Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
EMBO J ; 43(13): 2685-2714, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831123

RESUMEN

Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin. Here, we show that H3K9me3 is transmitted from the maternal germline to the next generation. Maternally inherited H3K9me3, and the histone methyltransferases (HMT) depositing it, are required for the organization of constitutive heterochromatin: early embryos lacking H3K9 methylation display de-condensation of pericentromeric regions, centromere-centromere de-clustering, mitotic defects, and nuclear shape irregularities, resulting in embryo lethality. Unexpectedly, quantitative CUT&Tag and 4D microscopy measurements of HP1a coupled with biophysical modeling revealed that H3K9me2/3 is largely dispensable for HP1a recruitment. Instead, the main function of H3K9me2/3 at this developmental stage is to drive HP1a clustering and subsequent heterochromatin compaction. Our results show that HP1a binding to constitutive heterochromatin in the absence of H3K9me2/3 is not sufficient to promote proper embryo development and heterochromatin formation. The loss of H3K9 HMTs and H3K9 methylation alters genome organization and hinders embryonic development.


Asunto(s)
Proteínas Cromosómicas no Histona , Heterocromatina , Histonas , Animales , Histonas/metabolismo , Histonas/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Metilación , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Homólogo de la Proteína Chromobox 5 , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Genoma de los Insectos , Desarrollo Embrionario/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética
2.
EMBO Rep ; 23(2): e54341, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34914162

RESUMEN

SARS-CoV-2 infection results in impaired interferon response in patients with severe COVID-19. However, how SARS-CoV-2 interferes with host immune responses is incompletely understood. Here, we sequence small RNAs from SARS-CoV-2-infected human cells and identify a microRNA (miRNA) derived from a recently evolved region of the viral genome. We show that the virus-derived miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer, which are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3'UTR of interferon-stimulated genes and represses their expression in a miRNA-like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID-19 patients. We propose that SARS-CoV-2 can potentially employ a virus-derived miRNA to hijack the host miRNA machinery, which could help to evade the interferon-mediated immune response.


Asunto(s)
COVID-19 , MicroARNs , ARN Viral/genética , SARS-CoV-2/genética , Regiones no Traducidas 3' , COVID-19/inmunología , Humanos , Inmunidad , MicroARNs/genética
3.
Bioessays ; 44(6): e2100284, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35338497

RESUMEN

Heritable traits are predominantly encoded within genomic DNA, but it is now appreciated that epigenetic information is also inherited through DNA methylation, histone modifications, and small RNAs. Several examples of transgenerational epigenetic inheritance of traits have been documented in plants and animals. These include even the inheritance of traits acquired through the soma during the life of an organism, implicating the transfer of epigenetic information via the germline to the next generation. Small RNAs appear to play a significant role in carrying epigenetic information across generations. This review focuses on how epigenetic information in the form of small RNAs is transmitted from the germline to the embryos through the gametes. We also consider how inherited epigenetic information is maintained across generations in a small RNA-dependent and independent manner. Finally, we discuss how epigenetic traits acquired from the soma can be inherited through small RNAs.


Asunto(s)
Herencia , ARN , Animales , Metilación de ADN/genética , Epigénesis Genética , Células Germinativas , Patrón de Herencia/genética , ARN/genética , ARN/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34385329

RESUMEN

The pairing of homologous chromosomes represents a critical step of meiosis in nearly all sexually reproducing species. In many organisms, pairing involves chromosomes that remain apparently intact. The mechanistic nature of homology recognition at the basis of such pairing is unknown. Using "meiotic silencing by unpaired DNA" (MSUD) as a model process, we demonstrate the existence of a cardinally different approach to DNA homology recognition in meiosis. The main advantage of MSUD over other experimental systems lies in its ability to identify any relatively short DNA fragment lacking a homologous allelic partner. Here, we show that MSUD does not rely on the canonical mechanism of meiotic recombination, yet it is promoted by REC8, a conserved component of the meiotic cohesion complex. We also show that certain patterns of interspersed homology are recognized as pairable during MSUD. Such patterns need to be colinear and must contain short tracts of sequence identity spaced apart at 21 or 22 base pairs. By using these periodicity values as a guiding parameter in all-atom molecular modeling, we discover that homologous DNA molecules can pair by forming quadruplex-based contacts with an interval of 2.5 helical turns. This process requires right-handed plectonemic coiling and additional conformational changes in the intervening double-helical segments. Our results 1) reconcile genetic and biophysical evidence for the existence of direct homologous double-stranded DNA (dsDNA)-dsDNA pairing, 2) identify a role for this process in initiating RNA interference, and 3) suggest that chromosomes can be cross-matched by a precise mechanism that operates on intact dsDNA molecules.


Asunto(s)
Cromosomas Fúngicos/fisiología , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica/fisiología , Meiosis/fisiología , Neurospora crassa/fisiología , Recombinación Genética/fisiología , Cromosomas Fúngicos/genética , Meiosis/genética , Recombinación Genética/genética
5.
PLoS Genet ; 15(10): e1008464, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31634348

RESUMEN

SF3B1 is the most frequently mutated splicing factor in cancer. Mutations in SF3B1 likely confer clonal advantages to cancer cells but they may also confer vulnerabilities that can be therapeutically targeted. SF3B1 cancer mutations can be maintained in homozygosis in C. elegans, allowing synthetic lethal screens with a homogeneous population of animals. These mutations cause alternative splicing (AS) defects in C. elegans, as it occurs in SF3B1-mutated human cells. In a screen, we identified RNAi of U2 snRNP components that cause synthetic lethality with sftb-1/SF3B1 mutations. We also detected synthetic interactions between sftb-1 mutants and cancer-related mutations in uaf-2/U2AF1 or rsp-4/SRSF2, demonstrating that this model can identify interactions between mutations that are mutually exclusive in human tumors. Finally, we have edited an SFTB-1 domain to sensitize C. elegans to the splicing modulators pladienolide B and herboxidiene. Thus, we have established a multicellular model for SF3B1 mutations amenable for high-throughput genetic and chemical screens.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Neoplasias/genética , Factores de Empalme de ARN/genética , Ribonucleoproteína Nuclear Pequeña U2/genética , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Ensayos Analíticos de Alto Rendimiento/métodos , Homocigoto , Humanos , Mutación Missense , Neoplasias/tratamiento farmacológico , Dominios Proteicos/genética , Interferencia de ARN , Empalmosomas/efectos de los fármacos , Mutaciones Letales Sintéticas
6.
Mol Cell ; 50(6): 894-907, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23806335

RESUMEN

The inhibition of transcriptional elongation plays an important role in gene regulation in metazoans, including C. elegans. Here, we combine genomic and biochemical approaches to dissect a role of ZFP-1, the C. elegans AF10 homolog, in transcriptional control. We show that ZFP-1 and its interacting partner DOT-1.1 have a global role in negatively modulating the level of polymerase II (Pol II) transcription on essential widely expressed genes. Moreover, the ZFP-1/DOT-1.1 complex contributes to progressive Pol II pausing on essential genes during development and to rapid Pol II pausing during stress response. The slowing down of Pol II transcription by ZFP-1/DOT-1.1 is associated with an increase in H3K79 methylation and a decrease in H2B monoubiquitination, which promotes transcription. We propose a model wherein the recruitment of ZFP-1/DOT-1.1 and deposition of H3K79 methylation at highly expressed genes initiates a negative feedback mechanism for the modulation of their expression.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , ADN Polimerasa II/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Ubiquitinación , Animales , Caenorhabditis elegans/genética , Inmunoprecipitación de Cromatina , ADN Polimerasa II/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes de Helminto , Respuesta al Choque Térmico , Regiones Promotoras Genéticas , Transporte de Proteínas , Interferencia de ARN
7.
Mol Cell ; 47(5): 734-45, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22819322

RESUMEN

C. elegans 21U-RNAs are equivalent to the piRNAs discovered in other metazoans and have important roles in gametogenesis and transposon control. The biogenesis and molecular function of 21U-RNAs and piRNAs are poorly understood. Here, we demonstrate that transcription of each 21U-RNA is regulated separately through a conserved upstream DNA motif. We use genomic analysis to show that this motif is associated with low nucleosome occupancy, a characteristic of many promoters that drive expression of protein-coding genes, and that RNA polymerase II is localized to this nucleosome-depleted region. We establish that the most conserved 8-mer sequence in the upstream region of 21U-RNAs, CTGTTTCA, is absolutely required for their individual expression. Furthermore, we demonstrate that the 8-mer is specifically recognized by Forkhead family (FKH) transcription factors and that 21U-RNA expression is diminished in several FKH mutants. Our results suggest that thousands of small noncoding transcription units are regulated by FKH proteins.


Asunto(s)
Caenorhabditis elegans/genética , Factores de Transcripción Forkhead/metabolismo , Regiones Promotoras Genéticas/genética , ARN de Helminto/genética , ARN Interferente Pequeño/genética , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Nucleosomas/genética , ARN Polimerasa II/metabolismo
8.
Biochim Biophys Acta ; 1839(3): 223-33, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24361586

RESUMEN

The role of RNA interference (RNAi) in post-transcriptional regulation of complementary targets is well known. However, less is known about transcriptional silencing mechanisms mediated by RNAi. Such mechanisms have been characterized in yeast and plants, which suggests that similar RNA silencing mechanisms might operate in animals. A growing amount of experimental evidence indicates that short RNAs and their co-factor Argonaute proteins can regulate many nuclear processes in metazoans. PIWI-interacting RNAs (piRNAs) initiate transcriptional silencing of transposable elements, which leads to heterochromatin formation and/or DNA methylation. In addition, Argonaute proteins and short RNAs directly regulate Pol II transcription and splicing of euchromatic protein-coding genes and also affect genome architecture. Therefore, RNAi pathways can have a profound global impact on the transcriptional programs in cells during animal development. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.


Asunto(s)
Proteínas Argonautas/metabolismo , Metilación de ADN/fisiología , Interferencia de ARN/fisiología , Transcripción Genética/fisiología , Animales , Proteínas Argonautas/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
9.
PLoS Genet ; 7(9): e1002299, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21980302

RESUMEN

Insulin signaling has a profound effect on longevity and the oxidative stress resistance of animals. Inhibition of insulin signaling results in the activation of DAF-16/FOXO and SKN-1/Nrf transcription factors and increased animal fitness. By studying the biological functions of the endogenous RNA interference factor RDE-4 and conserved PHD zinc finger protein ZFP-1 (AF10), which regulate overlapping sets of genes in Caenorhabditis elegans, we identified an important role for these factors in the negative modulation of transcription of the insulin/PI3 signaling-dependent kinase PDK-1. Consistently, increased expression of pdk-1 in zfp-1 and rde-4 mutants contributed to their reduced lifespan and sensitivity to oxidative stress and pathogens due to the reduction in the expression of DAF-16 and SKN-1 targets. We found that the function of ZFP-1 in modulating pdk-1 transcription was important for the extended lifespan of the age-1(hx546) reduction-of-function PI3 kinase mutant, since the lifespan of the age-1; zfp-1 double mutant strain was significantly shorter compared to age-1(hx546). We further demonstrate that overexpression of ZFP-1 caused an increased resistance to oxidative stress in a DAF-16-dependent manner. Our findings suggest that epigenetic regulation of key upstream signaling components in signal transduction pathways through chromatin and RNAi may have a large impact on the outcome of signaling and expression of numerous downstream genes.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Epigénesis Genética , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Insulina/genética , Longevidad/genética , Estrés Oxidativo/genética , Paraquat/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo
10.
C R Biol ; 346(S2): 75-77, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38113091

RESUMEN

In this review article, I summarize the intervention I made during the "Hommage à François Gros" held at the Institut Pasteur in Paris on the 25th of April, 2023. I discuss how the discovery of the existence of an RNA intermediate between genetic information and protein translation has changed our perspective on the role of RNA in gene regulation in these past years. I also discuss new emerging paradigms, highlighting the role of RNA in heritable information similar to the well-known DNA function.


Dans cet article de synthèse, je résume l'intervention que j'ai faite lors du colloque «  Hommage à François Gros  ¼ qui s'est tenu le 25 avril 2023 à l'Institut Pasteur à Paris. J'explique comment la découverte de l'existence d'un ARN intermédiaire entre l'information génétique et la traduction des protéines a changé notre perspective sur le rôle de l'ARN dans la régulation des gènes au cours de ces dernières années. Je discute également de nouveaux paradigmes émergents, en soulignant le rôle de l'ARN dans la transmission d'informations héréditaires, analogue à la fonction bien connue de l'ADN.


Asunto(s)
Epigénesis Genética , ARN , ARN/genética , Regulación de la Expresión Génica/genética
11.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38808193

RESUMEN

The SET-2 /SET1 histone H3K4 methyltransferase and RNAi pathway components are required to maintain fertility across generations in C. elegans . SET-2 preserves the germline transcriptional program transgenerationally, and RNAi pathways rely on small RNAs to establish and maintain transgenerational gene silencing. We investigated whether the functionality of RNAi-induced transgenerational silencing and the composition of pools of endogenous small RNA are affected by the absence of SET-2 . Our results suggest that defects in RNAi pathways are not responsible for the transcriptional misregulation observed in the absence of SET-2 .

12.
Dev Cell ; 57(2): 180-196.e7, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34921763

RESUMEN

Eukaryotic genomes harbor invading transposable elements that are silenced by PIWI-interacting RNAs (piRNAs) to maintain genome integrity in animal germ cells. However, whether piRNAs also regulate endogenous gene expression programs remains unclear. Here, we show that C. elegans piRNAs trigger the transcriptional silencing of hundreds of spermatogenic genes during spermatogenesis, promoting sperm differentiation and function. This silencing signal requires piRNA-dependent small RNA biogenesis and loading into downstream nuclear effectors, which correlates with the dynamic reorganization of two distinct perinuclear biomolecular condensates present in germ cells. In addition, the silencing capacity of piRNAs is temporally counteracted by the Argonaute CSR-1, which targets and licenses spermatogenic gene transcription. The spatial and temporal overlap between these opposing small RNA pathways contributes to setting up the timing of the spermatogenic differentiation program. Thus, our work identifies a prominent role for piRNAs as direct regulators of endogenous transcriptional programs during germline development and gamete differentiation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , ARN Interferente Pequeño/genética , Espermatogénesis/genética , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular/genética , Elementos Transponibles de ADN/genética , Silenciador del Gen/fisiología , Células Germinativas/metabolismo , Masculino , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Interferencia de ARN/fisiología , ARN Mensajero/genética , ARN Interferente Pequeño/metabolismo , Espermatogénesis/fisiología , Transcripción Genética/genética
13.
FEBS Lett ; 595(24): 2953-2977, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34671979

RESUMEN

Inherited information is transmitted to progeny primarily by the genome through the gametes. However, in recent years, epigenetic inheritance has been demonstrated in several organisms, including animals. Although it is clear that certain post-translational histone modifications, DNA methylation, and noncoding RNAs regulate epigenetic inheritance, the molecular mechanisms responsible for epigenetic inheritance are incompletely understood. This review focuses on the role of small RNAs in transmitting epigenetic information across generations in animals. Examples of documented cases of transgenerational epigenetic inheritance are discussed, from the silencing of transgenes to the inheritance of complex traits, such as fertility, stress responses, infections, and behavior. Experimental evidence supporting the idea that small RNAs are epigenetic molecules capable of transmitting traits across generations is highlighted, focusing on the mechanisms by which small RNAs achieve such a function. Just as the role of small RNAs in epigenetic processes is redefining the concept of inheritance, so too our understanding of the molecular pathways and mechanisms that govern epigenetic inheritance in animals is radically changing.


Asunto(s)
Epigénesis Genética , Patrón de Herencia/genética , Carácter Cuantitativo Heredable , ARN/metabolismo , Animales , Humanos , Modelos Animales , Interferencia de ARN
14.
STAR Protoc ; 2(4): 100991, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34927098

RESUMEN

Global Run-On sequencing (GRO-seq) is one of the most sensitive techniques to detect nascent transcription from RNA polymerase (Pol) at a genome-wide level. The protocol incorporates labeled ribonucleotides into nascent RNAs from Pol I, II, and III. We have adapted the GRO-seq protocol to the nematode Caenorhabditis elegans to measure transcription from embryos and adult worms. Here, we provide a detailed overview of the protocol highlighting the critical steps for generating successful libraries. For complete details on the use and execution of this protocol, please refer to Quarato et al. (2021).


Asunto(s)
Caenorhabditis elegans , ARN de Helminto , Análisis de Secuencia de ARN/métodos , Transcripción Genética/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Núcleo Celular/química , Biblioteca de Genes , Inmunoprecipitación/métodos , ARN de Helminto/análisis , ARN de Helminto/genética
15.
Nat Commun ; 12(1): 1441, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664268

RESUMEN

Inheritance and clearance of maternal mRNAs are two of the most critical events required for animal early embryonic development. However, the mechanisms regulating this process are still largely unknown. Here, we show that together with maternal mRNAs, C. elegans embryos inherit a complementary pool of small non-coding RNAs that facilitate the cleavage and removal of hundreds of maternal mRNAs. These antisense small RNAs are loaded into the maternal catalytically-active Argonaute CSR-1 and cleave complementary mRNAs no longer engaged in translation in somatic blastomeres. Induced depletion of CSR-1 specifically during embryonic development leads to embryonic lethality in a slicer-dependent manner and impairs the degradation of CSR-1 embryonic mRNA targets. Given the conservation of Argonaute catalytic activity, we propose that a similar mechanism operates to clear maternal mRNAs during the maternal-to-zygotic transition across species.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Desarrollo Embrionario/fisiología , ARN Mensajero Almacenado/genética , ARN Pequeño no Traducido/genética , Animales , Blastómeros/citología , Caenorhabditis elegans/genética , Embrión no Mamífero/citología , Regulación del Desarrollo de la Expresión Génica/genética
16.
Nat Commun ; 12(1): 3492, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108460

RESUMEN

In the Caenorhabditis elegans germline, thousands of mRNAs are concomitantly expressed with antisense 22G-RNAs, which are loaded into the Argonaute CSR-1. Despite their essential functions for animal fertility and embryonic development, how CSR-1 22G-RNAs are produced remains unknown. Here, we show that CSR-1 slicer activity is primarily involved in triggering the synthesis of small RNAs on the coding sequences of germline mRNAs and post-transcriptionally regulates a fraction of targets. CSR-1-cleaved mRNAs prime the RNA-dependent RNA polymerase, EGO-1, to synthesize 22G-RNAs in phase with translating ribosomes, in contrast to other 22G-RNAs mostly synthesized in germ granules. Moreover, codon optimality and efficient translation antagonize CSR-1 slicing and 22G-RNAs biogenesis. We propose that codon usage differences encoded into mRNA sequences might be a conserved strategy in eukaryotes to regulate small RNA biogenesis and Argonaute targeting.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Uso de Codones , Biosíntesis de Proteínas , ARN Interferente Pequeño/biosíntesis , Animales , Proteínas Argonautas/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Catálisis , Citosol/metabolismo , Mutación , Oogonios/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Ribosomas/metabolismo
17.
Nat Commun ; 12(1): 7002, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853314

RESUMEN

During embryogenesis, the genome shifts from transcriptionally quiescent to extensively active in a process known as Zygotic Genome Activation (ZGA). In Drosophila, the pioneer factor Zelda is known to be essential for the progression of development; still, it regulates the activation of only a small subset of genes at ZGA. However, thousands of genes do not require Zelda, suggesting that other mechanisms exist. By conducting GRO-seq, HiC and ChIP-seq in Drosophila embryos, we demonstrate that up to 65% of zygotically activated genes are enriched for the histone variant H2A.Z. H2A.Z enrichment precedes ZGA and RNA Polymerase II loading onto chromatin. In vivo knockdown of maternally contributed Domino, a histone chaperone and ATPase, reduces H2A.Z deposition at transcription start sites, causes global downregulation of housekeeping genes at ZGA, and compromises the establishment of the 3D chromatin structure. We infer that H2A.Z is essential for the de novo establishment of transcriptional programs during ZGA via chromatin reorganization.


Asunto(s)
Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Genoma , Histonas/clasificación , Histonas/genética , Histonas/metabolismo , Cigoto/metabolismo , Adenosina Trifosfatasas , Animales , División Celular , Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Regulación hacia Abajo , Drosophila , Epigenómica , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Esenciales , Chaperonas de Histonas , Masculino , ARN Polimerasa II , Sitio de Iniciación de la Transcripción , Activación Transcripcional
18.
mBio ; 12(2)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33906926

RESUMEN

Posttranscriptional regulation of gene expression is central to the development and replication of the malaria parasite, Plasmodium falciparum, within its human host. The timely coordination of RNA maturation, homeostasis, and protein synthesis relies on the recruitment of specific RNA-binding proteins to their cognate target mRNAs. One possible mediator of such mRNA-protein interactions is the N6-methylation of adenosines (m6A), a prevalent mRNA modification of parasite mRNA transcripts. Here, we used RNA protein pulldowns, RNA modification mass spectrometry, and quantitative proteomics to identify two P. falciparum YTH domain proteins (PfYTH.1 and PfYTH.2) as m6A-binding proteins during parasite blood-stage development. Interaction proteomics revealed that PfYTH.2 associates with the translation machinery, including multiple subunits of the eukaryotic initiation factor 3 (eIF3) and poly(A)-binding proteins. Furthermore, knock sideways of PfYTH.2 coupled with ribosome profiling showed that this m6A reader is essential for parasite survival and is a repressor of mRNA translation. Together, these data reveal an important missing link in the m6A-mediated mechanism controlling mRNA translation in a unicellular eukaryotic pathogen.IMPORTANCE Infection with the unicellular eukaryotic pathogen Plasmodium falciparum causes malaria, a mosquito-borne disease affecting more than 200 million and killing 400,000 people each year. Underlying the asexual replication within human red blood cells is a tight regulatory network of gene expression and protein synthesis. A widespread mechanism of posttranscriptional gene regulation is the chemical modification of adenosines (m6A), through which the fate of individual mRNA transcripts can be changed. Here, we report on the protein machinery that "reads" this modification and "translates" it into a functional outcome. We provide mechanistic insight into one m6A reader protein and show that it interacts with the translational machinery and acts as a repressor of mRNA translation. This m6A-mediated phenotype has not been described in other eukaryotes as yet, and the functional characterization of the m6A interactome will ultimately open new avenues to combat the disease.


Asunto(s)
Regulación de la Expresión Génica , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Adenosina/metabolismo , Eritrocitos/parasitología , Humanos , Malaria Falciparum/parasitología , Metilación , Plasmodium falciparum/metabolismo , Proteómica , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo
19.
Nucleic Acids Res ; 36(2): 532-8, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18048414

RESUMEN

Post-transcriptional gene silencing (PTGS) pathways play a role in genome defence and have been extensively studied, yet how repetitive elements in the genome are identified is still unclear. It has been suggested that they may produce aberrant transcripts (aRNA) that are converted by an RNA-dependent RNA polymerase (RdRP) into double-stranded RNA (dsRNA), the essential intermediate of PTGS. However, how RdRP enzymes recognize aberrant transcripts remains a key question. Here we show that in Neurospora crassa the RdRP QDE-1 interacts with Replication Protein A (RPA), part of the DNA replication machinery. We show that both QDE-1 and RPA are nuclear proteins and that QDE-1 is specifically recruited onto the repetitive transgenic loci. We speculate that this localization of QDE-1 could allow the in situ production of dsRNA using transgenic nascent transcripts as templates, as in other systems. Supporting a link between the two proteins, we found that the accumulation of short interfering RNAs (siRNAs), the hallmark of silencing, is dependent on an ongoing DNA synthesis. The interaction between QDE-1 and RPA is important since it should guide further studies aimed at understanding the specificity of the RdRP and it provides for the first time a potential link between a PTGS component and the DNA replication machinery.


Asunto(s)
Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Neurospora crassa/genética , Interferencia de ARN , ARN Polimerasa Dependiente del ARN/metabolismo , Proteína de Replicación A/metabolismo , ADN de Hongos/biosíntesis , ADN de Hongos/química , Genes Esenciales , Neurospora crassa/enzimología , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Proteína de Replicación A/genética , Transgenes
20.
Nat Cell Biol ; 22(2): 235-245, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32015436

RESUMEN

PIWI-interacting RNAs (piRNAs) promote fertility in many animals. However, whether this is due to their conserved role in repressing repetitive elements (REs) remains unclear. Here, we show that the progressive loss of fertility in Caenorhabditis elegans lacking piRNAs is not caused by derepression of REs or other piRNA targets but, rather, is mediated by epigenetic silencing of all of the replicative histone genes. In the absence of piRNAs, downstream components of the piRNA pathway relocalize from germ granules and piRNA targets to histone mRNAs to synthesize antisense small RNAs (sRNAs) and induce transgenerational silencing. Removal of the downstream components of the piRNA pathway restores histone mRNA expression and fertility in piRNA mutants, and the inheritance of histone sRNAs in wild-type worms adversely affects their fertility for multiple generations. We conclude that sRNA-mediated silencing of histone genes impairs the fertility of piRNA mutants and may serve to maintain piRNAs across evolution.


Asunto(s)
Proteínas Argonautas/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Silenciador del Gen , Histonas/genética , ARN Interferente Pequeño/genética , Animales , Animales Modificados Genéticamente , Proteínas Argonautas/deficiencia , Proteínas Argonautas/metabolismo , Evolución Biológica , Sistemas CRISPR-Cas , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fertilidad/genética , Edición Génica , Histonas/metabolismo , Patrón de Herencia , Mutación , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA