Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 563
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(24): 9866-9875, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38835317

RESUMEN

Herein, a dual self-protected DNAzyme-based 3D DNA walker (dSPD walker), composed of activated dual self-protected walking particles (ac-dSPWPs) and track particles (TPs), was constructed for ultrasensitive and ultrahigh-speed fluorescence detection and imaging of microRNAs (miRNAs) in living cells. Impressively, compared with the defect that "one" target miRNA only initiates "one" walking arm of the conventional single self-protected DNAzyme walker, the dSPD walker benefits from the secondary amplification and spatial confinement effect and could guide "one" target miRNA to generate "n" secondary targets, thereby initiating "n" nearby walking strands immediately, realizing the initial rate over one-magnitude-order faster than that of the conventional one. Moreover, in the process of relative motion between ac-dSPWPs and TPs, the ac-dSPWPs could cleave multiple substrate strands simultaneously to speed up movement and reduce the derailment rate, as well as combine with successive TPs to facilitate a large amount of continuous signal accumulation, achieving an ultrafast detection of miRNA-221 within 10 min in vitro and high sensitivity with a low detection limit of 0.84 pM. In addition, the DNA nanospheres obtained by the rolling circle amplification reaction can capture the Cy5 fluorescence dispersed in liquids, which achieves the high-contrast imaging of miRNA-221, resulting in further ultrasensitive imaging of miRNA-221 in cancer cells. The proposed strategy has made a bold innovation in the rapid and sensitive detection as well as intracellular imaging of low-abundance biomarkers, offering promising application in early diagnosis and relevant research of cancer and tumors.


Asunto(s)
ADN Catalítico , MicroARNs , MicroARNs/análisis , Humanos , ADN Catalítico/química , ADN Catalítico/metabolismo , Imagen Óptica , Límite de Detección , ADN/química , Espectrometría de Fluorescencia , Colorantes Fluorescentes/química , Fluorescencia , Células HeLa
2.
Anal Chem ; 96(22): 9097-9103, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38768044

RESUMEN

Herein, a fluorescence light-up 3D DNA walker (FLDW) was powered and accelerated by endogenous adenosine-5'-triphosphate (ATP) molecules to construct a biosensor for sensitive and rapid label-free detection and imaging of microRNA-221 (miRNA-221) in malignant tumor cells. Impressively, ATP as the driving force and accelerator for FLDW could significantly accelerate the operation rate of FLDW, reduce the likelihood of errors in signaling, and improve the sensitivity of detection and imaging. When FLDW was initiated by output DNA H1-op transformed by target miRNA-221, G-rich sequences in the S strand, anchored to AuNP, were exposed to form G-quadruplexes (G4s), and thioflavin T (ThT) embedded in the G4s emitted intense fluorescence to realize sensitive and rapid detection of target miRNA-221. Meanwhile, the specific binding of ThT to G4 with a weak background fluorescence response was utilized to enhance the signal-to-noise ratio of the label-free assay straightforwardly and cost-effectively. The proposed FLDW system could realize sensitive detection of the target miRNA-221 in the range of 1 pM to 10 nM with a detection limit of 0.19 pM by employing catalytic hairpin assembly (CHA) to improve the conversion of the target. Furthermore, by harnessing the abundant ATP present in the tumor microenvironment, FLDW achieved rapid and accurate imaging of miRNA-221 in cancer cells. This strategy provides an innovative and high-speed label-free approach for the detection and imaging of biomarkers in cancer cells and is expected to be a powerful tool for bioanalysis, diagnosis, and prognosis of human diseases.


Asunto(s)
Adenosina Trifosfato , Técnicas Biosensibles , ADN , MicroARNs , MicroARNs/análisis , MicroARNs/metabolismo , Humanos , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , ADN/química , Técnicas Biosensibles/métodos , Imagen Óptica , G-Cuádruplex , Fluorescencia , Colorantes Fluorescentes/química , Límite de Detección , Oro/química
3.
Anal Chem ; 96(26): 10738-10747, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38898770

RESUMEN

Herein, CsPbBr3 perovskite quantum dots (CPB PQDs)@poly(methyl methacrylate) (PMMA) (CPB@PMMA) nanospheres were used as energy donors with high Förster resonance energy transfer (FRET) efficiency and exceptional biocompatibility for ultrasensitive dynamic imaging of tiny amounts of microRNAs in living cells. Impressively, compared with traditional homogeneous single QDs as energy donors, CPB@PMMA obtained by encapsulating numerous CPB PQDs into PMMA as energy donors could not only significantly increase the efficiency of FRET via improving the local concentration of CPB PQDs but also distinctly avoid the problem of cytotoxicity caused by divulged heavy metal ions entering living cells. Most importantly, in the presence of target miRNA-21, DNA dendrimer-like nanostructures labeled with 6-carboxy-tetramethylrhodamine (TAMRA) were generated by the exposed tether interhybridization of the Y-shape structure, which could wrap around the surface of CPB@PMMA nanospheres to remarkably bridge the distance of FRET and increase the opportunity for effective energy transfer, resulting in excellent precision and accuracy for ultrasensitive and dynamic imaging of miRNAs. As proof of concept, the proposed strategy exhibited ultrahigh sensitivity with a detection limit of 45.3 aM and distinctly distinguished drug-irritative miRNA concentration abnormalities with living cells. Hence, the proposed enzyme-free CPB@PMMA biosensor provides convincing evidence for supplying accurate information, which could be expected to be a powerful tool for bioanalysis, diagnosis, and prognosis of human diseases.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , MicroARNs , Óxidos , Puntos Cuánticos , Titanio , Puntos Cuánticos/química , MicroARNs/análisis , Humanos , Titanio/química , Óxidos/química , Compuestos de Calcio/química , Polimetil Metacrilato/química , Plomo/química , Plomo/análisis , Gadolinio/química
4.
Anal Chem ; 96(9): 3837-3843, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38384162

RESUMEN

Herein, an antibody-protein-aptamer electrochemical biosensor was designed by highly efficient proximity-induced DNA hybridization on a tetrahedral DNA nanostructure (TDN) for ultrasensitive detection of human insulin-like growth factor-1 (IGF-1). Impressively, the IGF-1 antibody immobilized on the top vertex of the TDN could effectively capture the target protein with less steric effect, and the ferrocene-labeled signal probe (SP) bound on the bottom vertex of the TDN was close to the electrode surface for generating a strong initial signal. In the presence of target protein IGF-1 and an aptamer strand, an antibody-protein-aptamer sandwich could be formed on the top vertex of TDN, which would trigger proximity-induced DNA hybridization to release the SP on the bottom vertex of TDN; therefore, the signal response would decrease dramatically, enhancing the sensitivity of the biosensor. As a result, the linear range of the proposed biosensor for target IGF-1 was 1 fM to 1 nM with the limit of detection down to 0.47 fM, which was much lower than that of the traditional TDN designs on electrochemical biosensors. Surprisingly, the use of this approach offered an innovative approach for the sensitive detection of biomarkers and illness diagnosis.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Humanos , Péptidos Similares a la Insulina , Factor I del Crecimiento Similar a la Insulina , ADN/química , Anticuerpos , Oligonucleótidos , Nanoestructuras/química , Técnicas Electroquímicas , Límite de Detección
5.
Anal Chem ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946419

RESUMEN

Apurinic/apyrimidinic endonuclease 1 (APE1), as a vital base excision repair enzyme, is essential for maintaining genomic integrity and stability, and its abnormal expression is closely associated with malignant tumors. Herein, we constructed an electrochemiluminescence (ECL) biosensor for detecting APE1 activity by combining nanoconfined ECL silver nanoclusters (Ag NCs) with X-shaped DNA recognizer-triggered cascade amplification. Specifically, the Ag NCs were prepared and confined in the glutaraldehyde-cross-linked chitosan hydrogel network using the one-pot method, resulting in a strong ECL response and exceptional stability in comparison with discrete Ag NCs. Furthermore, the self-assembled X-shaped DNA recognizers were designed for APE1 detection, which not only improved reaction kinetics due to the ordered arrangement of recognition sites but also achieved high sensitivity by utilizing the recognizer-triggered cascade amplification of strand displacement amplification (SDA) and DNAzyme catalysis. As expected, this biosensor achieved sensitive ECL detection of APE1 in the range of 1.0 × 10-3 U·µL-1 to 1.0 × 10-10 U·µL-1 with the detection limit of 2.21 × 10-11 U·µL-1, rendering it a desirable approach for biomarker detection.

6.
Anal Chem ; 96(24): 9961-9968, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38838250

RESUMEN

In this study, a novel europium dual-ligand metal-organic gel (Eu-D-MOGs) with high-efficient anodic annihilation electrochemiluminescence (ECL) was synthesized as an ECL emitter to construct a biosensor for ultrasensitive detection of microRNA-221 (miR-221). Impressively, compared to the ECL signal of europium single-ligand metal-organic gels (Eu-S-MOGs), the ECL signal of Eu-D-MOGs was significantly improved since the two organic ligands could jointly replace the H2O and coordinate with Eu3+, which could remarkably reduce the nonradiative vibrational energy transfer caused by the coordination between H2O and Eu3+ with a high coordination demand. In addition, Eu-D-MOGs could be electrochemically oxidized to Eu-D-MOGs•+ at 1.45 V and reduced to Eu-D-MOGs•- at 0.65 V to achieve effective annihilation of ECL, which overcame the side reaction brought by the remaining emitters at negative potential. This benefited from the annihilation ECL performance of the central ion Eu3+ caused by its redox in the electrochemical process. Furthermore, the annihilation ECL signal of Eu3+ could be improved by sensitizing Eu3+ via the antenna effect. In addition, combined with the improved rolling circle amplification-assisted strand displacement amplification strategy (RCA-SDA), a sensitive biosensor was constructed for the sensitive detection of miR-221 with a low detection limit of 5.12 aM and could be successfully applied for the detection of miR-221 in the lysate of cancer cells. This strategy offered a unique approach to synthesizing metal-organic gels as ECL emitters without a coreactant for the construction of ECL biosensing platforms in biomarker detection and disease diagnosis.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Europio , Geles , Mediciones Luminiscentes , MicroARNs , Europio/química , MicroARNs/análisis , Técnicas Electroquímicas/métodos , Ligandos , Geles/química , Técnicas Biosensibles/métodos , Límite de Detección , Humanos
7.
Anal Chem ; 96(26): 10809-10816, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38886176

RESUMEN

Ru-based electrochemiluminescence (ECL) coordination polymers are widely employed for bioanalysis and medical diagnosis. However, commonly used Ru-based coordination polymers face the limitation of low efficiency due to the long distance between the ECL reagent and the coreactant dispersed in detecting solution. Herein, we report a dual-ligand self-enhanced ECL coordination polymer, composed of tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) dichloride (Ru(dcbpy)32+) as ECL reactant ligand and ethylenediamine (EDA) as corresponding coreactant ligand into Zn2+ metal node, termed Zn-Ru-EDA. Zn-Ru-EDA shows excellent ECL performance which is attributed to the effective intramolecular electron transport between the two ligands. Furthermore, the dual-ligand polymer allows an anodic low excitation potential (+1.09 V) luminescence. The shift in the energy level of the highest occupied molecular orbital (HOMO) upward after the synthesis of the Zn-Ru-EDA has resulted in a reduced excitation potential. The low excitation potential reduced biomolecular damage and the destruction of the modified electrodes. The ECL biosensor has been constructed using Zn-Ru-EDA with high ECL efficiency for the ultrasensitive detection of a bacterial infection and sepsis biomarker, procalcitonin (PCT), in the range from 1.00 × 10-6 to 1.00 × 10 ng·mL-1 with outstanding selectivity, and the detection limit was as low as 0.47 fg·mL-1. Collectively, the dual-ligand-based self-enhanced polymer may provide an ideal strategy for high ECL efficiency improvement as well as designing new self-enhanced multiple-ligand-based coordination in sensitive biomolecular detection for early disease diagnostics.


Asunto(s)
Técnicas Electroquímicas , Mediciones Luminiscentes , Polímeros , Polipéptido alfa Relacionado con Calcitonina , Rutenio , Ligandos , Polímeros/química , Polipéptido alfa Relacionado con Calcitonina/sangre , Polipéptido alfa Relacionado con Calcitonina/análisis , Humanos , Rutenio/química , Complejos de Coordinación/química , Límite de Detección , Técnicas Biosensibles , Etilenodiaminas/química
8.
Anal Chem ; 96(11): 4589-4596, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38442212

RESUMEN

Herein, novel europium metal-organic gels (Eu-MOGs) with excellent cathode electrochemiluminescence (ECL) emission are first used to construct biosensors for the ultrasensitive detection of miRNA-222. Impressively, N and O elements of organic ligand 2,2':6,2″-terpyridine 4,4',4″-tricarboxylic acid (H3-tctpy) can perfectly coordinate with Eu3+ to form Eu-MOGs, which not only reduce nonradiative transition caused by the intramolecular free rotation of phenyl rings in other MOGs to enhance the ECL signal with extraordinary ECL efficiency as high as 37.2% (vs the [Ru(bpy)3]2+/S2O82- ECL system) but also reinforce ligand-to-metal charge transfer (LMCT) by the strong affinity between Eu3+ and N and O elements to greatly improve the stability of ECL signals. Besides, an improved nucleic acid cascade amplification reaction is developed to greatly raise the conversion efficiency from target miRNA-222 to a DNAzyme-mediated dual-drive DNA walker as output DNA, which can simultaneously shear the specific recognition sites from two directions. In that way, the proposed biosensor can further enhance the detection sensitivity of miRNA-222 with a linear range of 10 aM-1 nM and a detection limit (LOD) of 8.5 aM, which can also achieve an accurate response in cancer cell lysates of MHCC-97L and HeLa. Additionally, the biosensor can be self-regenerated by the folding/unfolding of related triplets with pH changes to simplify experimental operations and reduce the cost. Hence, this work proposed novel MOGs with stable and intense ECL signals for the construction of a renewable ECL biosensor, supplying a reliable detection method in biomarker analysis and disease diagnosis.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , Humanos , Europio , Ligandos , ADN/química , Mediciones Luminiscentes/métodos , MicroARNs/análisis , Técnicas Biosensibles/métodos , Geles , Técnicas Electroquímicas/métodos , Límite de Detección
9.
Anal Chem ; 96(19): 7516-7523, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691765

RESUMEN

Herein, single-atom iron doped carbon dots (SA Fe-CDs) were successfully prepared as novel electrochemiluminescence (ECL) emitters with high ECL efficiency, and a biosensor was constructed to ultrasensitively detect microRNA-222 (miRNA-222). Importantly, compared with the conventional without single-atom doped CDs with low ECL efficiency, SA Fe-CDs exhibited strong ECL efficiency, in which single-atom iron as an advanced coreactant accelerator could significantly enhance the generation of reactive oxygen species (ROS) from the coreactant S2O82- for improving the ECL efficiency. Moreover, a neoteric amplification strategy combining the improved strand displacement amplification with Nt.BbvCI enzyme-induced target amplification (ISDA-EITA) could produce 4 output DNAs in every cycle, which greatly improved the amplification efficiency. Thus, a useful ECL biosensor was built with a detection limit of 16.60 aM in the range of 100 aM to 1 nM for detecting traces of miRNA-222. In addition, miRNA-222 in cancer cell lysate (MHCC-97L) was successfully detected by using the ECL biosensor. Therefore, this strategy provides highly efficient single-atom doped ECL emitters for the construction of sensitive ECL biosensing platforms in the biological field and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Carbono , Técnicas Electroquímicas , Hierro , Mediciones Luminiscentes , MicroARNs , Puntos Cuánticos , MicroARNs/análisis , Carbono/química , Hierro/química , Técnicas Electroquímicas/métodos , Puntos Cuánticos/química , Humanos , Técnicas Biosensibles/métodos , Límite de Detección
10.
Anal Chem ; 95(11): 4896-4903, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36884276

RESUMEN

Herein, a novel photoactive poly(3,4-ethyl-enedioxythiophene) (PEDOT)/FeOOH/BiVO4 nanohybrid with excellent photoelectrochemical (PEC) efficiency was assembled for the construction of an ultrasensitive biosensor for microRNA-375-3p (miRNA-375-3p) detection. In comparison with the traditional FeOOH/BiVO4 photoactive composite, the PEDOT/FeOOH/BiVO4 nanohybrids exhibited markedly enhanced photocurrent due to the promoted interfacial charge separation by PEDOT, which was used not only as an electron conductor but also as a localized photothermal heater to enhance the photogenerated carrier separation. Based on this PEDOT/FeOOH/BiVO4 photoelectrode and an enzyme-free signal amplification strategy including a target-induced catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR), a PEC sensing platform for the detection of miRNA-375-3p was established, achieving a wide linear range from 1 fM to 10 pM with a low detection limit of 0.3 fM. Moreover, this work provides a general photocurrent enhancement strategy for the development of high-performing PEC biosensors for sensitive detection of biomarkers and early disease diagnosis.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas Electroquímicas , Límite de Detección , Hibridación de Ácido Nucleico
11.
Anal Chem ; 95(9): 4454-4460, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36880263

RESUMEN

In this work, Cu nanoclusters (Cu NCs) with strong aggregation-induced electrochemiluminescence (AIECL) as emitters were used to construct an ECL biosensor for ultrasensitive detection of microRNA-141 (miR-141). Impressively, the ECL signals enhanced with the increased content of Cu(I) in the aggregative Cu NCs. When the ratio of Cu(I)/Cu(0) in aggregative Cu NCs was 3.2, Cu NCs aggregates showed the highest ECL intensity, in which Cu(I) could enhance the cuprophilic Cu(I)···Cu(I) interaction to form rod-shaped aggregates for restricting nonradiative transitions to obviously improve the ECL response. As a result, the ECL intensity of the aggregative Cu NCs was 3.5 times higher than that of the monodispersed Cu NCs. With the aid of the cascade strand displacement amplification (SDA) strategy, an outstanding ECL biosensor was developed to achieve the ultrasensitive detection of miR-141, whose linear range varied from 10 aM to 1 nM with a detection limit of 1.2 aM. This approach opened an avenue to prepare non-noble metal nanomaterials as robust ECL emitters and provided a new idea for detection of biomolecules for diagnosis of disease.


Asunto(s)
MicroARNs , Nanoestructuras , Cobre , Fotometría
12.
Anal Chem ; 95(35): 13156-13162, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37606955

RESUMEN

Herein, by introducing gold nanostars (AuNSs) as fuel core, a near-infrared-driven nanorocket (NIDNR) with pretty fast walking was exploited for ultrasensitive miRNA detection. Compared with traditional nanomaterials-comprised nanomachines (NMs), the NIDNR possesses much better kinetic and thermodynamic performance owing to the extra photothermal driving force from localized surface plasmon (LSP). Impressively, the whole reaction time of NIDNR down to 15 min was realized, which is almost more than 8 times beyond those of conventional DNA-based NMs. This way, the inherent obstacle of traditional NMs, including long reaction time and low efficiency, could be easily addressed. As a proof of concept, the NIDNR was successfully applied to develop an electrochemical biosensing platform for rapid and sensitive detection of miRNA with an LOD down to 2.95 aM and achieved the real-time assay of real biological samples from human hepatocellular carcinoma cells (MHCC97L) and HeLa, thus providing an innovative insight to design more versatile DNA nanomachines for ultimate application in biosensing platform construction and clinical sample detection.


Asunto(s)
Espectroscopía Infrarroja Corta , Espectroscopía Infrarroja Corta/instrumentación , Espectroscopía Infrarroja Corta/métodos , MicroARNs/química , Factores de Tiempo , Oro , Nanopartículas del Metal/química , Técnicas Biosensibles , Técnicas Reproductivas , Humanos , Línea Celular Tumoral
13.
Anal Chem ; 95(35): 13211-13219, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37607331

RESUMEN

Herein, a giant-sized DNA nanoarray was subtly assembled by two kinds of independent tetrahedral DNA structures as the DNA track for a multi-armed three-dimensional (3D) DNA nanomachine to perform signal transduction and amplification efficiently, which was developed as an electrochemical biosensor for the rapid and ultrasensitive detection of matrix metalloproteinase 2 (MMP-2). Impressively, in contrast to conventional DNA walkers with inefficiency, which walked on random DNA tracks composed of a two-dimensional (2D) probe or a one-dimensional (1D) single-stranded (ss)DNA probe, the multi-armed 3D DNA nanomachine from exonuclease III (Exo III) enzyme-assisted target recycling amplification would be endowed with faster reaction speed and better walking efficiency because of the excellent rigidity and orderliness of the tetrahedral DNA nanoarray structure. Once the hairpin H3-label with the signal substance ferrocene (Fc) was added to the modified electrode surface, the multi-armed 3D DNA nanomachine would be driven to move along the well-designed nanoarray tracks by toehold-mediated DNA strand displacement, resulting in most of the ferrocene (Fc) binding to the electrode surface and a remarkable increase in electrochemical signals within 60 min. As a proof of concept, the prepared biosensor attained a low detection limit of 11.4 fg/mL for the sensitive detection of the target MMP-2 and was applied in Hela and MCF-7 cancer cell lysates. As a result, this strategy provided a high-performance sensing platform for protein detection in tumor diagnosis.


Asunto(s)
ADN , Metaloproteinasa 2 de la Matriz , Humanos , Metalocenos , ADN de Cadena Simple
14.
Anal Chem ; 95(34): 12754-12760, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590171

RESUMEN

In this study, a pH-stimulated self-locked DNA nanostructure (SLDN) was developed to efficiently distinguish cancer cells from other cells for the simultaneous detection and imaging of endogenous dual-microRNAs (miRNAs). Impressively, the SLDN was specifically unlocked in the acidic environment of cancer cells to form unlocked-SLDN to disengage the i-motif sequence with a labeled fluorophore for the recovery of a fluorescence signal, resulting in the differentiation of cancer cells from normal cells. Meanwhile, unlocked-SLDN could combine and recognize the targets miRNA-21 and miRNA-155 simultaneously to trigger the hybridization chain reaction (HCR) amplification for sensitive dual-miRNA detection, with detection limits of 1.46 pM for miRNA-21 and 0.72 pM for miRNA-155. Significantly, compared with the current miRNA imaging strategy based on the traditional DNA nanostructure, the strategy proposed here remarkably eliminates the interference of normal cells to achieve high-resolution colocation imaging of miRNAs in tumor cells with an ultralow background signal. This work provided a specific differentiation method for tumor cells to materialize sensitive biomarker detection and distinguishable high-definition live-cell imaging for precise cancer diagnosis and multifactor research of tumor progression.


Asunto(s)
MicroARNs , Nanoestructuras , Neoplasias , Secuencias Repetitivas de Ácidos Nucleicos , Diferenciación Celular , Concentración de Iones de Hidrógeno , Neoplasias/diagnóstico por imagen
15.
Anal Chem ; 95(33): 12383-12390, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37559508

RESUMEN

Herein, an ultrasensitive photocathodic biosensor was fabricated based on Cu2O/PTB7-Th/PDA+ photoactive materials with high photocarrier separation efficiency for the detection of microRNA-375-3p. Impressively, the photocathodic signal of the Cu2O material was significantly enhanced by using PTB7-Th as an energy level-matching photoactive material to enhance the bulk charge separation and N,N-bis (2-(trimethylammoniumiodide) propylene) perylene-3,4,9,10-tetracarboxydiimide (PDA+) as an interfacial charge transfer mediator to efficiently suppress charge recombination at the photoelectrode/electrolyte interface. Compared with the pristine Cu2O as a photocathode, the obtained Cu2O/PTB7-Th/PDA+ exhibited a 17 times higher photocathodic signal. As a proof of concept, a PEC biosensor was fabricated by using Cu2O/PTB7-Th/PDA+ as a photoactive material and a target-triggered 3D DNA walker integrated with the dumbbell hybridization chain reaction (DHCR) as a signal amplifier to achieve the sensitive detection of microRNA-375-3p with a detection limit of 0.3 fM. This work provided a method to increase the photocurrent signal and the sensitivity of PEC-sensing platforms for the detection of biomarkers and disease diagnosis.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas Electroquímicas/métodos , ADN , Electrodos , Límite de Detección
16.
Anal Chem ; 95(2): 1490-1497, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36596235

RESUMEN

In this work, a high-efficiency controllable three-dimensional (3D) DNA nanomachine (CDNM) was reasonably developed by regulating the diameter of the core and the length of the DNAzyme cantilever, which acquired greater amplification efficiency and speedier walking rate than traditional 3D DNA nanomachines with gold nanoparticles as the cores and DNAzymes as the walking arms. Significantly, once the target miRNA-21 existed, a large number of silent DNAzymes on the CDNM could be activated by enzyme-free-target-recycling amplification (EFTRA) to achieve fast cleavage and walking on the biosensor surface under the interaction of Mg2+. Impressively, when the diameter of the core was 40 nm and the length of the DNAzyme cantilever was 5 nm (15 bp), the CDNM could complete the reaction process in 60 min that was at least twice shorter than those of conventional DNA nanomachines. Moreover, the designed electrochemical biosensor successfully detected target miRNA-21 at an ultrasensitive level with a wide response range (100 aM to 1 nM) and a low detection limit (33.1 aM). Therefore, the developed CDNM provides a new idea for exploring functional DNA nanomachines in the field of biosensing for applications.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Nanopartículas del Metal , MicroARNs , MicroARNs/genética , Oro , Límite de Detección , ADN , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
17.
Anal Chem ; 95(6): 3452-3459, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36719845

RESUMEN

Herein, the aggregation-induced emission (AIE)-type carboxymethyl chitosan (CMCS)@6-aza-2-thiothymine (ATT) templated AgAu bimetallic nanoclusters (CMCS@ATT-AgAu BMNCs) with superior electrochemiluminescence (ECL) emission were first synthesized to construct a biosensor for the ultrasensitive detection of glial fibrillary acidic protein (GFAP). Impressively, unlike the traditional AIE-type bimetallic nanoclusters (BMNCs) obtained by complicated multi-step synthesis, the AIE-type CMCS@ATT-AgAu BMNCs were prepared by the electrostatic interaction between the negatively charged ATT and positively charged CMCS, in which the molecule ATT was served as a capping and reducing agent of bimetal ions. In addition, a rapidly moving cholesterol labeled DNA walker was constructed to move freely on the lipid bilayer to increase its moving efficiency, and the well-regulated DNA was intelligently designed to further improve its walking efficiency for rapid and ultrasensitive detection of GFAP with a limit of detection (LOD) as low as 73 ag/mL. This strategy proposed an avenue to synthesize highly efficient BMNCs-based ECL emitters, which have great potential in ultrasensitive biosensing for early diagnosis of diseases.


Asunto(s)
Técnicas Biosensibles , Mediciones Luminiscentes , Proteína Ácida Fibrilar de la Glía , Electricidad Estática , Técnicas Electroquímicas , ADN , Límite de Detección
18.
Anal Chem ; 95(17): 6785-6790, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37078967

RESUMEN

Preparing high-efficiency ECL gold nanoclusters (Au NCs) still faces a serious challenge due to the poor stability of co-reactant radicals in aqueous media. Herein, we report a ligand-based shielding effect induced record near-infrared (λmax = 786 nm) ECL efficiency of ß-cyclodextrin-protected Au NCs (ß-CD-Au NCs) with triethylamine (TEA) as co-reactant. The ligand of ß-CD-Au NCs with a matched hydrophobic cavity could encapsulate TEA driven by host-guest chemistry, which not only allows the generation of TEA• in the cavity to diminish environmental exposure, thus reducing the quenching by dissolved oxygen, water, etc., but also shortens the charge transfer pathway without extensive chemical modification. Density functional theory, 1H NMR spectra, electron paramagnetic resonance, and differential pulse voltammetry studies revealed that the ß-CD ligand-based shielding effect significantly increased the reactivity efficiency of TEA. More importantly, in stark contrast to those of traditional ligand-protected Au NCs, the ECL efficiency of ß-CD-Au NCs enhanced 321-fold versus BSA-Au NCs, 153-fold versus ATT-Au NCs, and 19-fold versus GSH-Au NCs with 1 mM TEA. Therefore, this work provides an in-depth understanding of the crucial role of ligands in enhancing the active co-reactant radical stability for high-efficiency ECL metal NCs to immensely stimulate their promising applications. Using the ß-CD-Au NCs as emitters, a "signal off" ECL sensing platform was constructed to detect noradrenaline as a model target with a lower detection limit of 0.91 nM.

19.
Anal Chem ; 95(2): 1686-1693, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36541619

RESUMEN

Due to effective tackling of the problems of aggregation-caused quenching of traditional ECL emitters, aggregation-induced electrochemiluminescence (AIECL) has emerged as a research hotspot in aqueous detection and sensing. However, the existing AIECL emitters still encounter the bottlenecks of low ECL efficiency, poor biocompatibility, and high cost. Herein, aluminum(III)-based organic nanofibrous gels (AOGs) are used as a novel AIECL emitter to construct a rapid and ultrasensitive sensing platform for the detection of Flu A virus biomarker DNA (fDNA) with the assistance of a high-speed and hyper-efficient signal magnifier, a rigid triplex DNA walker (T-DNA walker). The proposed AOGs with three-dimensional (3D) nanofiber morphology are assembled in one step within about 15 s by the ligand 2,2':6',2″-terpyridine-4'-carboxylic acid (TPY-COOH) and cheap metal ion Al3+, which demonstrates an efficient ECL response and outstanding biocompatibility. Impressively, on the basis of loop-mediated isothermal amplification-generated hydrogen ions (LAMP-H+), the target-induced pH-responsive rigid T-DNA walker overcomes the limitations of conventional single or duplex DNA walkers in walking trajectory and efficiency due to the entanglement and lodging of leg DNA, exhibiting high stability, controllability, and walking efficiency. Therefore, AOGs with excellent AIECL performance were combined with a CG-C+ T-DNA nanomachine with high walking efficiency and stability, and the proposed "on-off" ECL biosensor displayed a low detection limit down to 23 ag·µL-1 for target fDNA. Also, the strategy provided a useful platform for rapid and sensitive monitoring of biomolecules, considerably broadening its potential applications in luminescent molecular devices, clinical diagnosis, and sensing analysis.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Nanofibras , Aluminio , Mediciones Luminiscentes/métodos , ADN Viral , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , MicroARNs/análisis
20.
Anal Chem ; 95(34): 12768-12775, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37587155

RESUMEN

Herein, a surface-enhanced Raman scattering (SERS) biosensor was constructed by gold nanobipyramid (Au NBP) hotspot aggregation-induced SERS (HAI-SERS) for the ultrasensitive detection of microRNA-221 (miRNA-221). Impressively, compared with single Au NBP, the multiple Au NBPs assembled by tetrahedral DNA nanostructures (TDNs) could increase hotspot aggregation to significantly enhance the SERS signal of Raman molecule methylene blue (MB). Meanwhile, in the aid of Exo-III assisted target cycle amplification and TDNs-induced catalytic hairpin assembly (CHA) amplification, the biosensor could achieve the sensitive detection of miRNA-221 with a linear range of 1 fM-10 nM, and the limit of detection (LOD) was 0.59 fM, which could be used for practical application in MHCC-97L and MCF-7 cell lysates. This work provided a method for hotspot aggregation to enhance SERS for the detection of biomarkers and disease diagnosis.


Asunto(s)
MicroARNs , Espectrometría Raman , Catálisis , Oro , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA