates with the breadth of nAgs-specific T cells and requires concomitant reversal of tumor suppression by checkpoint blockade.


Asunto(s)
Adenoviridae/inmunología , Antineoplásicos Inmunológicos/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Neoplasias/terapia , Vacunas Virales/uso terapéutico , Adenoviridae/genética , Animales , Antígenos de Neoplasias/inmunología , Antineoplásicos Inmunológicos/farmacología , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral/trasplante , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoterapia/métodos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico , Vacunas Virales/genética , Vacunas Virales/inmunología
18.
Nat Microbiol ; 3(12): 1369-1376, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30478388

RESUMEN

Interferons (IFNs) mediate cellular defence against viral pathogens by upregulation of IFN-stimulated genes whose products interact with viral components or alter cellular physiology to suppress viral replication1-3. Among the IFN-stimulated genes that can inhibit influenza A virus (IAV)4 are the myxovirus resistance 1 GTPase5 and IFN-induced transmembrane protein 3 (refs 6,7). Here, we use ectopic expression and gene knockout to demonstrate that the IFN-inducible 219-amino acid short isoform of human nuclear receptor coactivator 7 (NCOA7) is an inhibitor of IAV as well as other viruses that enter the cell by endocytosis, including hepatitis C virus. NCOA7 interacts with the vacuolar H+-ATPase (V-ATPase) and its expression promotes cytoplasmic vesicle acidification, lysosomal protease activity and the degradation of endocytosed antigen. Step-wise dissection of the IAV entry pathway demonstrates that NCOA7 inhibits fusion of the viral and endosomal membranes and subsequent nuclear translocation of viral ribonucleoproteins. Therefore, NCOA7 provides a mechanism for immune regulation of endolysosomal physiology that not only suppresses viral entry into the cytosol from this compartment but may also regulate other V-ATPase-associated cellular processes, such as physiological adjustments to nutritional status, or the maturation and function of antigen-presenting cells.


Asunto(s)
Endosomas/efectos de los fármacos , Interferones/metabolismo , Coactivadores de Receptor Nuclear/antagonistas & inhibidores , Coactivadores de Receptor Nuclear/metabolismo , Internalización del Virus/efectos de los fármacos , Células A549 , Animales , Línea Celular , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Virus de la Influenza A/fisiología , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Coactivadores de Receptor Nuclear/genética , Coactivadores de Receptor Nuclear/inmunología , Isoformas de Proteínas , Proteolisis , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ATPasas de Translocación de Protón Vacuolares
19.
Free Radic Res ; 40(5): 467-76, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16551573

RESUMEN

Transient adaptation to mild oxidative stress was induced in human osteosarcoma cells chronically grown in sub-toxic concentrations of diethylmaleate (DEM), a glutathione (GSH) depleting agent. The adapted cells, compared to untreated cells, contain increased concentrations of GSH (4-6 fold) which, upon DEM withdrawal from the culture medium, return to normal values and are more resistant to subsequent oxidizing stress induced either by toxic concentrations of the same agent or by (H(2)O(2)) treatment. To investigate the molecular mechanisms involved in the adaptive response to oxidative stress, we analyzed the gene expression profiles of DEM-adapted cells by differential display. The expression of adaptive response to oxidative stress (AROS)-29 gene, coding for a transmembrane protein of unknown function, as well as of some known genes involved in energy metabolism, protein folding and membrane traffic is up-regulated in adapted cells. The increased resistance to both DNA damage and apoptosis, in cells stably overexpressing AROS-29, demonstrated its functional role in the protection against oxidative stress.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de la Membrana/metabolismo , Estrés Oxidativo/fisiología , Adaptación Fisiológica/efectos de los fármacos , Apoptosis/fisiología , Western Blotting , Línea Celular Tumoral , Ensayo Cometa , Citometría de Flujo , Expresión Génica , Perfilación de la Expresión Génica , Glutatión/efectos de los fármacos , Glutatión/metabolismo , Humanos , Maleatos/farmacología , Proteínas de la Membrana/genética , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
20.
Virology ; 479-480: 221-33, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25847726

RESUMEN

Hepatitis C virus (HCV) represents a global health concern affecting over 185 million people worldwide. Chronic HCV infection causes liver fibrosis and cirrhosis and is the leading indication for liver transplantation. Recent advances in the field of direct-acting antiviral drugs (DAAs) promise a cure for HCV in over 90% of cases that will get access to these expensive treatments. Nevertheless, the lack of a protective vaccine and likely emergence of drug-resistant viral variants call for further studies of HCV biology. With chimpanzees being for a long time the only non-human in vivo model of HCV infection, strong efforts were put into establishing in vitro experimental systems. The initial models only enabled to study specific aspects of the HCV life cycle, such as viral replication with the subgenomic replicon and entry using HCV pseudotyped particles (HCVpp). Subsequent development of protocols to grow infectious HCV particles in cell-culture (HCVcc) ignited investigations on the full cycle of HCV infection and the virus-host interactions required for virus propagation. More recently, small animal models permissive to HCV were generated that allowed in vivo testing of novel antiviral therapies as well as vaccine candidates. This review provides an overview of the currently available in vitro and in vivo experimental systems to study HCV biology. Particular emphasis is given to how these model systems furthered our understanding of virus-host interactions, viral pathogenesis and immunological responses to HCV infection, as well as drug and vaccine development.


Asunto(s)
Modelos Animales de Enfermedad , Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Animales , Línea Celular , Hepacivirus/patogenicidad , Humanos , Pan troglodytes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA