Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8004): 505-509, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418881

RESUMEN

The Double Asteroid Redirection Test (DART) had an impact with Dimorphos (a satellite of the asteroid Didymos) on 26 September 20221. Ground-based observations showed that the Didymos system brightened by a factor of 8.3 after the impact because of ejecta, returning to the pre-impact brightness 23.7 days afterwards2. Hubble Space Telescope observations made from 15 minutes after impact to 18.5 days after, with a spatial resolution of 2.1 kilometres per pixel, showed a complex evolution of the ejecta3, consistent with other asteroid impact events. The momentum enhancement factor, determined using the measured binary period change4, ranges between 2.2 and 4.9, depending on the assumptions about the mass and density of Dimorphos5. Here we report observations from the LUKE and LEIA instruments on the LICIACube cube satellite, which was deployed 15 days in advance of the impact of DART. Data were taken from 71 seconds before the impact until 320 seconds afterwards. The ejecta plume was a cone with an aperture angle of 140 ± 4 degrees. The inner region of the plume was blue, becoming redder with increasing distance from Dimorphos. The ejecta plume exhibited a complex and inhomogeneous structure, characterized by filaments, dust grains and single or clustered boulders. The ejecta velocities ranged from a few tens of metres per second to about 500 metres per second.

2.
Meteorit Planet Sci ; 54(9): 2046-2066, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32256026

RESUMEN

Given the compositional diversity of asteroids, and their distribution in space, it is impossible to consider returning samples from each one to establish their origin. However, the velocity and molecular composition of primary minerals, hydrated silicates, and organic materials can be determined by in situ dust detector instruments. Such instruments could sample the cloud of micrometer-scale particles shed by asteroids to provide direct links to known meteorite groups without returning the samples to terrestrial laboratories. We extend models of the measured lunar dust cloud from LADEE to show that the abundance of detectable impact-generated microsamples around asteroids is a function of the parent body radius, heliocentric distance, flyby distance, and speed. We use Monte Carlo modeling to show that several tens to hundreds of particles, if randomly ejected and detected during a flyby, would be a sufficient number to classify the parent body as an ordinary chondrite, basaltic achondrite, or other class of meteorite. Encountering and measuring microsamples shed from near-Earth and Main Belt asteroids, coupled with complementary imaging and multispectral measurements, could accomplish a thorough characterization of small, airless bodies.

3.
J Appl Microbiol ; 119(1): 1-10, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25809882

RESUMEN

Deinococcus spp are among the most radiation-resistant micro-organisms that have been discovered. They show remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation and oxidizing agents. Traditionally, Escherichia coli and Saccharomyces cerevisiae have been the two platforms of choice for engineering micro-organisms for biotechnological applications, because they are well understood and easy to work with. However, in recent years, researchers have begun using Deinococcus spp in biotechnologies and bioremediation due to their specific ability to grow and express novel engineered functions. More recently, the sequencing of several Deinococcus spp and comparative genomic analysis have provided new insight into the potential of this genus. Features such as the accumulation of genes encoding cell cleaning systems that eliminate organic and inorganic cell toxic components are widespread among Deinococcus spp. Other features such as the ability to degrade and metabolize sugars and polymeric sugars make Deinococcus spp. an attractive alternative for use in industrial biotechnology.


Asunto(s)
Deinococcus/genética , Microbiología Industrial , Biopelículas , Biotecnología , Pared Celular/química , Deinococcus/citología , Deinococcus/fisiología , Microbiología Industrial/instrumentación , Microbiología Industrial/métodos , Estrés Oxidativo
4.
Nat Commun ; 15(1): 6204, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080000

RESUMEN

The bearing capacity - the ability of a surface to support applied loads - is an important parameter for understanding and predicting the response of a surface. Previous work has inferred the bearing capacity and trafficability of specific regions of the Moon using orbital imagery and measurements of the boulder tracks visible on its surface. Here, we estimate the bearing capacity of the surface of an asteroid for the first time using DART/DRACO images of suspected boulder tracks on the surface of asteroid (65803) Didymos. Given the extremely low surface gravity environment, special attention is paid to the underlying assumptions of the geotechnical approach. The detailed analysis of the boulder tracks indicates that the boulders move from high to low gravitational potential, and provides constraints on whether the boulders may have ended their surface motion by entering a ballistic phase. From the 9 tracks identified with sufficient resolution to estimate their dimensions, we find an average boulder track width and length of 8.9 ± 1.5 m and 51.6 ± 13.3 m, respectively. From the track widths, the mean bearing capacity of Didymos is estimated to be 70 N/m2, implying that every 1 m2 of Didymos' surface at the track location can support only ~70 N of force before experiencing general shear failure. This value is at least 3 orders of magnitude less than the bearing capacity of dry sand on Earth, or lunar regolith.

5.
Nat Commun ; 15(1): 6205, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080257

RESUMEN

Asteroids smaller than 10 km are thought to be rubble piles formed from the reaccumulation of fragments produced in the catastrophic disruption of parent bodies. Ground-based observations reveal that some of these asteroids are today binary systems, in which a smaller secondary orbits a larger primary asteroid. However, how these asteroids became binary systems remains unclear. Here, we report the analysis of boulders on the surface of the stony asteroid (65803) Didymos and its moonlet, Dimorphos, from data collected by the NASA DART mission. The size-frequency distribution of boulders larger than 5 m on Dimorphos and larger than 22.8 m on Didymos confirms that both asteroids are piles of fragments produced in the catastrophic disruption of their progenitors. Dimorphos boulders smaller than 5 m have size best-fit by a Weibull distribution, which we attribute to a multi-phase fragmentation process either occurring during coalescence or during surface evolution. The density per km2 of Dimorphos boulders ≥1 m is 2.3x with respect to the one obtained for (101955) Bennu, while it is 3.0x with respect to (162173) Ryugu. Such values increase once Dimorphos boulders ≥5 m are compared with Bennu (3.5x), Ryugu (3.9x) and (25143) Itokawa (5.1x). This is of interest in the context of asteroid studies because it means that contrarily to the single bodies visited so far, binary systems might be affected by subsequential fragmentation processes that largely increase their block density per km2. Direct comparison between the surface distribution and shapes of the boulders on Didymos and Dimorphos suggest that the latter inherited its material from the former. This finding supports the hypothesis that some asteroid binary systems form through the spin up and mass shedding of a fraction of the primary asteroid.

6.
Nat Commun ; 15(1): 6206, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080275

RESUMEN

Spacecraft observations revealed that rocks on carbonaceous asteroids, which constitute the most numerous class by composition, can develop millimeter-to-meter-scale fractures due to thermal stresses. However, signatures of this process on the second-most populous group of asteroids, the S-complex, have been poorly constrained. Here, we report observations of boulders' fractures on Dimorphos, which is the moonlet of the S-complex asteroid (65803) Didymos, the target of NASA's Double Asteroid Redirection Test (DART) planetary defense mission. We show that the size-frequency distribution and orientation of the mapped fractures are consistent with formation through thermal fatigue. The fractures' preferential orientation supports that these have originated in situ on Dimorphos boulders and not on Didymos boulders later transferred to Dimorphos. Based on our model of the fracture propagation, we propose that thermal fatigue on rocks exposed on the surface of S-type asteroids can form shallow, horizontally propagating fractures in much shorter timescales (100 kyr) than in the direction normal to the boulder surface (order of Myrs). The presence of boulder fields affected by thermal fracturing on near-Earth asteroid surfaces may contribute to an enhancement in the ejected mass and momentum from kinetic impactors when deflecting asteroids.

7.
Neuroscience ; 145(3): 1144-56, 2007 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17276013

RESUMEN

A number of studies on humans and animals have demonstrated better auditory abilities in blind with respect to sighted subjects and have tried to define the mechanisms through which this compensation occurs. The aim of the present study, therefore, was to examine the participation of primary visual cortex (V1) to auditory processing in early enucleated rats. Here we show, using gaussian noise bursts, that about a third of the cells in V1 responded to auditory stimulation in blind rats and most of these (78%) had ON-type responses and low spontaneous activity. Moreover, they were distributed throughout visual cortex without any apparent tonotopic organization. Optimal frequencies determined using pure tones were rather high but comparable to those found in auditory cortex of blind and sighted rats. On the other hand, sensory thresholds determined at these frequencies were higher and bandwidths were wider in V1 of the blind animals. Blind and sighted rats were also stimulated for 60 min with gaussian noise, their brains removed and processed for c-Fos immunohistochemistry. Results revealed that c-Fos positive cells were not only present in auditory cortex of both groups of rats but there was a 10-fold increase in labeled cells in V1 and a fivefold increase in secondary visual cortex (V2) of early enucleated rats in comparisons to sighted ones. Also, the pattern of distribution of these labeled cells across layers suggests that the recruitment of V1 could originate at least in part through inputs arising from the thalamus. The ensemble of results appears to indicate that cross-modal compensation leading to improved performance in the blind depends on cell recruitment in V1 but probably also plastic changes in lower- and higher-order visual structures and possibly in the auditory system.


Asunto(s)
Estimulación Acústica , Potenciales Evocados Auditivos , Corteza Visual/fisiología , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Ceguera/fisiopatología , Recuento de Células , Modelos Animales de Enfermedad , Electrofisiología , Procesamiento de Imagen Asistido por Computador , Proteínas Proto-Oncogénicas c-fos/análisis , Ratas , Ratas Long-Evans , Corteza Visual/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA