Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nitric Oxide ; 147: 6-12, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588918

RESUMEN

Acute respiratory distress syndrome (ARDS) is characterized by a redistribution of regional lung perfusion that impairs gas exchange. While speculative, experimental evidence suggests that perfusion redistribution may contribute to regional inflammation and modify disease progression. Unfortunately, tools to visualize and quantify lung perfusion in patients with ARDS are lacking. This review explores recent advances in perfusion imaging techniques that aim to understand the pulmonary circulation in ARDS. Dynamic contrast-enhanced computed tomography captures first-pass kinetics of intravenously injected dye during continuous scan acquisitions. Different contrast characteristics and kinetic modeling have improved its topographic measurement of pulmonary perfusion with high spatial and temporal resolution. Dual-energy computed tomography can map the pulmonary blood volume of the whole lung with limited radiation exposure, enabling its application in clinical research. Electrical impedance tomography can obtain serial topographic assessments of perfusion at the bedside in response to treatments such as inhaled nitric oxide and prone position. Ongoing technological improvements and emerging techniques will enhance lung perfusion imaging and aid its incorporation into the care of patients with ARDS.


Asunto(s)
Pulmón , Síndrome de Dificultad Respiratoria , Humanos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/fisiopatología , Pulmón/diagnóstico por imagen , Pulmón/irrigación sanguínea , Tomografía Computarizada por Rayos X , Circulación Pulmonar , Imagen de Perfusión/métodos , Animales
2.
Nitric Oxide ; 136-137: 1-7, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172929

RESUMEN

BACKGROUND: Impairment of ventilation and perfusion (V/Q) matching is a common mechanism leading to hypoxemia in patients with acute respiratory failure requiring intensive care unit (ICU) admission. While ventilation has been thoroughly investigated, little progress has been made to monitor pulmonary perfusion at the bedside and treat impaired blood distribution. The study aimed to assess real-time changes in regional pulmonary perfusion in response to a therapeutic intervention. METHODS: Single-center prospective study that enrolled adult patients with ARDS caused by SARS-Cov-2 who were sedated, paralyzed, and mechanically ventilated. The distribution of pulmonary perfusion was assessed through electrical impedance tomography (EIT) after the injection of a 10-ml bolus of hypertonic saline. The therapeutic intervention consisted in the administration of inhaled nitric oxide (iNO), as rescue therapy for refractory hypoxemia. Each patient underwent two 15-min steps at 0 and 20 ppm iNO, respectively. At each step, respiratory, gas exchange, and hemodynamic parameters were recorded, and V/Q distribution was measured, with unchanged ventilatory settings. RESULTS: Ten 65 [56-75] years old patients with moderate (40%) and severe (60%) ARDS were studied 10 [4-20] days after intubation. Gas exchange improved at 20 ppm iNO (PaO2/FiO2 from 86 ± 16 to 110 ± 30 mmHg, p = 0.001; venous admixture from 51 ± 8 to 45 ± 7%, p = 0.0045; dead space from 29 ± 8 to 25 ± 6%, p = 0.008). The respiratory system's elastic properties and ventilation distribution were unaltered by iNO. Hemodynamics did not change after gas initiation (cardiac output 7.6 ± 1.9 vs. 7.7 ± 1.9 L/min, p = 0.66). The EIT pixel perfusion maps showed a variety of patterns of changes in pulmonary blood flow, whose increase positively correlated with PaO2/FiO2 increase (R2 = 0.50, p = 0.049). CONCLUSIONS: The assessment of lung perfusion is feasible at the bedside and blood distribution can be modulated with effects that are visualized in vivo. These findings might lay the foundations for testing new therapies aimed at optimizing the regional perfusion in the lungs.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Adulto , Humanos , Persona de Mediana Edad , Anciano , Circulación Pulmonar , Estudios Prospectivos , Intercambio Gaseoso Pulmonar , COVID-19/complicaciones , SARS-CoV-2 , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/etiología , Óxido Nítrico , Hipoxia , Insuficiencia Respiratoria/tratamiento farmacológico , Administración por Inhalación
3.
Anesthesiology ; 139(6): 815-826, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37566686

RESUMEN

BACKGROUND: Bedside electrical impedance tomography could be useful to visualize evolving pulmonary perfusion distributions when acute respiratory distress syndrome worsens or in response to ventilatory and positional therapies. In experimental acute respiratory distress syndrome, this study evaluated the agreement of electrical impedance tomography and dynamic contrast-enhanced computed tomography perfusion distributions at two injury time points and in response to increased positive end-expiratory pressure (PEEP) and prone position. METHODS: Eleven mechanically ventilated (VT 8 ml · kg-1) Yorkshire pigs (five male, six female) received bronchial hydrochloric acid (3.5 ml · kg-1) to invoke lung injury. Electrical impedance tomography and computed tomography perfusion images were obtained at 2 h (early injury) and 24 h (late injury) after injury in supine position with PEEP 5 and 10 cm H2O. In eight animals, electrical impedance tomography and computed tomography perfusion imaging were also conducted in the prone position. Electrical impedance tomography perfusion (QEIT) and computed tomography perfusion (QCT) values (as percentages of image total) were compared in eight vertical regions across injury stages, levels of PEEP, and body positions using mixed-effects linear regression. The primary outcome was agreement between QEIT and QCT, defined using limits of agreement and Pearson correlation coefficient. RESULTS: Pao2/Fio2 decreased over the course of the experiment (healthy to early injury, -253 [95% CI, -317 to -189]; early to late injury, -88 [95% CI, -151 to -24]). The limits of agreement between QEIT and QCT were -4.66% and 4.73% for the middle 50% quantile of average regional perfusion, and the correlation coefficient was 0.88 (95% CI, 0.86 to 0.90]; P < 0.001). Electrical impedance tomography and computed tomography showed similar perfusion redistributions over injury stages and in response to increased PEEP. QEIT redistributions after positional therapy underestimated QCT in ventral regions and overestimated QCT in dorsal regions. CONCLUSIONS: Electrical impedance tomography closely approximated computed tomography perfusion measures in experimental acute respiratory distress syndrome, in the supine position, over injury progression and with increased PEEP. Further validation is needed to determine the accuracy of electrical impedance tomography in measuring perfusion redistributions after positional changes.


Asunto(s)
Síndrome de Dificultad Respiratoria , Tomografía Computarizada por Rayos X , Masculino , Femenino , Porcinos , Animales , Impedancia Eléctrica , Síndrome de Dificultad Respiratoria/terapia , Pulmón , Perfusión , Tomografía/métodos
4.
Methods ; 205: 200-209, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35817338

RESUMEN

BACKGROUND: Lesion segmentation is a critical step in medical image analysis, and methods to identify pathology without time-intensive manual labeling of data are of utmost importance during a pandemic and in resource-constrained healthcare settings. Here, we describe a method for fully automated segmentation and quantification of pathological COVID-19 lung tissue on chest Computed Tomography (CT) scans without the need for manually segmented training data. METHODS: We trained a cycle-consistent generative adversarial network (CycleGAN) to convert images of COVID-19 scans into their generated healthy equivalents. Subtraction of the generated healthy images from their corresponding original CT scans yielded maps of pathological tissue, without background lung parenchyma, fissures, airways, or vessels. We then used these maps to construct three-dimensional lesion segmentations. Using a validation dataset, Dice scores were computed for our lesion segmentations and other published segmentation networks using ground truth segmentations reviewed by radiologists. RESULTS: The COVID-to-Healthy generator eliminated high Hounsfield unit (HU) voxels within pulmonary lesions and replaced them with lower HU voxels. The generator did not distort normal anatomy such as vessels, airways, or fissures. The generated healthy images had higher gas content (2.45 ± 0.93 vs 3.01 ± 0.84 L, P < 0.001) and lower tissue density (1.27 ± 0.40 vs 0.73 ± 0.29 Kg, P < 0.001) than their corresponding original COVID-19 images, and they were not significantly different from those of the healthy images (P < 0.001). Using the validation dataset, lesion segmentations scored an average Dice score of 55.9, comparable to other weakly supervised networks that do require manual segmentations. CONCLUSION: Our CycleGAN model successfully segmented pulmonary lesions in mild and severe COVID-19 cases. Our model's performance was comparable to other published models; however, our model is unique in its ability to segment lesions without the need for manual segmentations.


Asunto(s)
COVID-19 , Procesamiento de Imagen Asistido por Computador , COVID-19/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
5.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L866-L872, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35438574

RESUMEN

Imatinib, a tyrosine kinase inhibitor, attenuates pulmonary edema and inflammation in lung injury. However, the physiological effects of this drug and their impact on outcomes are poorly characterized. Using serial computed tomography (CT), we tested the hypothesis that imatinib reduces injury severity and improves survival in ventilated rats. Hydrochloric acid (HCl) was instilled in the trachea (pH 1.5, 2.5 mL/kg) of anesthetized, intubated supine rats. Animals were randomized (n = 17 each group) to receive intraperitoneal imatinib or vehicle immediately prior to HCl. All rats then received mechanical ventilation. CT was performed hourly for 4 h. Images were quantitatively analyzed to assess the progression of radiological abnormalities. Injury severity was confirmed via hourly blood gases, serum biomarkers, bronchoalveolar lavage (BAL), and histopathology. Serial blood drug levels were measured in a subset of rats. Imatinib reduced mortality while delaying functional and radiological injury progression: out of 17 rats per condition, 2 control vs. 8 imatinib-treated rats survived until the end of the experiment (P = 0.02). Imatinib attenuated edema after lung injury (P < 0.05), and survival time in both groups was negatively correlated with increased lung mass (R2 = 0.70) as well as other physiological and CT parameters. Capillary leak (BAL protein concentration) was significantly lower in the treated group (P = 0.04). Peak drug concentration was reached after 70 min, and the drug half-life was 150 min. Imatinib decreased both mortality and lung injury severity in mechanically ventilated rats. Pharmacological inhibition of edema could be used during mechanical ventilation to improve the severity and outcome of lung injury.


Asunto(s)
Lesión Pulmonar , Edema Pulmonar , Animales , Ácido Clorhídrico , Mesilato de Imatinib/farmacología , Pulmón/patología , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/patología , Edema Pulmonar/patología , Ratas , Respiración Artificial
6.
Curr Opin Crit Care ; 28(3): 302-307, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35653251

RESUMEN

PURPOSE OF REVIEW: Lung imaging is a cornerstone of the management of patients admitted to the intensive care unit (ICU), providing anatomical and functional information on the respiratory system function. The aim of this review is to provide an overview of mechanisms and applications of conventional and emerging lung imaging techniques in critically ill patients. RECENT FINDINGS: Chest radiographs provide information on lung structure and have several limitations in the ICU setting; however, scoring systems can be used to stratify patient severity and predict clinical outcomes. Computed tomography (CT) is the gold standard for assessment of lung aeration but requires moving the patients to the CT facility. Dual-energy CT has been recently applied to simultaneous study of lung aeration and perfusion in patients with respiratory failure. Lung ultrasound has an established role in the routine bedside assessment of ICU patients, but has poor spatial resolution and largely relies on the analysis of artifacts. Electrical impedance tomography is an emerging technique capable of depicting ventilation and perfusion at the bedside and at the regional level. SUMMARY: Clinicians should be confident with the technical aspects, indications, and limitations of each lung imaging technique to improve patient care.


Asunto(s)
Pulmón , Imagen de Perfusión , Humanos , Pulmón/diagnóstico por imagen , Respiración , Respiración Artificial , Tomografía Computarizada por Rayos X
7.
Ann Intern Med ; 174(5): 613-621, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33460330

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic continues to surge in the United States and globally. OBJECTIVE: To describe the epidemiology of COVID-19-related critical illness, including trends in outcomes and care delivery. DESIGN: Single-health system, multihospital retrospective cohort study. SETTING: 5 hospitals within the University of Pennsylvania Health System. PATIENTS: Adults with COVID-19-related critical illness who were admitted to an intensive care unit (ICU) with acute respiratory failure or shock during the initial surge of the pandemic. MEASUREMENTS: The primary exposure for outcomes and care delivery trend analyses was longitudinal time during the pandemic. The primary outcome was all-cause 28-day in-hospital mortality. Secondary outcomes were all-cause death at any time, receipt of mechanical ventilation (MV), and readmissions. RESULTS: Among 468 patients with COVID-19-related critical illness, 319 (68.2%) were treated with MV and 121 (25.9%) with vasopressors. Outcomes were notable for an all-cause 28-day in-hospital mortality rate of 29.9%, a median ICU stay of 8 days (interquartile range [IQR], 3 to 17 days), a median hospital stay of 13 days (IQR, 7 to 25 days), and an all-cause 30-day readmission rate (among nonhospice survivors) of 10.8%. Mortality decreased over time, from 43.5% (95% CI, 31.3% to 53.8%) to 19.2% (CI, 11.6% to 26.7%) between the first and last 15-day periods in the core adjusted model, whereas patient acuity and other factors did not change. LIMITATIONS: Single-health system study; use of, or highly dynamic trends in, other clinical interventions were not evaluated, nor were complications. CONCLUSION: Among patients with COVID-19-related critical illness admitted to ICUs of a learning health system in the United States, mortality seemed to decrease over time despite stable patient characteristics. Further studies are necessary to confirm this result and to investigate causal mechanisms. PRIMARY FUNDING SOURCE: Agency for Healthcare Research and Quality.


Asunto(s)
COVID-19/mortalidad , COVID-19/terapia , Enfermedad Crítica/mortalidad , Enfermedad Crítica/terapia , Neumonía Viral/mortalidad , Neumonía Viral/terapia , Choque/mortalidad , Choque/terapia , APACHE , Centros Médicos Académicos , Anciano , Femenino , Mortalidad Hospitalaria , Humanos , Unidades de Cuidados Intensivos , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Pandemias , Readmisión del Paciente/estadística & datos numéricos , Pennsylvania/epidemiología , Neumonía Viral/virología , Respiración Artificial/estadística & datos numéricos , Estudios Retrospectivos , SARS-CoV-2 , Choque/virología , Tasa de Supervivencia
8.
Crit Care Med ; 49(10): e1015-e1024, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33938714

RESUMEN

OBJECTIVES: It is not known how lung injury progression during mechanical ventilation modifies pulmonary responses to prone positioning. We compared the effects of prone positioning on regional lung aeration in late versus early stages of lung injury. DESIGN: Prospective, longitudinal imaging study. SETTING: Research imaging facility at The University of Pennsylvania (Philadelphia, PA) and Medical and Surgical ICUs at Massachusetts General Hospital (Boston, MA). SUBJECTS: Anesthetized swine and patients with acute respiratory distress syndrome (acute respiratory distress syndrome). INTERVENTIONS: Lung injury was induced by bronchial hydrochloric acid (3.5 mL/kg) in 10 ventilated Yorkshire pigs and worsened by supine nonprotective ventilation for 24 hours. Whole-lung CT was performed 2 hours after hydrochloric acid (Day 1) in both prone and supine positions and repeated at 24 hours (Day 2). Prone and supine images were registered (superimposed) in pairs to measure the effects of positioning on the aeration of each tissue unit. Two patients with early acute respiratory distress syndrome were compared with two patients with late acute respiratory distress syndrome, using electrical impedance tomography to measure the effects of body position on regional lung mechanics. MEASUREMENTS AND MAIN RESULTS: Gas exchange and respiratory mechanics worsened over 24 hours, indicating lung injury progression. On Day 1, prone positioning reinflated 18.9% ± 5.2% of lung mass in the posterior lung regions. On Day 2, position-associated dorsal reinflation was reduced to 7.3% ± 1.5% (p < 0.05 vs Day 1). Prone positioning decreased aeration in the anterior lungs on both days. Although prone positioning improved posterior lung compliance in the early acute respiratory distress syndrome patients, it had no effect in late acute respiratory distress syndrome subjects. CONCLUSIONS: The effects of prone positioning on lung aeration may depend on the stage of lung injury and duration of prior ventilation; this may limit the clinical efficacy of this treatment if applied late.


Asunto(s)
Lesión Pulmonar/complicaciones , Posición Prona/fisiología , Adulto , Anciano , Boston , Femenino , Humanos , Estudios Longitudinales , Lesión Pulmonar/diagnóstico por imagen , Lesión Pulmonar/fisiopatología , Masculino , Persona de Mediana Edad , Pennsylvania , Respiración con Presión Positiva/métodos , Estudios Prospectivos , Resultado del Tratamiento
9.
Crit Care ; 25(1): 81, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627160

RESUMEN

BACKGROUND: There is a paucity of data concerning the optimal ventilator management in patients with COVID-19 pneumonia; particularly, the optimal levels of positive-end expiratory pressure (PEEP) are unknown. We aimed to investigate the effects of two levels of PEEP on alveolar recruitment in critically ill patients with severe COVID-19 pneumonia. METHODS: A single-center cohort study was conducted in a 39-bed intensive care unit at a university-affiliated hospital in Genoa, Italy. Chest computed tomography (CT) was performed to quantify aeration at 8 and 16 cmH2O PEEP. The primary endpoint was the amount of alveolar recruitment, defined as the change in the non-aerated compartment at the two PEEP levels on CT scan. RESULTS: Forty-two patients were included in this analysis. Alveolar recruitment was median [interquartile range] 2.7 [0.7-4.5] % of lung weight and was not associated with excess lung weight, PaO2/FiO2 ratio, respiratory system compliance, inflammatory and thrombophilia markers. Patients in the upper quartile of recruitment (recruiters), compared to non-recruiters, had comparable clinical characteristics, lung weight and gas volume. Alveolar recruitment was not different in patients with lower versus higher respiratory system compliance. In a subgroup of 20 patients with available gas exchange data, increasing PEEP decreased respiratory system compliance (median difference, MD - 9 ml/cmH2O, 95% CI from - 12 to - 6 ml/cmH2O, p < 0.001) and the ventilatory ratio (MD - 0.1, 95% CI from - 0.3 to - 0.1, p = 0.003), increased PaO2 with FiO2 = 0.5 (MD 24 mmHg, 95% CI from 12 to 51 mmHg, p < 0.001), but did not change PaO2 with FiO2 = 1.0 (MD 7 mmHg, 95% CI from - 12 to 49 mmHg, p = 0.313). Moreover, alveolar recruitment was not correlated with improvement of oxygenation or venous admixture. CONCLUSIONS: In patients with severe COVID-19 pneumonia, higher PEEP resulted in limited alveolar recruitment. These findings suggest limiting PEEP strictly to the values necessary to maintain oxygenation, thus avoiding the use of higher PEEP levels.


Asunto(s)
COVID-19/complicaciones , Neumonía Viral/terapia , Respiración con Presión Positiva , Alveolos Pulmonares/fisiología , Anciano , COVID-19/diagnóstico por imagen , COVID-19/epidemiología , COVID-19/fisiopatología , Estudios de Cohortes , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Neumonía Viral/diagnóstico por imagen , Neumonía Viral/virología , Alveolos Pulmonares/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
10.
Crit Care ; 25(1): 214, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34154635

RESUMEN

BACKGROUND: Critically ill COVID-19 patients have pathophysiological lung features characterized by perfusion abnormalities. However, to date no study has evaluated whether the changes in the distribution of pulmonary gas and blood volume are associated with the severity of gas-exchange impairment and the type of respiratory support (non-invasive versus invasive) in patients with severe COVID-19 pneumonia. METHODS: This was a single-center, retrospective cohort study conducted in a tertiary care hospital in Northern Italy during the first pandemic wave. Pulmonary gas and blood distribution was assessed using a technique for quantitative analysis of dual-energy computed tomography. Lung aeration loss (reflected by percentage of normally aerated lung tissue) and the extent of gas:blood volume mismatch (percentage of non-aerated, perfused lung tissue-shunt; aerated, non-perfused dead space; and non-aerated/non-perfused regions) were evaluated in critically ill COVID-19 patients with different clinical severity as reflected by the need for non-invasive or invasive respiratory support. RESULTS: Thirty-five patients admitted to the intensive care unit between February 29th and May 30th, 2020 were included. Patients requiring invasive versus non-invasive mechanical ventilation had both a lower percentage of normally aerated lung tissue (median [interquartile range] 33% [24-49%] vs. 63% [44-68%], p < 0.001); and a larger extent of gas:blood volume mismatch (43% [30-49%] vs. 25% [14-28%], p = 0.001), due to higher shunt (23% [15-32%] vs. 5% [2-16%], p = 0.001) and non-aerated/non perfused regions (5% [3-10%] vs. 1% [0-2%], p = 0.001). The PaO2/FiO2 ratio correlated positively with normally aerated tissue (ρ = 0.730, p < 0.001) and negatively with the extent of gas-blood volume mismatch (ρ = - 0.633, p < 0.001). CONCLUSIONS: In critically ill patients with severe COVID-19 pneumonia, the need for invasive mechanical ventilation and oxygenation impairment were associated with loss of aeration and the extent of gas:blood volume mismatch.


Asunto(s)
Volumen Sanguíneo/fisiología , COVID-19/diagnóstico por imagen , COVID-19/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Intercambio Gaseoso Pulmonar/fisiología , Anciano , Análisis de los Gases de la Sangre/métodos , COVID-19/epidemiología , Estudios de Cohortes , Enfermedad Crítica/epidemiología , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Respiración Artificial/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
11.
Am J Respir Crit Care Med ; 202(8): 1081-1087, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33054329

RESUMEN

Protective ventilation strategies for the injured lung currently revolve around the use of low Vt, ostensibly to avoid volutrauma, together with positive end-expiratory pressure to increase the fraction of open lung and reduce atelectrauma. Protective ventilation is currently applied in a one-size-fits-all manner, and although this practical approach has reduced acute respiratory distress syndrome deaths, mortality is still high and improvements are at a standstill. Furthermore, how to minimize ventilator-induced lung injury (VILI) for any given lung remains controversial and poorly understood. Here we present a hypothesis of VILI pathogenesis that potentially serves as a basis upon which minimally injurious ventilation strategies might be developed. This hypothesis is based on evidence demonstrating that VILI begins in isolated lung regions manifesting a Permeability-Originated Obstruction Response (POOR) in which alveolar leak leads to surfactant dysfunction and increases local tissue stresses. VILI progresses topographically outward from these regions in a POOR-get-POORer fashion unless steps are taken to interrupt it. We propose that interrupting the POOR-get-POORer progression of lung injury relies on two principles: 1) open the lung to minimize the presence of heterogeneity-induced stress concentrators that are focused around the regions of atelectasis, and 2) ventilate in a patient-dependent manner that minimizes the number of lung units that close during each expiration so that they are not forced to rerecruit during the subsequent inspiration. These principles appear to be borne out in both patient and animal studies in which expiration is terminated before derecruitment of lung units has enough time to occur.


Asunto(s)
Prevención Primaria/métodos , Atelectasia Pulmonar/prevención & control , Edema Pulmonar/prevención & control , Síndrome de Dificultad Respiratoria/fisiopatología , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Enfermedad Aguda , Fenómenos Biomecánicos , Enfermedad Crónica , Femenino , Humanos , Masculino , Monitoreo Fisiológico , Pronóstico , Atelectasia Pulmonar/etiología , Edema Pulmonar/etiología , Síndrome de Dificultad Respiratoria/terapia , Pruebas de Función Respiratoria
12.
Ann Surg ; 272(3): e181-e186, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32541213

RESUMEN

OBJECTIVE: To determine the outcomes of patients undergoing tracheostomy for COVID-19 and of healthcare workers performing these procedures. BACKGROUND: Tracheostomy is often performed for prolonged endotracheal intubation in critically ill patients. However, in the context of COVID-19, tracheostomy placement pathways have been altered due to the poor prognosis of intubated patients and the risk of transmission to providers through this highly aerosolizing procedure. METHODS: A prospective single-system multi-center observational cohort study was performed on patients who underwent tracheostomy after acute respiratory failure secondary to COVID-19. RESULTS: Of the 53 patients who underwent tracheostomy, the average time from endotracheal intubation to tracheostomy was 19.7 days ±â€Š6.9 days. The most common indication for tracheostomy was acute respiratory distress syndrome, followed by failure to wean ventilation and post-extracorporeal membrane oxygenation decannulation. Thirty patients (56.6%) were liberated from the ventilator, 16 (30.2%) have been discharged alive, 7 (13.2%) have been decannulated, and 6 (11.3%) died. The average time from tracheostomy to ventilator liberation was 11.8 days ±â€Š6.9 days (range 2-32 days). Both open surgical and percutaneous dilational tracheostomy techniques were performed utilizing methods to mitigate aerosols. No healthcare worker transmissions resulted from performing the procedure. CONCLUSIONS: Alterations to tracheostomy practices and processes were successfully instituted. Following these steps, tracheostomy in COVID-19 intubated patients seems safe for both patients and healthcare workers performing the procedure.


Asunto(s)
COVID-19/terapia , Cuidados Críticos , Intubación Intratraqueal , Respiración Artificial , Traqueostomía , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/complicaciones , COVID-19/mortalidad , Oxigenación por Membrana Extracorpórea , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Resultado del Tratamiento , Adulto Joven
13.
NMR Biomed ; 33(11): e4380, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32681670

RESUMEN

Increased pulmonary lactate production is correlated with severity of lung injury and outcome in acute respiratory distress syndrome (ARDS) patients. This study was conducted to investigate the relative contributions of inflammation and hypoxia to the lung's metabolic shift to glycolysis in an experimental animal model of ARDS using hyperpolarized (HP) 13 C MRI. Fifty-three intubated and mechanically ventilated male rats were imaged using HP 13 C MRI before, and 1, 2.5 and 4 hours after saline (sham) or hydrochloric acid (HCl; 0.5 ml/kg) instillation in the trachea, followed by protective and nonprotective mechanical ventilation (HCl-PEEP and HCl-ZEEP) or the start of moderate or severe hypoxia (Hyp90 and Hyp75 groups). Pulmonary and cardiac HP lactate-to-pyruvate ratios were compared among groups for different time points. Postmortem histology and immunofluorescence were used to assess lung injury severity and quantify the expression of innate inflammatory markers and local tissue hypoxia. HP pulmonary lactate-to-pyruvate ratio progressively increased in rats with lung injury and moderate hypoxia (HCl-ZEEP), with no significant change in pulmonary lactate-to-pyruvate ratio in noninjured but moderately hypoxic rats (Hyp90). Pulmonary lactate-to-pyruvate ratio was elevated in otherwise healthy lung tissue only in severe systemic hypoxia (Hyp75 group). ex vivo histological and immunopathological assessment further confirmed the link between elevated glycolysis and the recruitment into and presence of activated neutrophils in injured lungs. HP lactate-to-pyruvate ratio is elevated in injured lungs predominantly as a result of increased glycolysis in activated inflammatory cells, but can also increase due to severe inflammation-induced hypoxia.


Asunto(s)
Lesión Pulmonar/metabolismo , Pulmón/metabolismo , Neumonía/metabolismo , Ácido Pirúvico/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Animales , Modelos Animales de Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Ácido Láctico/metabolismo , Lesión Pulmonar/complicaciones , Masculino , Peroxidasa/metabolismo , Neumonía/complicaciones , Ratas Sprague-Dawley , Síndrome de Dificultad Respiratoria/complicaciones
14.
Anesthesiology ; 133(5): 1093-1105, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32773690

RESUMEN

BACKGROUND: Prone ventilation redistributes lung inflation along the gravitational axis; however, localized, nongravitational effects of body position are less well characterized. The authors hypothesize that positional inflation improvements follow both gravitational and nongravitational distributions. This study is a nonoverlapping reanalysis of previously published large animal data. METHODS: Five intubated, mechanically ventilated pigs were imaged before and after lung injury by tracheal injection of hydrochloric acid (2 ml/kg). Computed tomography scans were performed at 5 and 10 cm H2O positive end-expiratory pressure (PEEP) in both prone and supine positions. All paired prone-supine images were digitally aligned to each other. Each unit of lung tissue was assigned to three clusters (K-means) according to positional changes of its density and dimensions. The regional cluster distribution was analyzed. Units of tissue displaying lung recruitment were mapped. RESULTS: We characterized three tissue clusters on computed tomography: deflation (increased tissue density and contraction), limited response (stable density and volume), and reinflation (decreased density and expansion). The respective clusters occupied (mean ± SD including all studied conditions) 29.3 ± 12.9%, 47.6 ± 11.4%, and 23.1 ± 8.3% of total lung mass, with similar distributions before and after lung injury. Reinflation was slightly greater at higher PEEP after injury. Larger proportions of the reinflation cluster were contained in the dorsal versus ventral (86.4 ± 8.5% vs. 13.6 ± 8.5%, P < 0.001) and in the caudal versus cranial (63.4 ± 11.2% vs. 36.6 ± 11.2%, P < 0.001) regions of the lung. After injury, prone positioning recruited 64.5 ± 36.7 g of tissue (11.4 ± 6.7% of total lung mass) at lower PEEP, and 49.9 ± 12.9 g (8.9 ± 2.8% of total mass) at higher PEEP; more than 59.0% of this recruitment was caudal. CONCLUSIONS: During mechanical ventilation, lung reinflation and recruitment by the prone positioning were primarily localized in the dorso-caudal lung. The local effects of positioning in this lung region may determine its clinical efficacy.


Asunto(s)
Pulmón/fisiología , Modelos Animales , Posición Prona/fisiología , Ventilación Pulmonar/fisiología , Respiración Artificial/métodos , Posición Supina/fisiología , Animales , Pulmón/diagnóstico por imagen , Porcinos , Tomografía Computarizada por Rayos X/métodos
17.
Magn Reson Med ; 81(3): 1784-1794, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30346083

RESUMEN

PURPOSE: To investigate the feasibility of describing the impact of any flip angle-TR combination on the resulting distribution of the hyperpolarized xenon-129 (HXe) dissolved-phase magnetization in the chest using a single virtual parameter, TR90°,equiv . METHODS: HXe MRI scans with simultaneous gas- (GP) and dissolved-phase (DP) excitation were performed using 2D projection scans in mechanically ventilated rabbits. Measurements with DP flip angles ranging from 6-90° and TRs ranging from 8.3-500 ms were conducted. DP maps based on acquisitions of similar radio frequency pulse-induced relaxation rates were compared. RESULTS: The observed distribution of the DP magnetization was strongly affected by acquisition flip angle and TR. However, for flip angles up to 60°, measurements with the same radio frequency pulse-induced relaxation rates, resulted in very similar DP images despite the presence of significant macroscopic gas transport processes. For flip angles approaching 90°, the downstream signal component decreased noticeably relative to acquisitions with lower flip angles. Nevertheless, the total DP signal continued to follow an empirically verified conversion equation over the entire investigated parameter range, which yields the equivalent TR of a hypothetical 90° measurement for any experimental flip angle-TR combination. CONCLUSION: We have introduced a method for converting the flip angle and TR of a given HXe DP measurement to a standardized metric based on the virtual quantity, TR90°,equiv , using their equivalent RF relaxation rates. This conversion permits the comparison of measurements obtained with different pulse sequence types or by different research groups using various acquisition parameters.


Asunto(s)
Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Isótopos de Xenón/química , Algoritmos , Animales , Calibración , Simulación por Computador , Estudios de Factibilidad , Ventrículos Cardíacos/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Magnetismo , Fantasmas de Imagen , Circulación Pulmonar , Conejos , Respiración Artificial , Imagen de Cuerpo Entero/métodos
18.
Anesthesiology ; 131(3): 716-749, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30664057

RESUMEN

Acute respiratory distress syndrome (ARDS) consists of acute hypoxemic respiratory failure characterized by massive and heterogeneously distributed loss of lung aeration caused by diffuse inflammation and edema present in interstitial and alveolar spaces. It is defined by consensus criteria, which include diffuse infiltrates on chest imaging-either plain radiography or computed tomography. This review will summarize how imaging sciences can inform modern respiratory management of ARDS and continue to increase the understanding of the acutely injured lung. This review also describes newer imaging methodologies that are likely to inform future clinical decision-making and potentially improve outcome. For each imaging modality, this review systematically describes the underlying principles, technology involved, measurements obtained, insights gained by the technique, emerging approaches, limitations, and future developments. Finally, integrated approaches are considered whereby multimodal imaging may impact management of ARDS.


Asunto(s)
Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/fisiopatología , Tomografía Computarizada por Rayos X/métodos , Humanos , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología
19.
20.
Am J Respir Crit Care Med ; 198(2): 197-207, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29420904

RESUMEN

RATIONALE: It remains unclear how prone positioning improves survival in acute respiratory distress syndrome. Using serial computed tomography (CT), we previously reported that "unstable" inflation (i.e., partial aeration with large tidal density swings, indicating increased local strain) is associated with injury progression. OBJECTIVES: We prospectively tested whether prone position contains the early propagation of experimental lung injury by stabilizing inflation. METHODS: Injury was induced by tracheal hydrochloric acid in rats; after randomization to supine or prone position, injurious ventilation was commenced using high tidal volume and low positive end-expiratory pressure. Paired end-inspiratory (EI) and end-expiratory (EE) CT scans were acquired at baseline and hourly up to 3 hours. Each sequential pair (EI, EE) of CT images was superimposed in parametric response maps to analyze inflation. Unstable inflation was then measured in each voxel in both dependent and nondependent lung. In addition, five pigs were imaged (EI and EE) prone versus supine, before and (1 hour) after hydrochloric acid aspiration. MEASUREMENTS AND MAIN RESULTS: In rats, prone position limited lung injury propagation and increased survival (11/12 vs. 7/12 supine; P = 0.01). EI-EE densities, respiratory mechanics, and blood gases deteriorated more in supine versus prone rats. At baseline, more voxels with unstable inflation occurred in dependent versus nondependent regions when supine (41 ± 6% vs. 18 ± 7%; P < 0.01) but not when prone. In supine pigs, unstable inflation predominated in dorsal regions and was attenuated by prone positioning. CONCLUSIONS: Prone position limits the radiologic progression of early lung injury. Minimizing unstable inflation in this setting may alleviate the burden of acute respiratory distress syndrome.


Asunto(s)
Posición Prona/fisiología , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/terapia , Posición Supina/fisiología , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Animales , Humanos , Modelos Animales , Posicionamiento del Paciente/métodos , Respiración con Presión Positiva/métodos , Ratas , Porcinos , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA