Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(14): 3638-3651.e18, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838667

RESUMEN

Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.


Asunto(s)
ADN Polimerasa I , ADN Primasa , Complejo Shelterina , Proteínas de Unión a Telómeros , Telómero , Humanos , Proteínas de Unión a Telómeros/metabolismo , Complejo Shelterina/metabolismo , Telómero/metabolismo , Fosforilación , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Polimerasa I/metabolismo , Microscopía por Crioelectrón , Telomerasa/metabolismo , Modelos Moleculares
2.
Nat Rev Mol Cell Biol ; 22(4): 283-298, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33564154

RESUMEN

The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Animales , Cromosomas/metabolismo , ADN/metabolismo , Humanos , Telomerasa/metabolismo
3.
Cell ; 175(1): 14-17, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30217358

RESUMEN

This year's Lasker-Koshland Special Achievement Award is given to Joan Argetsinger Steitz for her RNA research discoveries and her exemplary international leadership.


Asunto(s)
ARN/metabolismo , ARN/fisiología , Distinciones y Premios , Investigación Biomédica , Historia del Siglo XXI , Humanos , ARN/historia , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/fisiología
4.
Cell ; 166(5): 1188-1197.e9, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27523609

RESUMEN

Telomerase maintains genome integrity by adding repetitive DNA sequences to the chromosome ends in actively dividing cells, including 90% of all cancer cells. Recruitment of human telomerase to telomeres occurs during S-phase of the cell cycle, but the molecular mechanism of the process is only partially understood. Here, we use CRISPR genome editing and single-molecule imaging to track telomerase trafficking in nuclei of living human cells. We demonstrate that telomerase uses three-dimensional diffusion to search for telomeres, probing each telomere thousands of times each S-phase but only rarely forming a stable association. Both the transient and stable association events depend on the direct interaction of the telomerase protein TERT with the telomeric protein TPP1. Our results reveal that telomerase recruitment to telomeres is driven by dynamic interactions between the rapidly diffusing telomerase and the chromosome end.


Asunto(s)
Telomerasa/metabolismo , Telómero/enzimología , Transporte Activo de Núcleo Celular , Proteínas Bacterianas , Proteína 9 Asociada a CRISPR , Línea Celular , Núcleo Celular/enzimología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cuerpos Enrollados/enzimología , Endonucleasas , Edición Génica , Genoma Humano , Células HeLa , Humanos , Imagenología Tridimensional , Dominios Proteicos , Fase S , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Complejo Shelterina , Telomerasa/química , Telómero/química , Homeostasis del Telómero , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo
5.
Cell ; 165(5): 1267-1279, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27180905

RESUMEN

RNA has the intrinsic property to base pair, forming complex structures fundamental to its diverse functions. Here, we develop PARIS, a method based on reversible psoralen crosslinking for global mapping of RNA duplexes with near base-pair resolution in living cells. PARIS analysis in three human and mouse cell types reveals frequent long-range structures, higher-order architectures, and RNA-RNA interactions in trans across the transcriptome. PARIS determines base-pairing interactions on an individual-molecule level, revealing pervasive alternative conformations. We used PARIS-determined helices to guide phylogenetic analysis of RNA structures and discovered conserved long-range and alternative structures. XIST, a long noncoding RNA (lncRNA) essential for X chromosome inactivation, folds into evolutionarily conserved RNA structural domains that span many kilobases. XIST A-repeat forms complex inter-repeat duplexes that nucleate higher-order assembly of the key epigenetic silencing protein SPEN. PARIS is a generally applicable and versatile method that provides novel insights into the RNA structurome and interactome. VIDEO ABSTRACT.


Asunto(s)
Ficusina/química , ARN Bicatenario/química , Animales , Emparejamiento Base , Células HEK293 , Células HeLa , Humanos , Ratones , Células Madre Embrionarias de Ratones , ARN Largo no Codificante/química
6.
Mol Cell ; 83(3): 320-323, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736305

RESUMEN

The Central Dogma has been a useful conceptualization of the transfer of genetic information, and our understanding of the detailed mechanisms involved in that transfer continues to evolve. Here, we speak to several scientists about their research, how it influences our understanding of information transfer, and questions for the future.

7.
Annu Rev Biochem ; 84: 355-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25494299

RESUMEN

Members of the FET protein family, consisting of FUS, EWSR1, and TAF15, bind to RNA and contribute to the control of transcription, RNA processing, and the cytoplasmic fates of messenger RNAs in metazoa. FET proteins can also bind DNA, which may be important in transcription and DNA damage responses. FET proteins are of medical interest because chromosomal rearrangements of their genes promote various sarcomas and because point mutations in FUS or TAF15 can cause neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar dementia. Recent results suggest that both the normal and pathological effects of FET proteins are modulated by low-complexity or prion-like domains, which can form higher-order assemblies with novel interaction properties. Herein, we review FET proteins with an emphasis on how the biochemical properties of FET proteins may relate to their biological functions and to pathogenesis.


Asunto(s)
Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transporte Activo de Núcleo Celular , Animales , Reparación del ADN , Humanos , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Procesamiento Postranscripcional del ARN , Proteína FUS de Unión a ARN/química , Proteínas de Unión al ARN/química , Factores Asociados con la Proteína de Unión a TATA/química , Transcripción Genética
8.
Cell ; 157(1): 77-94, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24679528

RESUMEN

Noncoding RNAs (ncRNAs) accomplish a remarkable variety of biological functions. They regulate gene expression at the levels of transcription, RNA processing, and translation. They protect genomes from foreign nucleic acids. They can guide DNA synthesis or genome rearrangement. For ribozymes and riboswitches, the RNA structure itself provides the biological function, but most ncRNAs operate as RNA-protein complexes, including ribosomes, snRNPs, snoRNPs, telomerase, microRNAs, and long ncRNAs. Many, though not all, ncRNAs exploit the power of base pairing to selectively bind and act on other nucleic acids. Here, we describe the pathway of ncRNA research, where every established "rule" seems destined to be overturned.


Asunto(s)
ARN no Traducido/química , ARN no Traducido/metabolismo , Animales , Cromatina/química , Cromatina/metabolismo , Regulación de la Expresión Génica , Genoma , Humanos , ARN Catalítico/química , ARN Catalítico/metabolismo , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo
9.
Mol Cell ; 81(3): 488-501.e9, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33338397

RESUMEN

Polycomb repressive complex 2 (PRC2) silences expression of developmental transcription factors in pluripotent stem cells by methylating lysine 27 on histone H3. Two mutually exclusive subcomplexes, PRC2.1 and PRC2.2, are defined by the set of accessory proteins bound to the core PRC2 subunits. Here we introduce separation-of-function mutations into the SUZ12 subunit of PRC2 to drive it into a PRC2.1 or 2.2 subcomplex in human induced pluripotent stem cells (iPSCs). We find that PRC2.2 occupies polycomb target genes at low levels and that homeobox transcription factors are upregulated when this complex is exclusively present. In contrast with previous studies, we find that chromatin occupancy of PRC2 increases drastically when it is forced to form PRC2.1. Additionally, several cancer-associated mutations also coerce formation of PRC2.1. We suggest that PRC2 chromatin occupancy can be altered in the context of disease or development by tuning the ratio of PRC2.1 to PRC2.2.


Asunto(s)
Cromatina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Neoplasias/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Unión Competitiva , Cromatina/genética , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Mutación , Proteínas de Neoplasias/genética , Complejo Represivo Polycomb 2/genética , Unión Proteica , Factores de Transcripción/genética
11.
Nature ; 608(7924): 819-825, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35831508

RESUMEN

Telomeres, the natural ends of linear chromosomes, comprise repeat-sequence DNA and associated proteins1. Replication of telomeres allows continued proliferation of human stem cells and immortality of cancer cells2. This replication requires telomerase3 extension of the single-stranded DNA (ssDNA) of the telomeric G-strand ((TTAGGG)n); the synthesis of the complementary C-strand ((CCCTAA)n) is much less well characterized. The CST (CTC1-STN1-TEN1) protein complex, a DNA polymerase α-primase accessory factor4,5, is known to be required for telomere replication in vivo6-9, and the molecular analysis presented here reveals key features of its mechanism. We find that human CST uses its ssDNA-binding activity to specify the origins for telomeric C-strand synthesis by bound Polα-primase. CST-organized DNA polymerization can copy a telomeric DNA template that folds into G-quadruplex structures, but the challenges presented by this template probably contribute to telomere replication problems observed in vivo. Combining telomerase, a short telomeric ssDNA primer and CST-Polα-primase gives complete telomeric DNA replication, resulting in the same sort of ssDNA 3' overhang found naturally on human telomeres. We conclude that the CST complex not only terminates telomerase extension10,11 and recruits Polα-primase to telomeric ssDNA4,12,13 but also orchestrates C-strand synthesis. Because replication of the telomere has features distinct from replication of the rest of the genome, targeting telomere-replication components including CST holds promise for cancer therapeutics.


Asunto(s)
Replicación del ADN , Replicón , Complejo Shelterina , Telómero , ADN Primasa/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , G-Cuádruplex , Humanos , Replicón/genética , Complejo Shelterina/genética , Complejo Shelterina/metabolismo , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo
12.
Cell ; 148(5): 922-32, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22365814

RESUMEN

In Saccharomyces cerevisiae, the Ku heterodimer contributes to telomere maintenance as a component of telomeric chromatin and as an accessory subunit of telomerase. How Ku binding to double-stranded DNA (dsDNA) and to telomerase RNA (TLC1) promotes Ku's telomeric functions is incompletely understood. We demonstrate that deletions designed to constrict the DNA-binding ring of Ku80 disrupt nonhomologous end-joining (NHEJ), telomeric gene silencing, and telomere length maintenance, suggesting that these functions require Ku's DNA end-binding activity. Contrary to the current model, a mutant Ku with low affinity for dsDNA also loses affinity for TLC1 both in vitro and in vivo. Competition experiments reveal that wild-type Ku binds dsDNA and TLC1 mutually exclusively. Cells expressing the mutant Ku are deficient in nuclear accumulation of TLC1, as expected from the RNA-binding defect. These findings force reconsideration of the mechanisms by which Ku assists in recruiting telomerase to natural telomeres and broken chromosome ends. PAPERCLIP:


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Secuencia de Bases , Proteínas de Unión al ADN/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Saccharomyces cerevisiae/química , Eliminación de Secuencia , Telomerasa/química , Telómero/genética
13.
Genes Dev ; 33(19-20): 1416-1427, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31488576

RESUMEN

Polycomb-repressive complex 2 (PRC2) is a histone methyltransferase that is critical for regulating transcriptional repression in mammals. Its catalytic subunit, EZH2, is responsible for the trimethylation of H3K27 and also undergoes automethylation. Using mass spectrometry analysis of recombinant human PRC2, we identified three methylated lysine residues (K510, K514, and K515) on a disordered but highly conserved loop of EZH2. Methylation of these lysines increases PRC2 histone methyltransferase activity, whereas their mutation decreases activity in vitro. De novo histone methylation in an EZH2 knockout cell line is greatly impeded by mutation of the automethylation lysines. EZH2 automethylation occurs intramolecularly (in cis) by methylation of a pseudosubstrate sequence on a flexible loop. This posttranslational modification and cis regulation of PRC2 are analogous to the activation of many protein kinases by autophosphorylation. We propose that EZH2 automethylation allows PRC2 to modulate its histone methyltransferase activity by sensing histone H3 tails, SAM concentration, and perhaps other effectors.


Asunto(s)
Histonas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Activación Enzimática/fisiología , Regulación de la Expresión Génica , Humanos , Lisina/metabolismo , Metilación , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo
14.
RNA ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918043

RESUMEN

Telomere replication is essential for continued proliferation of human cells, such as stem cells and cancer cells. Telomerase lengthens the telomeric G-strand, while C-strand replication is accomplished by CST-polymerase α -primase (CST-PP). Replication of both strands is inhibited by formation of G-quadruplex (GQ) structures in the G-rich single-stranded DNA. TMPyP4 and pyridostatin (PDS), which stabilize GQ structures in both DNA and RNA, inhibit telomerase in vitro, and they cause telomere shortening in human cells that has been attributed to telomerase inhibition. Here, we show that TMPyP4 and PDS also inhibit C-strand synthesis by stabilizing DNA secondary structures and thereby preventing CST-PP from binding to telomeric DNA. We also show that these small molecules inhibit CST-PP binding to a DNA sequence containing no consecutive guanine residues, which is unlikely to form GQs. Thus, while these "telomerase inhibitors" indeed inhibit telomerase, they are also robust inhibitors of telomeric C-strand synthesis. Furthermore, given their limited specificity for GQ structures, they may disrupt many other protein-nucleic acid interactions in human cells.

15.
RNA ; 30(8): 1089-1105, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38760076

RESUMEN

Many transcription factors (TFs) have been shown to bind RNA, leading to open questions regarding the mechanism(s) of this RNA binding and its role in regulating TF activities. Here, we use biophysical assays to interrogate the k on, k off, and K d for DNA and RNA binding of two model human TFs, ERα and Sox2. Unexpectedly, we found that both proteins exhibit multiphasic nucleic acid-binding kinetics. We propose that Sox2 RNA and DNA multiphasic binding kinetics can be explained by a conventional model for sequential Sox2 monomer association and dissociation. In contrast, ERα nucleic acid binding exhibited biphasic dissociation paired with novel triphasic association behavior, in which two apparent binding transitions are separated by a 10-20 min "lag" phase depending on protein concentration. We considered several conventional models for the observed kinetic behavior, none of which adequately explained all the ERα nucleic acid-binding data. Instead, simulations with a model incorporating sequential ERα monomer association, ERα nucleic acid complex isomerization, and product "feedback" on isomerization rate recapitulated the general kinetic trends for both ERα DNA and RNA binding. Collectively, our findings reveal that Sox2 and ERα bind RNA and DNA with previously unappreciated multiphasic binding kinetics, and that their reaction mechanisms differ with ERα binding nucleic acids via a novel reaction mechanism.


Asunto(s)
ADN , Receptor alfa de Estrógeno , Unión Proteica , ARN , Factores de Transcripción SOXB1 , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/química , Humanos , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/química , ADN/metabolismo , ADN/química , ARN/metabolismo , ARN/química , ARN/genética , Cinética , Sitios de Unión
16.
Proc Natl Acad Sci U S A ; 120(26): e2220537120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339225

RESUMEN

We previously demonstrated that the polycomb repressive complex 2 chromatin-modifying enzyme can directly transfer between RNA and DNA without a free-enzyme intermediate state. Simulations suggested that such a direct transfer mechanism may be generally necessary for RNA to recruit proteins to chromatin, but the prevalence of direct transfer capability is unknown. Herein, we used fluorescence polarization assays and observed direct transfer for several well-characterized nucleic acid-binding proteins: three-prime repair exonuclease 1, heterogeneous nuclear ribonucleoprotein U, Fem-3-binding factor 2, and MS2 bacteriophage coat protein. For TREX1, the direct transfer mechanism was additionally observed in single-molecule assays, and the data suggest that direct transfer occurs through an unstable ternary intermediate with partially associated polynucleotides. Generally, direct transfer could allow many DNA- and RNA-binding proteins to conduct a one-dimensional search for their target sites. Furthermore, proteins that bind both RNA and DNA might be capable of readily translocating between those ligands.


Asunto(s)
Proteínas de Unión al ADN , Polinucleótidos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ARN/genética , Proteínas de Unión al ARN/genética , ADN/metabolismo , Cromatina
17.
Proc Natl Acad Sci U S A ; 120(23): e2220528120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252986

RESUMEN

The chromatin-modifying enzyme, Polycomb Repressive Complex 2 (PRC2), deposits the H3K27me3 epigenetic mark to negatively regulate expression at numerous target genes, and this activity has been implicated in embryonic development, cell differentiation, and various cancers. A biological role for RNA binding in regulating PRC2 histone methyltransferase activity is generally accepted, but the nature and mechanism of this relationship remains an area of active investigation. Notably, many in vitro studies demonstrate that RNA inhibits PRC2 activity on nucleosomes through mutually antagonistic binding, while some in vivo studies indicate that PRC2's RNA-binding activity is critical for facilitating its biological function(s). Here we use biochemical, biophysical, and computational approaches to interrogate PRC2's RNA and DNA-binding kinetics. Our findings demonstrate that PRC2-polynucleotide dissociation rates are dependent on the concentration of free ligand, indicating the potential for direct transfer between nucleic acid ligands without a free-enzyme intermediate. Direct transfer explains the variation in previously reported dissociation kinetics, allows reconciliation of prior in vitro and in vivo studies, and expands the potential mechanisms of RNA-mediated PRC2 regulation. Moreover, simulations indicate that such a direct transfer mechanism could be obligatory for RNA to recruit proteins to chromatin.


Asunto(s)
Cromatina , Complejo Represivo Polycomb 2 , Cromatina/genética , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , ARN/genética , ARN/metabolismo , ADN/genética , ADN/metabolismo , Nucleosomas/genética , Unión Proteica
18.
Genes Dev ; 32(11-12): 794-805, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29891558

RESUMEN

Polycomb-repressive complex 2 (PRC2) is a histone methyltransferase that promotes epigenetic gene silencing, but the dynamics of its interactions with chromatin are largely unknown. Here we quantitatively measured the binding of PRC2 to chromatin in human cancer cells. Genome editing of a HaloTag into the endogenous EZH2 and SUZ12 loci and single-particle tracking revealed that ∼80% of PRC2 rapidly diffuses through the nucleus, while ∼20% is chromatin-bound. Short-term treatment with a small molecule inhibitor of the EED-H3K27me3 interaction had no immediate effect on the chromatin residence time of PRC2. In contrast, separation-of-function mutants of SUZ12, which still form the core PRC2 complex but cannot bind accessory proteins, revealed a major contribution of AEBP2 and PCL homolog proteins to chromatin binding. We therefore quantified the dynamics of this chromatin-modifying complex in living cells and separated the contributions of H3K27me3 histone marks and various PRC2 subunits to recruitment of PRC2 to chromatin.


Asunto(s)
Cromatina/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Subunidades de Proteína/metabolismo , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Edición Génica , Células HEK293 , Humanos , Indanos/farmacología , Proteínas de Neoplasias , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/antagonistas & inhibidores , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Sulfonamidas/farmacología , Factores de Transcripción
19.
RNA ; 29(3): 346-360, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574982

RESUMEN

Aberrant DNA methylation is one of the earliest hallmarks of cancer. DNMT1 is responsible for methylating newly replicated DNA, but the precise regulation of DNMT1 to ensure faithful DNA methylation remains poorly understood. A link between RNA and chromatin-associated proteins has recently emerged, and several studies have shown that DNMT1 can be regulated by a variety of RNAs. In this study, we have confirmed that human DNMT1 indeed interacts with multiple RNAs, including its own nuclear mRNA. Unexpectedly, we found that DNMT1 exhibits a strong and specific affinity for GU-rich RNAs that form a pUG-fold, a noncanonical G-quadruplex. We find that pUG-fold-capable RNAs inhibit DNMT1 activity by inhibiting binding of hemimethylated DNA, and we additionally provide evidence for multiple RNA binding modes with DNMT1. Together, our data indicate that a human chromatin-associated protein binds to and is regulated by pUG-fold RNA.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1 , Conformación de Ácido Nucleico , ARN , Humanos , Cromatina/metabolismo , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ARN/genética , ARN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo
20.
Nat Rev Mol Cell Biol ; 14(2): 69-82, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23299958

RESUMEN

Telomeres, the ends of linear eukaryotic chromosomes, are characterized by the presence of multiple repeats of a short DNA sequence. This telomeric DNA is protected from illicit repair by telomere-associated proteins, which in mammals form the shelterin complex. Replicative polymerases are unable to synthesize DNA at the extreme ends of chromosomes, but in unicellular eukaryotes such as yeast and in mammalian germ cells and stem cells, telomere length is maintained by a ribonucleoprotein enzyme known as telomerase. Recent work has provided insights into the mechanisms of telomerase recruitment to telomeres, highlighting the contribution of telomere-associated proteins, including TPP1 in humans, Ccq1 in Schizosaccharomyces pombe and Cdc13 and Ku70-Ku80 in Saccharomyces cerevisiae.


Asunto(s)
Cromosomas/química , Telomerasa/metabolismo , Telómero/metabolismo , Animales , Cromosomas/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Unión Proteica/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Complejo Shelterina , Telómero/química , Telómero/genética , Proteínas de Unión a Telómeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA