Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Genet ; 20(2): e1011172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38408087

RESUMEN

The eye is instrumental for controlling circadian rhythms in mice and human. Here, we address the conservation of this function in the zebrafish, a diurnal vertebrate. Using lakritz (lak) mutant larvae, which lack retinal ganglion cells (RGCs), we show that while a functional eye contributes to masking, it is largely dispensable for the establishment of circadian rhythms of locomotor activity. Furthermore, the eye is dispensable for the induction of a phase delay following a pulse of white light at CT 16 but contributes to the induction of a phase advance upon a pulse of white light at CT21. Melanopsin photopigments are important mediators of photoentrainment, as shown in nocturnal mammals. One of the zebrafish melanopsin genes, opn4xa, is expressed in RGCs but also in photosensitive projection neurons in the pineal gland. Pineal opn4xa+ projection neurons function in a LIGHT ON manner in contrast to other projection neurons which function in a LIGHT OFF mode. We generated an opn4xa mutant in which the pineal LIGHT ON response is impaired. This mutation has no effect on masking and circadian rhythms of locomotor activity, or for the induction of phase shifts, but slightly modifies period length when larvae are subjected to constant light. Finally, analysis of opn4xa;lak double mutant larvae did not reveal redundancy between the function of the eye and opn4xa in the pineal for the control of phase shifts after light pulses. Our results support the idea that the eye is not the sole mediator of light influences on circadian rhythms of locomotor activity and highlight differences in the circadian system and photoentrainment of behaviour between different animal models.


Asunto(s)
Glándula Pineal , Pez Cebra , Ratones , Humanos , Animales , Pez Cebra/genética , Ritmo Circadiano/genética , Células Ganglionares de la Retina/fisiología , Glándula Pineal/fisiología , Interneuronas , Larva/genética , Mamíferos
2.
PLoS Biol ; 17(1): e2006250, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30703098

RESUMEN

Neural progenitors produce neurons whose identities can vary as a function of the time that specification occurs. Here, we describe the heterochronic specification of two photoreceptor (PhR) subtypes in the zebrafish pineal gland. We find that accelerating PhR specification by impairing Notch signaling favors the early fate at the expense of the later fate. Using in vivo lineage tracing, we show that most pineal PhRs are born from a fate-restricted progenitor. Furthermore, sister cells derived from the division of PhR-restricted progenitors activate the bone morphogenetic protein (BMP) signaling pathway at different times after division, and this heterochrony requires Notch activity. Finally, we demonstrate that PhR identity is established as a function of when the BMP pathway is activated. We propose a novel model in which division of a progenitor with restricted potential generates sister cells with distinct identities via a temporal asymmetry in the activation of a signaling pathway.


Asunto(s)
Células Fotorreceptoras de Vertebrados/fisiología , Glándula Pineal/embriología , Receptores Notch/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Linaje de la Célula , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/metabolismo , Glándula Pineal/metabolismo , Glándula Pineal/fisiología , Transducción de Señal , Factores de Tiempo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
3.
Mol Cell Neurosci ; 103: 103468, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32027966

RESUMEN

The zebrafish pineal organ is a photoreceptive structure containing two main neuronal populations (photoreceptors and projections neurons). Here we describe a subpopulation of projection neurons that expresses the melanopsin gene, opn4xa. This new pineal cell type, that displays characteristics of both projection neurons and photoreceptors, share a similar dependency for BMP and Notch signalling pathways with classical non-photosensitive projection neurons (PN). Functionally, however, whereas classical, opn4xa-negative PNs display an achromatic LIGHT OFF response, the novel cell type we describe exhibit a LIGHT ON character that is elicited by green and blue light. Taken together, our data suggest a previously unanticipated heterogeneity in the projection neuron population in the zebrafish pineal organ raising the question of the importance of these differences in pineal function.


Asunto(s)
Interneuronas/metabolismo , Neuronas/metabolismo , Células Fotorreceptoras/fisiología , Glándula Pineal/metabolismo , Animales , Glándula Pineal/patología , Transducción de Señal/fisiología , Pez Cebra/genética
4.
Development ; 138(11): 2293-302, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21558377

RESUMEN

A variety of signaling pathways have been shown to regulate specification of neuronal subtype identity. However, the mechanisms by which future neurons simultaneously process information from multiple pathways to establish their identity remain poorly understood. The zebrafish pineal gland offers a simple system with which to address questions concerning the integration of signaling pathways during neural specification as it contains only two types of neurons - photoreceptors and projection neurons. We have previously shown that Notch signaling inhibits the projection neuron fate. Here, we show that BMP signaling is both necessary and sufficient to promote the photoreceptor fate. We also demonstrate that crosstalk between BMP and Notch signaling is required for the inhibition of a projection neuron fate in future photoreceptors. In this case, BMP signaling is required as a competence factor for the efficient activation of Notch targets. Our results indicate that both the induction of a photoreceptor fate and the interaction with Notch relies on a canonical BMP/Smad5 pathway. However, the activation of Notch-dependent transcription does not require a canonical Smad5-DNA interaction. Our results provide new insights into how multiple signaling influences are integrated during cell fate specification in the vertebrate CNS.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Células Fotorreceptoras de Vertebrados/citología , Glándula Pineal/embriología , Glándula Pineal/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Proteína Morfogenética Ósea 2/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Ingeniería Genética , Hibridación in Situ , Neuronas/citología , Neuronas/metabolismo , Glándula Pineal/citología , Proteína Smad5/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
5.
Curr Top Dev Biol ; 106: 171-215, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24290350

RESUMEN

The pineal gland is a small neuroendocrine organ whose main and most conserved function is the nighttime secretion of melatonin. In lower vertebrates, the pineal gland is directly photosensitive. In contrast, in higher vertebrates, the direct photosensitivity of the pineal gland had been lost. Rather, the action of this gland as a relay between environmental light conditions and body functions involves reception of light information by the retina. In parallel to this sensory regression, the pineal gland (and its accessory organs) appears to have lost several functions in relation to light and temperature, which are important in lower vertebrate species. In humans, the functions of the pineal gland overlap with the functions of melatonin. They are extremely widespread and include general effects both on cell protection and on more precise functions, such as sleep and immunity. Recently, the role of melatonin has received a considerable amount of attention due to increased cancer risk in shift workers and the discovery that patients suffering from neurodegenerative diseases, autism, or depression exhibit abnormal melatonin rhythms.


Asunto(s)
Ritmo Circadiano/fisiología , Melatonina/fisiología , Glándula Pineal/embriología , Glándula Pineal/fisiología , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos , Melatonina/metabolismo , Modelos Biológicos , Glándula Pineal/metabolismo , Transducción de Señal/fisiología
6.
Neural Dev ; 4: 36, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19799767

RESUMEN

The Notch pathway is instrumental for cell fate diversification during development. Pioneer studies conducted in Drosophila and more recent work performed in vertebrates have shown that in the nervous system, Notch is reiteratively employed when cells choose between two alternative fates, a process referred to as a binary fate decision. While the early (neural versus epidermal) fate decisions mainly involve an inhibitory effect of Notch on the neural fate, late fate decisions (choice between different subtypes of neural cells) have been proposed to involve a binary switch activity whereby Notch would be instructive for one fate and inhibitory for the other. We re-examine this binary switch model in light of two recent findings made in the vertebrate nervous system. First, in the zebrafish epiphysis, Notch is required to resolve a mixed identity through the inhibition of one specific fate. Second, in the murine telencephalon, Notch regulates the competence of neural progenitors to respond to the JAK/STAT pathway, thereby allowing for the induction of an astrocyte fate. In neither case is Notch instructive for the alternative fate, but rather cooperates with another signalling pathway to coordinate binary fate choices. We also review current knowledge on the molecular cascades acting downstream of Notch in the context of neural subtype diversification, a crucial issue if one is to determine Notch function as an instructive, permissive or inhibitory signal in the various cellular contexts where it is implicated. Finally, we speculate as to how such a 'non-switch' activity could contribute to the expansion of neuronal subtype diversity.


Asunto(s)
Diferenciación Celular/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Receptores Notch/metabolismo , Animales , Humanos , Modelos Neurológicos , Neurogénesis/fisiología , Neuronas/fisiología
7.
Development ; 135(14): 2391-401, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18550717

RESUMEN

Manipulation of Notch activity alters neuronal subtype identity in vertebrate neuronal lineages. Nonetheless, it remains controversial whether Notch activity diversifies cell fate by regulating the timing of neurogenesis or acts directly in neuronal subtype specification. Here, we address the role of Notch in the zebrafish epiphysis, a simple structure containing only two neural subtypes: projection neurons and photoreceptors. Reducing the activity of the Notch pathway results in an excess of projection neurons at the expense of photoreceptors, as well as an increase in cells retaining a mixed identity. However, although forced activation of the pathway inhibits the projection neuron fate, it does not promote photoreceptor identity. As birthdating experiments show that projection neurons and photoreceptors are born simultaneously, Notch acts directly during neuronal specification rather than by controlling the timing of neurogenesis. Finally, our data suggest that two distinct signals are required for photoreceptor fate specification: one for the induction of the photoreceptor fate and the other, involving Notch, for the inhibition of projection neuron traits. We propose a novel model in which Notch resolves mixed neural identities by repressing an undesired genetic program.


Asunto(s)
Epífisis/inervación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Células Fotorreceptoras/fisiología , Receptores Notch/fisiología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Epífisis/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Proteínas Fluorescentes Verdes/metabolismo , Homocigoto , Hibridación in Situ , Modelos Neurológicos , Receptores Notch/genética , Transducción de Señal , Transgenes , Pez Cebra/embriología
8.
Development ; 129(8): 1871-80, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11934853

RESUMEN

bHLH transcription factors are expressed sequentially during the development of neural lineages, suggesting that they operate in genetic cascades. In the olfactory epithelium, the proneural genes Mash1 and neurogenin1 are expressed at distinct steps in the same olfactory sensory neuron lineage. Here, we show by loss-of-function analysis that both genes are required for the generation of olfactory sensory neurons. However, their mutant phenotypes are strikingly different, indicating that they have divergent functions. In Mash1 null mutant mice, olfactory progenitors are not produced and the Notch signalling pathway is not activated, establishing Mash1 as a determination gene for olfactory sensory neurons. In neurogenin1 null mutant mice, olfactory progenitors are generated but they express only a subset of their normal repertoire of regulatory molecules and their differentiation is blocked. Thus neurogenin1 is required for the activation of one of several parallel genetic programs functioning downstream of Mash1 in the differentiation of olfactory sensory neurons. These results illustrate the versatility of neural bHLH genes which adopt either a determination or a differentiation function, depending primarily on the timing of their expression in neural progenitors.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Secuencias Hélice-Asa-Hélice , Proteínas del Tejido Nervioso/fisiología , Neuronas Aferentes/citología , Mucosa Olfatoria/citología , Células Madre/citología , Factores de Transcripción/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular , Linaje de la Célula , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Expresión Génica , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas Aferentes/metabolismo , Vías Olfatorias/citología , Receptores de Superficie Celular/metabolismo , Receptores Notch , Transducción de Señal , Células Madre/metabolismo , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Development ; 130(11): 2455-66, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12702659

RESUMEN

The homeodomain transcription factor Floating head (Flh) is required for the generation of neurones in the zebrafish epiphysis. It regulates expression of two basic helix loop helix (bHLH) transcription factor encoding genes, ash1a (achaete/scute homologue 1a) and neurogenin1 (ngn1), in epiphysial neural progenitors. We show that ash1a and ngn1 function in parallel redundant pathways to regulate neurogenesis downstream of flh. Comparison of the epiphysial phenotypes of flh mutant and of ash1a/ngn1 double morphants reveals that reduced expression of ash1a and ngn1 can account for most of the neurogenesis defects in the flh-mutant epiphysis but also shows that Flh has additional activities. Furthermore, different cell populations show different requirements for ash1a and ngn1 within the epiphysis. These populations do not simply correspond to the two described epiphysial cell types: photoreceptors and projection neurones. These results suggest that the genetic pathways that involve ash1a and ngn1 are common to both neuronal types.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina , Proteínas de Homeodominio/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Oligodesoxirribonucleótidos Antisentido/genética , Oligodesoxirribonucleótidos Antisentido/farmacología , Factores de Transcripción Otx , Células Fotorreceptoras de Vertebrados/citología , Glándula Pineal/embriología , Glándula Pineal/metabolismo , Factores de Transcripción/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA