Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Stress ; 22(5): 571-580, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31184537

RESUMEN

The melanocortin-4 receptor (MC4R) facilitates hypothalamic-pituitary-adrenocortical (HPA) axis responses to acute stress in male rodents and is a well known to regulator of energy balance. Mutations in the MC4R is the most common monogenic cause of obesity in humans and has been associated with sex-specific effects, but whether stress regulation by the MC4R is sex-dependent, and whether the MC4R facilitates HPA responses to chronic stress, is unknown. We hypothesized that MC4R-signaling contributes to HPA axis dysregulation and metabolic pathophysiology following chronic stress exposure. We measured changes in energy balance, HPA axis tone, and vascular remodeling during chronic variable stress (CVS) in male and female rats with MC4R loss-of-function. Rats were placed into three groups (n = 9-18/genotype/sex) and half of each group was subjected to CVS for 30 days or were non-stressed littermate controls. All rats underwent an acute restraint stress challenge on Day 30. Rats were euthanized on Day 31, adrenals collected for weight, and descending aortas fixed for morphological indices of vascular pathophysiology. We observed a marked interaction between Mc4r genotype and sex for basal HPA axis tone and acute stress responsivity. MC4R loss-of-function blunted both endpoints in males but exaggerated them in females. Contrary to our hypothesis, Mc4r genotype had no effect on either HPA axis responses or metabolic responses to chronic stress. Heightened stress reactivity of females with MC4R mutations suggests a possible mechanism for the sex-dependent effects associated with this mutation in humans and highlights how stress may differentially regulate metabolism in males and females. Lay summary The hypothalamic melanocortin system is an important regulator of energy balance and stress responses. Here, we report a sex-difference in the stress reactivity of rats with a mutation in this system. Our findings highlight how stress may regulate metabolism differently in males and females and may provide insight into sex-differences associated with this mutation in humans.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptor de Melanocortina Tipo 4/genética , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Glándulas Suprarrenales/metabolismo , Animales , Corticosterona/metabolismo , Femenino , Genotipo , Humanos , Hipotálamo/metabolismo , Masculino , Ratas , Restricción Física , Factores Sexuales
2.
Endocrinology ; 165(3)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38244215

RESUMEN

Fibroblast growth factor-21 (FGF21) is an intercellular signaling molecule secreted by metabolic organs, including skeletal muscle, in response to intracellular stress. FGF21 crosses the blood-brain barrier and acts via the nervous system to coordinate aspects of the adaptive starvation response, including increased lipolysis, gluconeogenesis, fatty acid oxidation, and activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Given its beneficial effects for hepatic lipid metabolism, pharmaceutical FGF21 analogues are used in clinical trials treatment of fatty liver disease. We predicted pharmacologic treatment with FGF21 increases HPA axis activity and skeletal muscle glucocorticoid signaling and induces skeletal muscle atrophy in mice. Here we found a short course of systemic FGF21 treatment decreased muscle protein synthesis and reduced tibialis anterior weight; this was driven primarily by its effect in female mice. Similarly, intracerebroventricular FGF21 reduced tibialis anterior muscle fiber cross-sectional area; this was more apparent among female mice than male littermates. In agreement with the reduced muscle mass, the topmost enriched metabolic pathways in plasma collected from FGF21-treated females were related to amino acid metabolism, and the relative abundance of plasma proteinogenic amino acids was increased up to 3-fold. FGF21 treatment increased hypothalamic Crh mRNA, plasma corticosterone, and adrenal weight, and increased expression of glucocorticoid receptor target genes known to reduce muscle protein synthesis and/or promote degradation. Given the proposed use of FGF21 analogues for the treatment of metabolic disease, the study is both physiologically relevant and may have important clinical implications.


Asunto(s)
Aminoácidos , Glucocorticoides , Masculino , Ratones , Femenino , Animales , Glucocorticoides/metabolismo , Aminoácidos/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Hígado/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Proteínas Musculares/metabolismo
3.
J Clin Med ; 11(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35160033

RESUMEN

Fibroblast growth factor 21 (FGF21) is a stress hormone that is released from the liver in response to nutritional and metabolic challenges. In addition to its well-described effects on systemic metabolism, a growing body of literature now supports the notion that FGF21 also acts via the central nervous system to control feeding behavior. Here we review the current understanding of FGF21 as a hormone regulating feeding behavior in rodents, non-human primates, and humans. First, we examine the nutritional contexts that induce FGF21 secretion. Initial reports describing FGF21 as a 'starvation hormone' have now been further refined. FGF21 is now better understood as an endocrine mediator of the intracellular stress response to various nutritional manipulations, including excess sugars and alcohol, caloric deficits, a ketogenic diet, and amino acid restriction. We discuss FGF21's effects on energy intake and macronutrient choice, together with our current understanding of the underlying neural mechanisms. We argue that the behavioral effects of FGF21 function primarily to maintain systemic macronutrient homeostasis, and in particular to maintain an adequate supply of protein and amino acids for use by the cells.

4.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35998055

RESUMEN

The liver regulates energy partitioning and use in a sex-dependent manner, coupling hepatic substrate availability to female reproductive status. Fibroblast growth factor 21 (FGF21) is a hepatokine produced in response to metabolic stress that adaptively directs systemic metabolism and substrate use to reduce hepatic lipid storage. Here we report that FGF21 altered hepatic transcriptional and metabolic responses, and reduced liver triglycerides, in a sex-dependent manner. FGF21 decreased hepatic triglycerides in obese male mice in a weight loss-independent manner; this was abrogated among female littermates. The effect of FGF21 on hepatosteatosis is thought to derive, in part, from increased adiponectin secretion. Accordingly, plasma adiponectin and its upstream adrenergic receptor → cAMP → exchange protein directly activated by cAMP signaling pathway was stimulated by FGF21 in males and inhibited in females. Both ovariectomized and reproductively senescent old females responded to FGF21 treatment by decreasing body weight, but liver triglycerides and adiponectin remained unchanged. Thus, the benefit of FGF21 treatment for improving hepatosteatosis depends on sex but not on a functional female reproductive system. Because FGF21 provides a downstream mechanism contributing to several metabolic interventions, and given its direct clinical importance, these findings may have broad implications for the targeted application of nutritional and pharmacological treatments for metabolic disease.


Asunto(s)
Adiponectina , Factores de Crecimiento de Fibroblastos , Metabolismo de los Lípidos , Adiponectina/metabolismo , Animales , Femenino , Metabolismo de los Lípidos/fisiología , Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Obesos , Receptores Adrenérgicos/metabolismo , Triglicéridos/metabolismo
5.
Endocrinology ; 160(5): 1069-1080, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30802283

RESUMEN

Whereas carbohydrates and lipids are stored as glycogen and fat, there is no analogous inert storage form of protein. Therefore, continuous adjustments in feeding behavior are needed to match amino acid supply to ongoing physiologic need. Neuroendocrine mechanisms facilitating this behavioral control of protein and amino acid homeostasis remain unclear. The hepatokine fibroblast growth factor-21 (FGF21) is well positioned for such a role, as it is robustly secreted in response to protein and/or amino acid deficit. In this study, we tested the hypothesis that FGF21 feeds back at its receptors in the nervous system to shift macronutrient selection toward protein. In a series of behavioral tests, we isolated the effect of FGF21 to influence consumption of protein, fat, and carbohydrate in male mice. First, we used a three-choice pure macronutrient-diet paradigm. In response to FGF21, mice increased consumption of protein while reducing carbohydrate intake, with no effect on fat intake. Next, to determine whether protein or carbohydrate was the primary-regulated nutrient, we used a sequence of two-choice experiments to isolate the effect of FGF21 on preference for each macronutrient. Sweetness was well controlled by holding sucrose constant across the diets. Under these conditions, FGF21 increased protein intake, and this was offset by reducing the consumption of either carbohydrate or fat. When protein was held constant, FGF21 had no effect on macronutrient intake. Lastly, the effect of FGF21 to increase protein intake required the presence of its co-receptor, ß-klotho, in neurons. Taken together, these findings point to a novel liver→nervous system pathway underlying the regulation of dietary protein intake via FGF21.


Asunto(s)
Carbohidratos de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/farmacología , Animales , Carbohidratos de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Conducta Alimentaria/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/administración & dosificación , Proteínas Klotho , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/metabolismo , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA