Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Infect Immun ; 91(10): e0026823, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37754682

RESUMEN

In this study, we investigated how different categories of prenatal malaria exposure (PME) influence levels of maternal antibodies in cord blood samples and the subsequent risk of malaria in early childhood in a birth cohort study (N = 661) nested within the COSMIC clinical trial (NCT01941264) in Burkina Faso. Plasmodium falciparum infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. The levels of maternal IgG and IgG1-4 to 15 P. falciparum antigens were measured in cord blood by quantitative suspension array technology. Results showed a significant variation in the magnitude of maternal antibody levels in cord blood, depending on the PME category, with past placental malaria (PM) more frequently associated with significant increases of IgG and/or subclass levels across three groups of antigens defined as pre-erythrocytic, erythrocytic, and markers of PM, as compared to those from the cord of non-exposed control infants. High levels of antibodies to certain erythrocytic antigens (i.e., IgG to EBA140 and EBA175, IgG1 to EBA175 and MSP142, and IgG3 to EBA140 and MSP5) were independent predictors of protection from clinical malaria during the first year of life. By contrast, high levels of IgG, IgG1, and IgG2 to the VAR2CSA DBL1-2 and IgG4 to DBL3-4 were significantly associated with an increased risk of clinical malaria. These findings indicate that PME categories have different effects on the levels of maternal-derived antibodies to malaria antigens in children at birth, and this might drive heterogeneity to clinical malaria susceptibility in early childhood.


Asunto(s)
Malaria Falciparum , Malaria , Niño , Lactante , Recién Nacido , Humanos , Preescolar , Femenino , Embarazo , Plasmodium falciparum , Estudios de Cohortes , Burkina Faso/epidemiología , Exposición Materna , Placenta , Anticuerpos Antiprotozoarios , Malaria/epidemiología , Inmunoglobulina G , Antígenos de Protozoos
2.
Nucleic Acids Res ; 48(D1): D1006-D1021, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31691834

RESUMEN

The IUPHAR/BPS Guide to PHARMACOLOGY (www.guidetopharmacology.org) is an open-access, expert-curated database of molecular interactions between ligands and their targets. We describe significant updates made over the seven releases during the last two years. The database is notably enhanced through the continued linking of relevant pharmacology with key immunological data types as part of the IUPHAR Guide to IMMUNOPHARMACOLOGY (www.guidetoimmunopharmacology.org) and by a major new extension, the IUPHAR/MMV Guide to Malaria PHARMACOLOGY (www.guidetomalariapharmacology.org). The latter has been constructed in partnership with the Medicines for Malaria Venture, an organization dedicated to identifying, developing and delivering new antimalarial therapies that are both effective and affordable. This is in response to the global challenge of over 200 million cases of malaria and 400 000 deaths worldwide, with the majority in the WHO Africa Region. It provides new pharmacological content, including molecular targets in the malaria parasite, interaction data for ligands with antimalarial activity, and establishes curation of data from screening assays, used routinely in antimalarial drug discovery, against the whole organism. A dedicated portal has been developed to provide quick and focused access to these new data.


Asunto(s)
Antimaláricos/farmacología , Bases de Datos Factuales , Bases de Datos Farmacéuticas , Descubrimiento de Drogas/métodos , Farmacología , Antimaláricos/uso terapéutico , Humanos , Ligandos , Malaria/tratamiento farmacológico , Malaria/parasitología , Terapia Molecular Dirigida , Plasmodium/efectos de los fármacos , Programas Informáticos , Interfaz Usuario-Computador , Navegador Web
3.
BMC Med ; 17(1): 157, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31409398

RESUMEN

BACKGROUND: Vaccination and naturally acquired immunity against microbial pathogens may have complex interactions that influence disease outcomes. To date, only vaccine-specific immune responses have routinely been investigated in malaria vaccine trials conducted in endemic areas. We hypothesized that RTS,S/A01E immunization affects acquisition of antibodies to Plasmodium falciparum antigens not included in the vaccine and that such responses have an impact on overall malaria protective immunity. METHODS: We evaluated IgM and IgG responses to 38 P. falciparum proteins putatively involved in naturally acquired immunity to malaria in 195 young children participating in a case-control study nested within the African phase 3 clinical trial of RTS,S/AS01E (MAL055 NCT00866619) in two sites of different transmission intensity (Kintampo high and Manhiça moderate/low). We measured antibody levels by quantitative suspension array technology and applied regression models, multimarker analysis, and machine learning techniques to analyze factors affecting their levels and correlates of protection. RESULTS: RTS,S/AS01E immunization decreased antibody responses to parasite antigens considered as markers of exposure (MSP142, AMA1) and levels correlated with risk of clinical malaria over 1-year follow-up. In addition, we show for the first time that RTS,S vaccination increased IgG levels to a specific group of pre-erythrocytic and blood-stage antigens (MSP5, MSP1 block 2, RH4.2, EBA140, and SSP2/TRAP) which levels correlated with protection against clinical malaria (odds ratio [95% confidence interval] 0.53 [0.3-0.93], p = 0.03, for MSP1; 0.52 [0.26-0.98], p = 0.05, for SSP2) in multivariable logistic regression analyses. CONCLUSIONS: Increased antibody responses to specific P. falciparum antigens in subjects immunized with this partially efficacious vaccine upon natural infection may contribute to overall protective immunity against malaria. Inclusion of such antigens in multivalent constructs could result in more efficacious second-generation multistage vaccines.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Formación de Anticuerpos , Antígenos de Protozoos/inmunología , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Plasmodium falciparum/inmunología , Vacunación/métodos
4.
Malar J ; 17(1): 219, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859096

RESUMEN

BACKGROUND: The quantitative suspension array technology (qSAT) is a useful platform for malaria immune marker discovery. However, a major challenge for large sero-epidemiological and malaria vaccine studies is the comparability across laboratories, which requires the access to standardized control reagents for assay optimization, to monitor performance and improve reproducibility. Here, the Plasmodium falciparum antibody reactivities of the newly available WHO reference reagent for anti-malaria human plasma (10/198) and of additional customized positive controls were examined with seven in-house qSAT multiplex assays measuring IgG, IgG1-4 subclasses, IgM and IgE against a panel of 40 antigens. The different positive controls were tested at different incubation times and temperatures (4 °C overnight, 37 °C 2 h, room temperature 1 h) to select the optimal conditions. RESULTS: Overall, the WHO reference reagent had low IgG2, IgG4, IgM and IgE, and also low anti-CSP antibody levels, thus this reagent was enriched with plasmas from RTS,S-vaccinated volunteers to be used as standard for CSP-based vaccine studies. For the IgM assay, another customized plasma pool prepared with samples from malaria primo-infected adults with adequate IgM levels proved to be more adequate as a positive control. The range and magnitude of IgG and IgG1-4 responses were highest when the WHO reference reagent was incubated with antigen-coupled beads at 4 °C overnight. IgG levels measured in the negative control did not vary between incubations at 37 °C 2 h and 4 °C overnight, indicating no difference in unspecific binding. CONCLUSIONS: With this study, the immunogenicity profile of the WHO reference reagent, including seven immunoglobulin isotypes and subclasses, and more P. falciparum antigens, also those included in the leading RTS,S malaria vaccine, was better characterized. Overall, incubation of samples at 4 °C overnight rendered the best performance for antibody measurements against the antigens tested. Although the WHO reference reagent performed well to measure IgG to the majority of the common P. falciparum blood stage antigens tested, customized pools may need to be used as positive controls depending on the antigens (e.g. pre-erythrocytic proteins of low natural immunogenicity) and isotypes/subclasses (e.g. IgM) under study.


Asunto(s)
Anticuerpos Antiprotozoarios/análisis , Isotipos de Inmunoglobulinas/análisis , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Pruebas Serológicas/métodos , Inmunoglobulina E/análisis , Inmunoglobulina G/análisis , Inmunoglobulina M/análisis , Vacunas contra la Malaria/inmunología , Estudios Seroepidemiológicos
5.
PLoS Pathog ; 11(7): e1005022, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26134405

RESUMEN

Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known phenotypic marker of parasites associated with severe malaria, the reason for this association remains unclear, as do the molecular details of the interaction between the infected erythrocyte (IE) and the adhering erythrocytes. Here, we identify for the first time a single serum factor, the abundant serum protease inhibitor α2-macroglobulin (α2M), which is both required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins, plausibly augmenting their combined avidity for host receptors. IgM has previously been identified as a rosette-facilitating soluble factor that acts in a similar way, but it cannot induce rosetting on its own. This is in contrast to α2M and probably due to the more limited cross-linking potential of IgM. Nevertheless, we show that IgM works synergistically with α2M and markedly lowers the concentration of α2M required for rosetting. Finally, HB3VAR06+ IEs share the capacity to bind α2M with subsets of genotypically distinct P. falciparum isolates forming rosettes in vitro and of patient parasite isolates ex vivo. Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE adhesion to receptors on vascular endothelium. The study opens opportunities for broad-ranging immunological interventions targeting the α2M--(and IgM-) binding domains of PfEMP1, which would be independent of the host receptor specificity of clinically important PfEMP1 antigens.


Asunto(s)
Eritrocitos/parasitología , Malaria Falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Formación de Roseta , alfa-Macroglobulinas/metabolismo , Animales , Humanos , Plasmodium falciparum/metabolismo
6.
Malar J ; 15(1): 267, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27165412

RESUMEN

BACKGROUND: Individuals living in malaria-endemic regions may be exposed to more than one Plasmodium species; there is paucity of data on the distribution of the different species of Plasmodium in affected populations, in part due to the diagnostic method of microscopy, which cannot easily differentiate between the species. Sero-epidemiological data can overcome some of the shortcomings of microscopy. METHODS: The specificity of IgG antibodies to recombinant merozoite surface protein 1 (MSP-119) derived from four human Plasmodium species (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale) was investigated using competition enzyme-linked immunosorbent assay. Subsequently, these antigens were used to determine the exposure prevalence to the different Plasmodium species in serum samples of participants. One-hundred individuals, aged five-18 years, from each of the three Plasmodium meso-endemic Zimbabwean villages (Burma Valley, Mutoko, Chiredzi) were recruited in the study. RESULTS: The study demonstrated that the host serum reactivity to MSP-119 antigens was species-specific and that no cross-reactivity occurred. The overall prevalence of antibody response to MSP-119 antigens was 61 % in Burma Valley, 31 % in Mutoko and 32 % in Chiredzi. Single species IgG responses to MSP-119 were most frequent against P. falciparum, followed by P. malariae and P. ovale, with responses to P. vivax being the least prevalent. Interestingly, 78-87 and 50 % of sera with IgG responses to P. malariae and P. ovale MSP-119, respectively, also had IgG specific response for P. falciparum MSP-119 antigens, indicating that exposure to these species is a common occurrence in these populations. Single species IgG responses to the non-falciparum species were at a very low frequency, ranging between 0 and 13 % for P. malariae. CONCLUSIONS: There is evidence of a higher exposure to the non-falciparum parasite species than previously reported in Zimbabwe. The recombinant MSP-119 antigens could be used as additional diagnostic tools in antibody assays for the detection of exposure to the different Plasmodium species. The results also introduce an interesting concept of the co-infection of non-falciparum Plasmodium almost always with P. falciparum, which requires further validation and mechanistic studies.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Malaria/epidemiología , Malaria/parasitología , Plasmodium/clasificación , Plasmodium/inmunología , Adolescente , Niño , Preescolar , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina G/sangre , Masculino , Proteína 1 de Superficie de Merozoito/inmunología , Estudios Seroepidemiológicos , Zimbabwe/epidemiología
7.
Malar J ; 15: 123, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26921176

RESUMEN

BACKGROUND: Differences in parasite transmission intensity influence the process of acquisition of host immunity to Plasmodium falciparum malaria and ultimately, the rate of malaria related morbidity and mortality. Potential vaccines being designed to complement current intervention efforts therefore need to be evaluated against different malaria endemicity backgrounds. METHODS: The associations between antibody responses to the chimeric merozoite surface protein 1 block 2 hybrid (MSP1 hybrid), glutamate-rich protein region 2 (GLURP R2) and the peptide AS202.11, and the risk of malaria were assessed in children living in malaria hyperendemic (Burkina Faso, n = 354) and hypo-endemic (Ghana, n = 209) areas. Using the same reagent lots and standardized protocols for both study sites, immunoglobulin (Ig) M, IgG and IgG sub-class levels to each antigen were measured by ELISA in plasma from the children (aged 6-72 months). Associations between antibody levels and risk of malaria were assessed using Cox regression models adjusting for covariates. RESULTS: There was a significant association between GLURP R2 IgG3 and reduced risk of malaria after adjusting age of children in both the Burkinabe (hazard ratio 0.82; 95 % CI 0.74-0.91, p < 0.0001) and the Ghanaian (HR 0.48; 95 % CI 0.25-0.91, p = 0.02) cohorts. MSP1 hybrid IgM was associated (HR 0.85; 95 % CI 0.73-0.98, p = 0.02) with reduced risk of malaria in Burkina Faso cohort while IgG against AS202.11 in the Ghanaian children was associated with increased risk of malaria (HR 1.29; 95 % CI 1.01-1.65, p = 0.04). CONCLUSION: These findings support further development of GLURP R2 and MSP1 block 2 hybrid, perhaps as a fusion vaccine antigen targeting malaria blood stage that can be deployed in areas of varying transmission intensity.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Malaria Falciparum/epidemiología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Burkina Faso/epidemiología , Niño , Preescolar , Ghana/epidemiología , Humanos , Lactante , Proteína 1 de Superficie de Merozoito/inmunología , Péptidos/inmunología
8.
Immunology ; 145(1): 71-81, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25471322

RESUMEN

This study examined specific antibody and T-cell responses associated with experimental malaria infection or malaria vaccination, in malaria-naive human volunteers within phase I/IIa vaccine trials, with a view to investigating inter-relationships between these types of response. Malaria infection was via five bites of Plasmodium falciparum-infected mosquitoes, with individuals reaching patent infection by 11-12 days, having harboured four or five blood-stage cycles before drug clearance. Infection elicited a robust antibody response against merozoite surface protein-119 , correlating with parasite load. Classical class switching was seen from an early IgM to an IgG1-dominant response of increasing affinity. Malaria-specific T-cell responses were detected in the form of interferon-γ and interleukin-4 (IL-4) ELIspot, but their magnitude did not correlate with the magnitude of antibody or its avidity, or with parasite load. Different individuals who were immunized with a virosome vaccine comprising influenza antigens combined with P. falciparum antigens, demonstrated pre-existing interferon-γ, IL-2 and IL-5 ELIspot responses against the influenza antigens, and showed boosting of anti-influenza T-cell responses only for IL-5. The large IgG1-dominated anti-parasite responses showed limited correlation with T-cell responses for magnitude or avidity, both parameters being only negatively correlated for IL-5 secretion versus anti-apical membrane antigen-1 antibody titres. Overall, these findings suggest that cognate T-cell responses across a range of magnitudes contribute towards driving potentially effective antibody responses in infection-induced and vaccine-induced immunity against malaria, and their existence during immunization is beneficial, but magnitudes are mostly not inter-related.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Formación de Anticuerpos/efectos de los fármacos , Inmunidad Celular/efectos de los fármacos , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Linfocitos T/inmunología , Adolescente , Adulto , Citocinas/inmunología , Femenino , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/patología , Malaria Falciparum/prevención & control , Masculino , Proteína 1 de Superficie de Merozoito/administración & dosificación , Proteína 1 de Superficie de Merozoito/inmunología , Persona de Mediana Edad
9.
BMC Vet Res ; 11: 256, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26452558

RESUMEN

BACKGROUND: Infectious Bronchitis is a highly contagious respiratory disease which causes tracheal lesions and also affects the reproductive tract and is responsible for large economic losses to the poultry industry every year. This is due to both mortality (either directly provoked by IBV itself or due to subsequent bacterial infection) and lost egg production. The virus is difficult to control by vaccination, so new methods to curb the impact of the disease need to be sought. Here, we seek to identify genes conferring resistance to this coronavirus, which could help in selective breeding programs to rear chickens which do not succumb to the effects of this disease. METHODS: Whole genome gene expression microarrays were used to analyse the gene expression differences, which occur upon infection of birds with Infectious Bronchitis Virus (IBV). Tracheal tissue was examined from control and infected birds at 2, 3 and 4 days post-infection in birds known to be either susceptible or resistant to the virus. The host innate immune response was evaluated over these 3 days and differences between the susceptible and resistant lines examined. RESULTS: Genes and biological pathways involved in the early host response to IBV infection were determined andgene expression differences between susceptible and resistant birds were identified. Potential candidate genes for resistance to IBV are highlighted. CONCLUSIONS: The early host response to IBV is analysed and potential candidate genes for disease resistance are identified. These putative resistance genes can be used as targets for future genetic and functional studies to prove a causative link with resistance to IBV.


Asunto(s)
Pollos , Infecciones por Coronavirus/veterinaria , Predisposición Genética a la Enfermedad , Virus de la Bronquitis Infecciosa/inmunología , Enfermedades de las Aves de Corral/virología , Animales , Pollos/genética , Infecciones por Coronavirus/inmunología , Regulación de la Expresión Génica/inmunología , Genoma , Inmunidad Innata , Enfermedades de las Aves de Corral/inmunología , Análisis por Matrices de Proteínas/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Carga Viral
10.
Infect Immun ; 81(5): 1479-90, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23429538

RESUMEN

To overcome polymorphism in the malaria vaccine candidate Plasmodium falciparum apical membrane antigen 1 (PfAMA1), fusion protein chimeras comprised of three diversity-covering (DiCo) PfAMA1 molecules (D1, D2, and D3) and two allelic variants of the C-terminal 19-kDa region of merozoite surface protein 1 (MSP119) (variants M1 and M2) were generated. A mixture of fusion proteins (D1M1/D2M2D3) and the D1M1D2M2D3 fusion were compared to a single-unit mixture (D1/D2/D3/M1) in an immunological study in groups of rabbits. Following immunization, titers of antibodies (Abs) against four naturally occurring PfAMA1 alleles were high for all groups, as were growth inhibition assay (GIA) levels against two antigenically distinct laboratory parasite strains. Fusion of AMA1 to MSP119 did not suppress levels of antibodies against the AMA1 component. In addition, the breadth of antibody responses was unaffected. Anti-AMA1 antibodies were largely responsible for parasite growth inhibition, as shown in reversal-of-inhibition experiments by adding competing AMA1 antigen. For all groups, titration of the MSP119 antigen into the GIA led to only a small decrease in parasite inhibition, although titers of antibodies against MSP119 were increased 15-fold for the groups immunized with fusion proteins. GIA with affinity-purified anti-MSP119 antibodies showed that the 50% inhibitory concentrations of the anti-MSP119 antibody preparations were in the same order of magnitude for all animals tested, leading to the conclusion that fusing MSP119 to PfAMA1 leads to a small but significant increase in functional antibody levels. This study shows that combination of multiple vaccine candidates in fusion proteins may lead to improved characteristics of the vaccine.


Asunto(s)
Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Proteínas de la Membrana/inmunología , Proteína 1 de Superficie de Merozoito/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Antiprotozoarios/sangre , Modelos Animales de Enfermedad , Plasmodium falciparum/crecimiento & desarrollo , Conejos
11.
Infect Immun ; 80(3): 1280-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22202121

RESUMEN

Merozoite surface protein 1 (MSP1) is a target for malaria vaccine development. Antibodies to the 19-kDa carboxy-terminal region referred to as MSP1(19) inhibit erythrocyte invasion and parasite growth, with some MSP1-specific antibodies shown to inhibit the proteolytic processing of MSP1 that occurs at invasion. We investigated a series of antibodies purified from rabbits immunized with MSP1(19) and AMA1 recombinant proteins for their ability to inhibit parasite growth, initially looking at MSP1 processing. Although significant inhibition of processing was mediated by several of the antibody samples, there was no clear relationship with overall growth inhibition by the same antibodies. However, no antibody samples inhibited processing but not invasion, suggesting that inhibition of MSP1 processing contributes to but is not the only mechanism of antibody-mediated inhibition of invasion and growth. Examining other mechanisms by which MSP1-specific antibodies inhibit parasite growth, we show that MSP1(19)-specific antibodies are taken up into invaded erythrocytes, where they persist for significant periods and result in delayed intracellular parasite development. This delay may result from antibody interference with coalescence of MSP1(19)-containing vesicles with the food vacuole. Antibodies raised against a modified recombinant MSP1(19) sequence were more efficient at delaying intracellular growth than those to the wild-type protein. We propose that antibodies specific for MSP1(19) can mediate inhibition of parasite growth by at least three mechanisms: inhibition of MSP1 processing, direct inhibition of invasion, and inhibition of parasite development following invasion. The balance between mechanisms may be modulated by modifying the immunogen used to induce the antibodies.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Proteína 1 de Superficie de Merozoito/inmunología , Proteína 1 de Superficie de Merozoito/metabolismo , Merozoítos/crecimiento & desarrollo , Merozoítos/inmunología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/inmunología , Animales , Eritrocitos/parasitología , Conejos
12.
PLoS Negl Trop Dis ; 16(6): e0010138, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727821

RESUMEN

BACKGROUND: Soil-transmitted helminths (STH), Schistosoma spp. and Plasmodium falciparum are parasites of major public health importance and co-endemic in many sub-Saharan African countries. Management of these infections requires detection and treatment of infected people and evaluation of large-scale measures implemented. Diagnostic tools are available but their low sensitivity, especially for low intensity helminth infections, leaves room for improvement. Antibody serology could be a useful approach thanks to its potential to detect both current infection and past exposure. METHODOLOGY: We evaluated total IgE responses and specific-IgG levels to 9 antigens from STH, 2 from Schistosoma spp., and 16 from P. falciparum, as potential markers of current infection in a population of children and adults from Southern Mozambique (N = 715). Antibody responses were measured by quantitative suspension array Luminex technology and their performance was evaluated by ROC curve analysis using microscopic and molecular detection of infections as reference. PRINCIPAL FINDINGS: IgG against the combination of EXP1, AMA1 and MSP2 (P. falciparum) in children and NIE (Strongyloides stercoralis) in adults and children had the highest accuracies (AUC = 0.942 and AUC = 0.872, respectively) as markers of current infection. IgG against the combination of MEA and Sm25 (Schistosoma spp.) were also reliable markers of current infection (AUC = 0.779). In addition, IgG seropositivity against 20 out of the 27 antigens in the panel differentiated the seropositive endemic population from the non-endemic population, suggesting a possible role as markers of exposure although sensitivity could not be assessed. CONCLUSIONS: We provided evidence for the utility of antibody serology to detect current infection with parasites causing tropical diseases in endemic populations. In addition, most of the markers have potential good specificity as markers of exposure. We also showed the feasibility of measuring antibody serology with a platform that allows the integration of control and elimination programs for different pathogens.


Asunto(s)
Helmintos , Malaria Falciparum , Adulto , Animales , Niño , Humanos , Inmunoglobulina G , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Mozambique/epidemiología , Plasmodium falciparum , Schistosoma
13.
Parasitology ; 138(12): 1607-19, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21729355

RESUMEN

With the current paucity of vaccine targets for parasitic diseases, particularly those in childhood, the aim of this study was to compare protein expression and immune cross-reactivity between the trematodes Schistosoma haematobium, S. bovis and Echinostoma caproni in the hope of identifying novel intervention targets. Native adult parasite proteins were separated by 2-dimensional gel electrophoresis and identified through electrospray ionisation tandem mass spectrometry to produce a reference gel. Proteins from differential gel electrophoresis analyses of the three parasite proteomes were compared and screened against sera from hamsters infected with S. haematobium and E. caproni following 2-dimensional Western blotting. Differential protein expression between the three species was observed with circa 5% of proteins from S. haematobium showing expression up-regulation compared to the other two species. There was 91% similarity between the proteomes of the two Schistosoma species and 81% and 78·6% similarity between S. haematobium and S. bovis versus E. caproni, respectively. Although there were some common cross-species antigens, species-species targets were revealed which, despite evolutionary homology, could be due to phenotypic plasticity arising from different host-parasite relationships. Nevertheless, this approach helps to identify novel intervention targets which could be used as broad-spectrum candidates for future use in human and veterinary vaccines.


Asunto(s)
Echinostoma/inmunología , Equinostomiasis/parasitología , Proteínas del Helminto/análisis , Schistosoma haematobium/inmunología , Schistosoma/inmunología , Esquistosomiasis/parasitología , Animales , Antígenos Helmínticos/inmunología , Biomphalaria , Bulinus , Niño , Cricetinae , Reacciones Cruzadas , Echinostoma/metabolismo , Equinostomiasis/inmunología , Electroforesis en Gel Bidimensional , Proteínas del Helminto/inmunología , Proteínas del Helminto/metabolismo , Interacciones Huésped-Parásitos , Humanos , Masculino , Mesocricetus , Fenotipo , Proteoma , Proteómica , Schistosoma/metabolismo , Schistosoma haematobium/metabolismo , Esquistosomiasis/inmunología , Especificidad de la Especie , Regulación hacia Arriba
14.
Parasitology ; 138(12): 1519-33, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21813042

RESUMEN

Despite the overlapping distribution of Schistosoma haematobium and Plasmodium falciparum infections, few studies have investigated early immune responses to both parasites in young children resident in areas co-endemic for the parasites. This study measures infection levels of both parasites and relates them to exposure and immune responses in young children. Levels of IgM, IgE, IgG4 directed against schistosome cercariae, egg and adult worm and IgM, IgG directed against P. falciparum schizonts and the merozoite surface proteins 1 and 2 together with the cytokines IFN-γ, IL-4, IL-5, IL-10 and TNF-α were measured by ELISA in 95 Zimbabwean children aged 1-5 years. Schistosome infection prevalence was 14·7% and that of Plasmodium infection was 0% in the children. 43. 4% of the children showed immunological evidence of exposure to schistosome parasites and 13% showed immunological evidence of exposure to Plasmodium parasites. Schistosome-specific responses, indicative of exposure to parasite antigens, were positively associated with cercariae-specific IgE responses, while Plasmodium-specific responses, indicative of exposure to parasite antigens, were negatively associated with responses associated with protective immunity against Plasmodium. There was no significant association between schistosome-specific and Plasmodium-specific responses. Systemic cytokine levels rose with age as well as with schistosome infection and exposure. Overall the results show that (1) significantly more children are exposed to schistosome and Plasmodium infection than those currently infected and; (2) the development of protective acquired immunity commences in early childhood, although its effects on infection levels and pathology may take many years to become apparent.


Asunto(s)
Citocinas/análisis , Inmunoglobulinas/biosíntesis , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Schistosoma haematobium/inmunología , Esquistosomiasis Urinaria/inmunología , Factores de Edad , Animales , Anticuerpos Antihelmínticos/biosíntesis , Anticuerpos Antihelmínticos/sangre , Anticuerpos Antiprotozoarios/biosíntesis , Anticuerpos Antiprotozoarios/sangre , Preescolar , Coinfección , Enfermedades Endémicas , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulinas/sangre , Lactante , Malaria Falciparum/epidemiología , Masculino , Prevalencia , Esquistosomiasis Urinaria/epidemiología , Zimbabwe/epidemiología
15.
Vaccine ; 39(4): 687-698, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33358704

RESUMEN

BACKGROUND: The evaluation of immune responses to RTS,S/AS01 has traditionally focused on immunoglobulin (Ig) G antibodies that are only moderately associated with protection. The role of other antibody isotypes that could also contribute to vaccine efficacy remains unclear. Here we investigated whether RTS,S/AS01E elicits antigen-specific serum IgA antibodies to the vaccine and other malaria antigens, and we explored their association with protection. METHODS: Ninety-five children (age 5-17 months old at first vaccination) from the RTS,S/AS01E phase 3 clinical trial who received 3 doses of RTS,S/AS01E or a comparator vaccine were selected for IgA quantification 1 month post primary immunization. Two sites with different malaria transmission intensities (MTI) and clinical malaria cases and controls, were included. Measurements of IgA against different constructs of the circumsporozoite protein (CSP) vaccine antigen and 16 vaccine-unrelated Plasmodium falciparum antigens were performed using a quantitative suspension array assay. RESULTS: RTS,S vaccination induced a 1.2 to 2-fold increase in levels of serum/plasma IgA antibodies to all CSP constructs, which was not observed upon immunization with a comparator vaccine. The IgA response against 13 out of 16 vaccine-unrelated P. falciparum antigens also increased after vaccination, and levels were higher in recipients of RTS,S than in comparators. IgA levels to malaria antigens before vaccination were more elevated in the high MTI than the low MTI site. No statistically significant association of IgA with protection was found in exploratory analyses. CONCLUSIONS: RTS,S/AS01E induces IgA responses in peripheral blood against CSP vaccine antigens and other P. falciparum vaccine-unrelated antigens, similar to what we previously showed for IgG responses. Collectively, data warrant further investigation of the potential contribution of vaccine-induced IgA responses to efficacy and any possible interplay, either synergistic or antagonistic, with protective IgG, as identifying mediators of protection by RTS,S/AS01E immunization is necessary for the design of improved second-generation vaccines. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT008666191.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Adolescente , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Niño , Preescolar , Humanos , Inmunoglobulina A , Lactante , Malaria/prevención & control , Malaria Falciparum/prevención & control , Plasmodium falciparum , Proteínas Protozoarias
16.
J Infect ; 82(4): 45-57, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636218

RESUMEN

OBJECTIVES: Maternal Plasmodium falciparum-specific antibodies may contribute to protect infants against severe malaria. Our main objective was to evaluate the impact of maternal HIV infection and placental malaria on the cord blood levels and efficiency of placental transfer of IgG and IgG subclasses. METHODS: In a cohort of 341 delivering HIV-negative and HIV-positive mothers from southern Mozambique, we measured total IgG and IgG subclasses in maternal and cord blood pairs by quantitative suspension array technology against eight P. falciparum antigens: Duffy-binding like domains 3-4 of VAR2CSA from the erythrocyte membrane protein 1, erythrocyte-binding antigen 140, exported protein 1 (EXP1), merozoite surface proteins 1, 2 and 5, and reticulocyte-binding-homologue-4.2 (Rh4.2). We performed univariable and multivariable regression models to assess the association of maternal HIV infection, placental malaria, maternal variables and pregnancy outcomes on cord antibody levels and antibody transplacental transfer. RESULTS: Maternal antibody levels were the main determinants of cord antibody levels. HIV infection and placental malaria reduced the transfer and cord levels of IgG and IgG1, and this was antigen-dependent. Low birth weight was associated with an increase of IgG2 in cord against EXP1 and Rh4.2. CONCLUSIONS: We found lower maternally transferred antibodies in HIV-exposed infants and those born from mothers with placental malaria, which may underlie increased susceptibility to malaria in these children.


Asunto(s)
Antimaláricos , Infecciones por VIH , Malaria Falciparum , Malaria , Anticuerpos Antiprotozoarios , Niño , Femenino , Humanos , Lactante , Malaria Falciparum/epidemiología , Plasmodium falciparum , Embarazo
17.
Microbiol Spectr ; 9(3): e0110921, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34878303

RESUMEN

Coinfection with Plasmodium falciparum and helminths may impact the immune response to these parasites because they induce different immune profiles. We studied the effects of coinfections on the antibody profile in a cohort of 715 Mozambican children and adults using the Luminex technology with a panel of 16 antigens from P. falciparum and 11 antigens from helminths (Ascaris lumbricoides, hookworm, Trichuris trichiura, Strongyloides stercoralis, and Schistosoma spp.) and measured antigen-specific IgG and total IgE responses. We compared the antibody profile between groups defined by P. falciparum and helminth previous exposure (based on serology) and/or current infection (determined by microscopy and/or qPCR). In multivariable regression models adjusted by demographic, socioeconomic, water, and sanitation variables, individuals exposed/infected with P. falciparum and helminths had significantly higher total IgE and antigen-specific IgG levels, magnitude (sum of all levels) and breadth of response to both types of parasites compared to individuals exposed/infected with only one type of parasite (P ≤ 0.05). There was a positive association between exposure/infection with P. falciparum and exposure/infection with helminths or the number of helminth species, and vice versa (P ≤ 0.001). In addition, children coexposed/coinfected tended (P = 0.062) to have higher P. falciparum parasitemia than those single exposed/infected. Our results suggest that an increase in the antibody responses in coexposed/coinfected individuals may reflect higher exposure and be due to a more permissive immune environment to infection in the host. IMPORTANCE Coinfection with Plasmodium falciparum and helminths may impact the immune response to these parasites because they induce different immune profiles. We compared the antibody profile between groups of Mozambican individuals defined by P. falciparum and helminth previous exposure and/or current infection. Our results show a significant increase in antibody responses in individuals coexposed/coinfected with P. falciparum and helminths in comparison with individuals exposed/infected with only one of these parasites, and suggest that this increase is due to a more permissive immune environment to infection in the host. Importantly, this study takes previous exposure into account, which is particularly relevant in endemic areas where continuous infections imprint and shape the immune system. Deciphering the implications of coinfections deserves attention because accounting for the real interactions that occur in nature could improve the design of integrated disease control strategies.


Asunto(s)
Anticuerpos Antihelmínticos/sangre , Anticuerpos Antiprotozoarios/sangre , Coinfección/inmunología , Helmintos/inmunología , Plasmodium falciparum/inmunología , Adolescente , Adulto , Animales , Anticuerpos Antihelmínticos/inmunología , Anticuerpos Antiprotozoarios/inmunología , Antígenos Helmínticos/inmunología , Antígenos de Protozoos/inmunología , Niño , Preescolar , Femenino , Helmintiasis/inmunología , Helmintiasis/patología , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/patología , Masculino , Mozambique , Carga de Parásitos , Suelo/parasitología , Adulto Joven
18.
IEEE Access ; 8: 109719-109731, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34192104

RESUMEN

We show that precise knowledge of epidemic transmission parameters is not required to build an informative model of the spread of disease. We propose a detailed model of the topology of the contact network under various external control regimes and demonstrate that this is sufficient to capture the salient dynamical characteristics and to inform decisions. Contact between individuals in the community is characterised by a contact graph, the structure of that contact graph is selected to mimic community control measures. Our model of city-level transmission of an infectious agent (SEIR model) characterises spread via a (a) scale-free contact network (no control); (b) a random graph (elimination of mass gatherings); and (c) small world lattice (partial to full lockdown-"social" distancing). This model exhibits good qualitative agreement between simulation and data from the 2020 pandemic spread of a novel coronavirus. Estimates of the relevant rate parameters of the SEIR model are obtained and we demonstrate the robustness of our model predictions under uncertainty of those estimates. The social context and utility of this work is identified, contributing to a highly effective pandemic response in Western Australia.

20.
NPJ Vaccines ; 5: 46, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32550014

RESUMEN

The RTS,S/AS01E vaccine has shown consistent but partial vaccine efficacy in a pediatric phase 3 clinical trial using a 3-dose immunization schedule. A fourth-dose 18 months after the primary vaccination was shown to restore the waning efficacy. However, only total IgG against the immunodominant malaria vaccine epitope has been analyzed following the booster. To better characterize the magnitude, nature, and longevity of the immune response to the booster, we measured levels of total IgM, IgG, and IgG1-4 subclasses against three constructs of the circumsporozoite protein (CSP) and the hepatitis B surface antigen (HBsAg, also present in RTS,S) by quantitative suspension array technology in 50 subjects in the phase 3 trial in Manhiça, Mozambique. To explore the impact of vaccination on naturally acquired immune responses, we measured antibodies to P. falciparum antigens not included in RTS,S. We found increased IgG, IgG1, IgG3 and IgG4, but not IgG2 nor IgM, levels against vaccine antigens 1 month after the fourth dose. Overall, antibody responses to the booster dose were lower than the initial peak response to primary immunization and children had higher IgG and IgG1 levels than infants. Higher anti-Rh5 IgG and IgG1-4 levels were detected after the booster dose, suggesting that RTS,S partial protection could increase some blood stage antibody responses. Our work shows that the response to the RTS,S/AS01E booster dose is different from the primary vaccine immune response and highlights the dynamic changes in subclass antibody patterns upon the vaccine booster and with acquisition of adaptive immunity to malaria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA