Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Immunol ; 202(2): 484-493, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30530483

RESUMEN

Muscle dysfunction is common in patients with adult respiratory distress syndrome and is associated with morbidity that can persist for years after discharge. In a mouse model of severe influenza A pneumonia, we found the proinflammatory cytokine IL-6 was necessary for the development of muscle dysfunction. Treatment with a Food and Drug Administration-approved Ab antagonist to the IL-6R (tocilizumab) attenuated the severity of influenza A-induced muscle dysfunction. In cultured myotubes, IL-6 promoted muscle degradation via JAK/STAT, FOXO3a, and atrogin-1 upregulation. Consistent with these findings, atrogin-1+/- and atrogin-1-/- mice had attenuated muscle dysfunction following influenza infection. Our data suggest that inflammatory endocrine signals originating from the injured lung activate signaling pathways in the muscle that induce dysfunction. Inhibiting these pathways may limit morbidity in patients with influenza A pneumonia and adult respiratory distress syndrome.


Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Interleucina-6/metabolismo , Pulmón/fisiología , Proteínas Musculares/metabolismo , Músculos/patología , Infecciones por Orthomyxoviridae/inmunología , Neumonía Viral/inmunología , Proteínas Ligasas SKP Cullina F-box/metabolismo , Síndrome Debilitante/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Proteína Forkhead Box O3/metabolismo , Humanos , Interleucina-6/genética , Quinasas Janus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Ligasas SKP Cullina F-box/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal
2.
Am J Respir Cell Mol Biol ; 59(1): 36-44, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29337590

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) exists as both intracellular NAMPT and extracellular NAMPT (eNAMPT) proteins. eNAMPT is secreted into the blood and functions as a cytokine/enzyme (cytozyme) that activates NF-κB signaling via ligation of Toll-like receptor 4 (TLR4), further serving as a biomarker for inflammatory lung disorders such as acute respiratory distress syndrome. In contrast, intracellular NAMPT is involved in nicotinamide mononucleotide synthesis and has been implicated in the regulation of cellular apoptosis, although the exact mechanisms for this regulation are poorly understood. We examined the role of NAMPT in TNF-α-induced human lung endothelial cell (EC) apoptosis and demonstrated that reduced NAMPT expression (siRNA) increases EC susceptibility to TNF-α-induced apoptosis as reflected by PARP-1 cleavage and caspase-3 activation. In contrast, overexpression of NAMPT served to reduce degrees of TNF-α-induced EC apoptosis. Inhibition of nicotinamide mononucleotide synthesis by FK866 (a selective NAMPT enzymatic inhibitor) failed to alter TNF-α-induced human lung EC apoptosis, suggesting that NAMPT-dependent NAD+ generation is unlikely to be involved in regulation of TNF-α-induced EC apoptosis. We next confirmed that TNF-α-induced EC apoptosis is attributable to NAMPT secretion into the EC culture media and subsequent eNAMPT ligation of TLR4 on the EC membrane surface. Silencing of NAMPT expression, direct neutralization of secreted eNAMPT by an NAMPT-specific polyclonal antibody (preventing TLR4 ligation), or direct TLR4 antagonism all served to significantly increase EC susceptibility to TNF-α-induced EC apoptosis. Together, these studies provide novel insights into NAMPT contributions to lung inflammatory events and to novel mechanisms of EC apoptosis regulation.


Asunto(s)
Apoptosis/efectos de los fármacos , Citocinas/metabolismo , Células Endoteliales/enzimología , Pulmón/patología , Nicotinamida Fosforribosiltransferasa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Biomarcadores/metabolismo , Citocinas/farmacología , Citoprotección/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Humanos , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/farmacología , Proteínas Recombinantes/farmacología
3.
Am J Respir Cell Mol Biol ; 57(1): 28-34, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28085493

RESUMEN

There is increased awareness that patients with lung diseases develop muscle dysfunction. Muscle dysfunction is a major contributor to a decreased quality of life in patients with chronic pulmonary diseases. Furthermore, muscle dysfunction exacerbates lung disease outcome, as a decrease in muscle mass and function are associated with increased morbidity, often long after critical illness or lung disease has been resolved. As we are learning more about the role of metabolism in health and disease, we are appreciating more the direct role of metabolism in skeletal muscle homeostasis. Altered metabolism is associated with numerous skeletal muscle pathologies and, conversely, skeletal muscle diseases are associated with significant changes in metabolic pathways. In this review, we highlight the role of metabolism in the regulation of skeletal muscle homeostasis. Understanding the metabolic pathways that underlie skeletal muscle wasting is of significant clinical interest for critically ill patients as well as patients with chronic lung disease, in which proper skeletal muscle function is essential to disease outcome.


Asunto(s)
Homeostasis , Enfermedades Pulmonares/metabolismo , Músculo Esquelético/metabolismo , Animales , Metabolismo Energético , Salud , Humanos , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología
4.
J Biol Chem ; 290(14): 9183-94, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691571

RESUMEN

Patients with chronic obstructive pulmonary disease, acute lung injury, and critical care illness may develop hypercapnia. Many of these patients often have muscle dysfunction which increases morbidity and impairs their quality of life. Here, we investigated whether hypercapnia leads to skeletal muscle atrophy. Mice exposed to high CO2 had decreased skeletal muscle wet weight, fiber diameter, and strength. Cultured myotubes exposed to high CO2 had reduced fiber diameter, protein/DNA ratios, and anabolic capacity. High CO2 induced the expression of MuRF1 in vivo and in vitro, whereas MuRF1(-/-) mice exposed to high CO2 did not develop muscle atrophy. AMP-activated kinase (AMPK), a metabolic sensor, was activated in myotubes exposed to high CO2, and loss-of-function studies showed that the AMPKα2 isoform is necessary for muscle-specific ring finger protein 1 (MuRF1) up-regulation and myofiber size reduction. High CO2 induced AMPKα2 activation, triggering the phosphorylation and nuclear translocation of FoxO3a, and leading to an increase in MuRF1 expression and myotube atrophy. Accordingly, we provide evidence that high CO2 activates skeletal muscle atrophy via AMPKα2-FoxO3a-MuRF1, which is of biological and potentially clinical significance in patients with lung diseases and hypercapnia.


Asunto(s)
Adenilato Quinasa/metabolismo , Dióxido de Carbono/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/etiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Secuencia de Bases , Línea Celular , Cartilla de ADN , Proteína Forkhead Box O3 , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas de Motivos Tripartitos , Regulación hacia Arriba
5.
Am J Respir Cell Mol Biol ; 51(5): 660-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24821571

RESUMEN

Increased nicotinamide phosphoribosyltransferase (NAMPT) transcription is mechanistically linked to ventilator-induced inflammatory lung injury (VILI), with VILI severity attenuated by reduced NAMPT bioavailability. The molecular mechanisms of NAMPT promoter regulation in response to excessive mechanical stress remain poorly understood. The objective of this study was to define the contribution of specific transcription factors, acute respiratory distress syndrome (ARDS)-associated single nucleotide polymorphisms (SNPs), and promoter demethylation to NAMPT transcriptional regulation in response to mechanical stress. In vivo NAMPT protein expression levels were examined in mice exposed to high tidal volume mechanical ventilation. In vitro NAMPT expression levels were examined in human pulmonary artery endothelial cells exposed to 5 or 18% cyclic stretch (CS), with NAMPT promoter activity assessed using NAMPT promoter luciferase reporter constructs with a series of nested deletions. In vitro NAMPT transcriptional regulation was further characterized by measuring luciferase activity, DNA demethylation, and chromatin immunoprecipitation. VILI-challenged mice exhibited significantly increased NAMPT expression in bronchoalveolar lavage leukocytes and in lung endothelium. A mechanical stress-inducible region (MSIR) was identified in the NAMPT promoter from -2,428 to -2,128 bp. This MSIR regulates NAMPT promoter activity, mRNA expression, and signal transducer and activator of transcription 5 (STAT5) binding, which is significantly increased by 18% CS. In addition, NAMPT promoter activity was increased by pharmacologic promoter demethylation and inhibited by STAT5 silencing. ARDS-associated NAMPT promoter SNPs rs59744560 (-948G/T) and rs7789066 (-2,422A/G) each significantly elevated NAMPT promoter activity in response to 18% CS in a STAT5-dependent manner. Our results show that NAMPT is a key novel ARDS therapeutic target and candidate gene with genetic/epigenetic transcriptional regulation in response to excessive mechanical stress.


Asunto(s)
Citocinas/genética , Células Endoteliales/fisiología , Nicotinamida Fosforribosiltransferasa/genética , Síndrome de Dificultad Respiratoria/genética , Factor de Transcripción STAT5/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Regiones no Traducidas 5'/genética , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Animales , Células Cultivadas , Citocinas/fisiología , Metilación de ADN/fisiología , Modelos Animales de Enfermedad , Células Endoteliales/citología , Epigénesis Genética/genética , Regulación de la Expresión Génica/fisiología , Variación Genética/genética , Humanos , Masculino , Ratones Endogámicos C57BL , Nicotinamida Fosforribosiltransferasa/fisiología , Regiones Promotoras Genéticas/fisiología , Arteria Pulmonar/citología , ARN Interferente Pequeño/genética , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/metabolismo , Estrés Mecánico
6.
Ann Neurol ; 73(4): 481-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23440719

RESUMEN

OBJECTIVE: Duchenne muscular dystrophy (DMD) displays a clinical range that is not fully explained by the primary DMD mutations. Ltbp4, encoding latent transforming growth factor-ß binding protein 4, was previously discovered in a genome-wide scan as a modifier of murine muscular dystrophy. We sought to determine whether LTBP4 genotype influenced DMD severity in a large patient cohort. METHODS: We analyzed nonsynonymous single nucleotide polymorphisms (SNPs) from human LTBP4 in 254 nonambulatory subjects with known DMD mutations. These SNPs, V194I, T787A, T820A, and T1140M, form the VTTT and IAAM LTBP4 haplotypes. RESULTS: Individuals homozygous for the IAAM LTBP4 haplotype remained ambulatory significantly longer than those heterozygous or homozygous for the VTTT haplotype. Glucocorticoid-treated patients who were IAAM homozygotes lost ambulation at 12.5 ± 3.3 years compared to 10.7 ± 2.1 years for treated VTTT heterozygotes or homozygotes. IAAM fibroblasts exposed to transforming growth factor (TGF) ß displayed reduced phospho-SMAD signaling compared to VTTT fibroblasts, consistent with LTBP4' role as a regulator of TGFß. INTERPRETATION: LTBP4 haplotype influences age at loss of ambulation, and should be considered in the management of DMD patients.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Proteínas de Unión a TGF-beta Latente/genética , Limitación de la Movilidad , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatología , Polimorfismo de Nucleótido Simple/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Pruebas Genéticas , Genotipo , Glucocorticoides/farmacología , Humanos , Masculino , Distrofia Muscular de Duchenne/tratamiento farmacológico , Proteínas Smad/metabolismo
7.
Front Physiol ; 11: 630910, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33551852

RESUMEN

Muscle dysfunction often occurs in patients with chronic obstructive pulmonary diseases (COPD) and affects ventilatory and non-ventilatory skeletal muscles. We have previously reported that hypercapnia (elevated CO2 levels) causes muscle atrophy through the activation of the AMPKα2-FoxO3a-MuRF1 pathway. In the present study, we investigated the effect of normoxic hypercapnia on skeletal muscle regeneration. We found that mouse C2C12 myoblasts exposed to elevated CO2 levels had decreased fusion index compared to myoblasts exposed to normal CO2. Metabolic analyses of C2C12 myoblasts exposed to high CO2 showed increased oxidative phosphorylation due to increased fatty acid oxidation. We utilized the cardiotoxin-induced muscle injury model in mice exposed to normoxia and 10% CO2 for 21 days and observed that muscle regeneration was delayed. High CO2-delayed differentiation in both mouse C2C12 myoblasts and skeletal muscle after injury and was restored to control levels when cells or mice were treated with a carnitine palmitoyltransfearse-1 (CPT1) inhibitor. Taken together, our data suggest that hypercapnia leads to changes in the metabolic activity of skeletal muscle cells, which results in impaired muscle regeneration and recovery after injury.

8.
Sci Rep ; 5: 13135, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26272519

RESUMEN

Ventilator-induced inflammatory lung injury (VILI) is mechanistically linked to increased NAMPT transcription and circulating levels of nicotinamide phosphoribosyl-transferase (NAMPT/PBEF). Although VILI severity is attenuated by reduced NAMPT/PBEF bioavailability, the precise contribution of NAMPT/PBEF and excessive mechanical stress to VILI pathobiology is unknown. We now report that NAMPT/PBEF induces lung NFκB transcriptional activities and inflammatory injury via direct ligation of Toll-like receptor 4 (TLR4). Computational analysis demonstrated that NAMPT/PBEF and MD-2, a TLR4-binding protein essential for LPS-induced TLR4 activation, share ~30% sequence identity and exhibit striking structural similarity in loop regions critical for MD-2-TLR4 binding. Unlike MD-2, whose TLR4 binding alone is insufficient to initiate TLR4 signaling, NAMPT/PBEF alone produces robust TLR4 activation, likely via a protruding region of NAMPT/PBEF (S402-N412) with structural similarity to LPS. The identification of this unique mode of TLR4 activation by NAMPT/PBEF advances the understanding of innate immunity responses as well as the untoward events associated with mechanical stress-induced lung inflammation.


Asunto(s)
Citocinas/química , Citocinas/inmunología , FN-kappa B/inmunología , Nicotinamida Fosforribosiltransferasa/química , Nicotinamida Fosforribosiltransferasa/inmunología , Receptor Toll-Like 4/química , Receptor Toll-Like 4/inmunología , Lesión Pulmonar Inducida por Ventilación Mecánica/inmunología , Animales , Sitios de Unión , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Químicos , Simulación del Acoplamiento Molecular , Neumonía/inmunología , Unión Proteica , Conformación Proteica
9.
Sci Transl Med ; 6(259): 259ra144, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25338755

RESUMEN

Latent transforming growth factor-ß (TGFß) binding proteins (LTBPs) bind to inactive TGFß in the extracellular matrix. In mice, muscular dystrophy symptoms are intensified by a genetic polymorphism that changes the hinge region of LTBP, leading to increased proteolytic susceptibility and TGFß release. We have found that the hinge region of human LTBP4 was also readily proteolysed and that proteolysis could be blocked by an antibody to the hinge region. Transgenic mice were generated to carry a bacterial artificial chromosome encoding the human LTBP4 gene. These transgenic mice displayed larger myofibers, increased damage after muscle injury, and enhanced TGFß signaling. In the mdx mouse model of Duchenne muscular dystrophy, the human LTBP4 transgene exacerbated muscular dystrophy symptoms and resulted in weaker muscles with an increased inflammatory infiltrate and greater LTBP4 cleavage in vivo. Blocking LTBP4 cleavage may be a therapeutic strategy to reduce TGFß release and activity and decrease inflammation and muscle damage in muscular dystrophy.


Asunto(s)
Proteínas de Unión a TGF-beta Latente/metabolismo , Distrofia Muscular Animal/metabolismo , Secuencia de Aminoácidos , Animales , Cromosomas Artificiales Bacterianos/metabolismo , Fibrosis , Células HEK293 , Humanos , Hipertrofia , Proteínas de Unión a TGF-beta Latente/antagonistas & inhibidores , Proteínas de Unión a TGF-beta Latente/química , Ratones Endogámicos mdx , Ratones Transgénicos , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Distrofia Muscular Animal/patología , Serina Proteasas/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Transgenes
10.
FEBS J ; 280(17): 4198-209, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23551962

RESUMEN

Muscular dystrophy arises from ongoing muscle degeneration and insufficient regeneration. This imbalance leads to loss of muscle, with replacement by scar or fibrotic tissue, resulting in muscle weakness and, eventually, loss of muscle function. Human muscular dystrophy is characterized by a wide range of disease severity, even when the same genetic mutation is present. This variability implies that other factors, both genetic and environmental, modify the disease outcome. There has been an ongoing effort to define the genetic and molecular bases that influence muscular dystrophy onset and progression. Modifier genes for muscle disease have been identified through both candidate gene approaches and genome-wide surveys. Multiple lines of experimental evidence have now converged on the transforming growth factor-ß (TGF-ß) pathway as a modifier for muscular dystrophy. TGF-ß signaling is upregulated in dystrophic muscle as a result of a destabilized plasma membrane and/or an altered extracellular matrix. Given the important biological role of the TGF-ß pathway, and its role beyond muscle homeostasis, we review modifier genes that alter the TGF-ß pathway and approaches to modulate TGF-ß activity to ameliorate muscle disease.


Asunto(s)
Genes Modificadores , Distrofias Musculares/etiología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Humanos , Distrofias Musculares/metabolismo , Distrofias Musculares/patología
11.
J Clin Invest ; 119(12): 3703-12, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19884661

RESUMEN

Most single-gene diseases, including muscular dystrophy, display a nonuniform phenotype. Phenotypic variability arises, in part, due to the presence of genetic modifiers that enhance or suppress the disease process. We employed an unbiased mapping approach to search for genes that modify muscular dystrophy in mice. In a genome-wide scan, we identified a single strong locus on chromosome 7 that influenced two pathological features of muscular dystrophy, muscle membrane permeability and muscle fibrosis. Within this genomic interval, an insertion/deletion polymorphism of 36 bp in the coding region of the latent TGF-beta-binding protein 4 gene (Ltbp4) was found. Ltbp4 encodes a latent TGF-beta-binding protein that sequesters TGF-beta and regulates its availability for binding to the TGF-beta receptor. Insertion of 12 amino acids into the proline-rich region of LTBP4 reduced proteolytic cleavage and was associated with reduced TGF-beta signaling, decreased fibrosis, and improved muscle pathology in a mouse model of muscular dystrophy. In contrast, a 12-amino-acid deletion in LTBP4 was associated with increased proteolysis, SMAD signaling, and fibrosis. These data identify Ltbp4 as a target gene to regulate TGF-beta signaling and modify outcomes in muscular dystrophy.


Asunto(s)
Proteínas de Unión a TGF-beta Latente/genética , Proteínas de Unión a TGF-beta Latente/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Estudio de Asociación del Genoma Completo , Hibridación Genética , Mutación INDEL , Proteínas de Unión a TGF-beta Latente/química , Masculino , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Mutantes , Modelos Biológicos , Datos de Secuencia Molecular , Complejos Multiproteicos , Distrofia Muscular Animal/patología , Fenotipo , Polimorfismo de Nucleótido Simple , Sarcoglicanos/deficiencia , Sarcoglicanos/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA