Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Org Chem ; 89(20): 15083-15090, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39369427

RESUMEN

A palladium-catalyzed [3 + 2] annulation of naphthalic anhydrides with internal alkynes has been developed. The present protocol offers an efficient and convenient route to access a series of 1,2-disubstituted acenaphthylenes with excellent functional group compatibility. The reaction is proposed to proceed through a double decarboxylation sequence. The reported synthetic protocols can be extended to napthalene- and perylenedicarboximide-containing substrates. The molecular structures, photophysical properties, and frontier molecular orbitals of the obtained adducts were investigated by X-ray crystallography, UV-vis and fluorescence spectroscopy, and DFT calculations.

2.
Biochemistry ; 62(2): 388-395, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36215733

RESUMEN

Heme-copper oxidases (HCOs) utilize tyrosine (Tyr) to donate one of the four electrons required for the reduction of O2 to water in biological respiration, while tryptophan (Trp) is speculated to fulfill the same role in cyt bd oxidases. We previously engineered myoglobin into a biosynthetic model of HCOs and demonstrated the critical role that Tyr serves in the oxygen reduction reaction (ORR). To address the roles of Tyr and Trp in these oxidases, we herein report the preparation of the same biosynthetic model with the Tyr replaced by Trp and further demonstrate that Trp can also promote the ORR, albeit with lower activity. An X-ray crystal structure of the Trp variant shows a hydrogen-bonding network involving two water molecules that are organized by Trp, similar to that in the Tyr variant, which is absent in the crystal structure with the native Phe residue. Additional electron paramagnetic resonance measurements are consistent with the formation of a Trp radical species upon reacting with H2O2. We attribute the lower activity of the Trp variant to Trp's higher reduction potential relative to Tyr. Together, these findings demonstrate, for the first time, that Trp can indeed promote the ORR and provides a structural basis for the observation of varying activities. The results support a redox role for the conserved Trp in bd oxidase while suggesting that HCOs use Tyr instead of Trp to achieve higher reactivity.


Asunto(s)
Hemo , Triptófano , Triptófano/química , Hemo/química , Agua , Peróxido de Hidrógeno/química , Oxidorreductasas/metabolismo , Oxidación-Reducción , Tirosina/química , Oxígeno/química
3.
J Am Chem Soc ; 145(16): 8996-9002, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37068040

RESUMEN

The recent discovery of metal-metal bonding and valence delocalization in the dilanthanide complexes (CpiPr5)2Ln2I3 (CpiPr5 = pentaisopropylcyclopentadienyl; Ln = Y, Gd, Tb, Dy) opened up the prospect of harnessing the 4fn5dz21 electron configurations of non-traditional divalent lanthanide ions to access molecules with novel bonding motifs and magnetism. Here, we report the trinuclear mixed-valence clusters (CpiPr5)3Ln3H3I2 (1-Ln, Ln = Y, Gd), which were synthesized via potassium graphite reduction of the trivalent clusters (CpiPr5)3Ln3H3I3. Structural, computational, and spectroscopic analyses support valence delocalization in 1-Ln resulting from a three-center, one-electron σ bond formed from the 4dz2 and 5dz2 orbitals on Y and Gd, respectively. Dc magnetic susceptibility data obtained for 1-Gd reveal that valence delocalization engenders strong parallel alignment of the σ-bonding electron and the 4f electrons of each gadolinium center to afford a high-spin ground state of S = 11. Notably, this represents the first clear instance of metal-metal bonding in a molecular trilanthanide complex, and the large spin-spin exchange constant of J = 168(1) cm-1 determined for 1-Gd is only the second largest coupling constant characterized to date for a molecular lanthanide compound.

4.
J Am Chem Soc ; 145(30): 16726-16738, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37486968

RESUMEN

Peptide hormones are essential signaling molecules with therapeutic importance. Identifying regulatory factors that drive their activity gives important insight into their mode of action and clinical development. In this work, we demonstrate the combined impact of Cu(II) and the serum protein albumin on the activity of C-peptide, a 31-mer peptide derived from the same prohormone as insulin. C-peptide exhibits beneficial effects, particularly in diabetic patients, but its clinical use has been hampered by a lack of mechanistic understanding. We show that Cu(II) mediates the formation of ternary complexes between albumin and C-peptide and that the resulting species depend on the order of addition. These ternary complexes notably alter peptide activity, showing differences from the peptide or Cu(II)/peptide complexes alone in redox protection as well as in cellular internalization of the peptide. In standard clinical immunoassays for measuring C-peptide levels, the complexes inflate the quantitation of the peptide, suggesting that such adducts may affect biomarker quantitation. Altogether, our work points to the potential relevance of Cu(II)-linked C-peptide/albumin complexes in the peptide's mechanism of action and application as a biomarker.


Asunto(s)
Cobre , Albúmina Sérica , Humanos , Albúmina Sérica/metabolismo , Cobre/química , Péptido C , Péptidos/metabolismo , Oxidación-Reducción
5.
Photosynth Res ; 156(3): 309-314, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36653579

RESUMEN

The residue D1-D170 bridges Mn4 with the Ca ion in the O2-evolving Mn4CaO5 cluster of Photosystem II. Recently, the D1-D170E mutation was shown to substantially alter the Sn+1-minus-Sn FTIR difference spectra [Debus RJ (2021) Biochemistry 60:3841-3855]. The mutation was proposed to alter the equilibrium between different Jahn-Teller conformers of the S1 state such that (i) a different S1 state conformer is stabilized in D1-D170E than in wild-type and (ii) the S1 to S2 transition in D1-D170E produces a high-spin form of the S2 state rather than the low-spin form that is produced in wild-type. In this study, we employed EPR spectroscopy to test if a high-spin form of the S2 state is formed preferentially in D1-D170E PSII. Our data show that illumination of dark-adapted D1-D170E PSII core complexes does indeed produce a high-spin form of the S2 state rather than the low-spin multiline form that is produced in wild-type. This observation provides further experimental support for a change in the equilibrium between S state conformers in both the S1 and S2 states in a site-directed mutant that retains substantial O2 evolving activity.


Asunto(s)
Manganeso , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Ligandos , Manganeso/química , Mutación , Espectroscopía de Resonancia por Spin del Electrón , Oxígeno/química , Oxidación-Reducción
6.
Inorg Chem ; 62(1): 192-200, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36547395

RESUMEN

We present a combined experimental and theoretical study of the nature of the proposed metal-metal bonding in the tetranuclear cluster Ni4(NPtBu3)4, which features four nickel(I) centers engaged in strong ferromagnetic coupling. High-resolution single-crystal synchrotron X-ray diffraction data collected at 25 K provide an accurate geometrical structure and a multipole model electron density description. Topological analysis of the electron density in the Ni4N4 core using the quantum theory of atoms in molecules clearly identifies the bonding as an eight-membered ring of type [Ni-N-]4 without direct Ni-Ni bonding, and this result is generally corroborated by an analysis of the energy density distribution. In contrast, the calculated bond delocalization index of ∼0.6 between neighboring Ni atoms is larger than what has been found for other bridged metal-metal bonds and implies direct Ni-Ni bonding. Similar support for the presence of direct Ni-Ni bonding is found in the interacting quantum atom approach, an energy decomposition scheme, which suggests the presence of stabilizing Ni-Ni bonding interactions with an exchange-correlation energy contribution approximately 50% of that of the Ni-N interactions. Altogether, while the direct interactions between neighboring Ni centers are too weak and sterically constrained to bear the signature of a topological bond critical point, other continuous measures clearly indicate significant Ni-Ni bonding. These metal-metal bonding interactions likely mediate direct ferromagnetic exchange, giving rise to the high-spin ground state of the molecule.

7.
J Am Chem Soc ; 144(10): 4294-4299, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35119845

RESUMEN

Structural regulation of the active centers is often pivotal in controlling the catalytic functions, especially in iron-based oxidation systems. Here, we discovered a significantly altered catalytic oxidation pathway via a simple cation intercalation into a layered iron oxychloride (FeOCl) scaffold. Upon intercalation of FeOCl with potassium iodide (KI), a new stable phase of K+-intercalated FeOCl (K-FeOCl) was formed with slided layers, distorted coordination, and formed high-spin Fe(II) species compared to the pristine FeOCl precursor. This structural manipulation steers the catalytic H2O2 activation from a traditional Fenton-like pathway on FeOCl to a nonradical ferryl (Fe(IV)═O) pathway. Consequently, the K-FeOCl catalyst can efficiently remove various organic pollutants with almost 2 orders of magnitude faster reaction kinetics than other Fe-based materials via an oxidative coupling or polymerization pathway. A reaction-filtration coupled process based on K-FeOCl was finally demonstrated and could potentially reduce the energy consumption by almost 50%, holding great promise in sustainable pollutant removal technologies.


Asunto(s)
Contaminantes Ambientales , Compuestos de Hierro , Peróxido de Hidrógeno , Hierro , Compuestos de Hierro/química , Oxidación-Reducción , Potasio
8.
J Am Chem Soc ; 143(47): 19748-19760, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34787416

RESUMEN

Two-electron reduction of the amidate-supported U(III) mono(arene) complex U(TDA)3 (2) with KC8 yields the anionic bis(arene) complex [K[2.2.2]cryptand][U(TDA)2] (3) (TDA = N-(2,6-di-isopropylphenyl)pivalamido). EPR spectroscopy, magnetic susceptibility measurements, and calculations using DFT as well as multireference CASSCF methods all provide strong evidence that the electronic structure of 3 is best represented as a 5f4 U(II) metal center bound to a monoreduced arene ligand. Reactivity studies show 3 reacts as a U(I) synthon by behaving as a two-electron reductant toward I2 to form the dinuclear U(III)-U(III) triiodide species [K[2.2.2]cryptand][(UI(TDA)2)2(µ-I)] (6) and as a three-electron reductant toward cycloheptatriene (CHT) to form the U(IV) complex [K[2.2.2]cryptand][U(η7-C7H7)(TDA)2(THF)] (7). The reaction of 3 with cyclooctatetraene (COT) generates a mixture of the U(III) anion [K[2.2.2]cryptand][U(TDA)4] (1-crypt) and U(COT)2, while the addition of COT to complex 2 instead yields the dinuclear U(IV)-U(IV) inverse sandwich complex [U(TDA)3]2(µ-η8:η3-C8H8) (8). Two-electron reduction of the homoleptic Th(IV) amidate complex Th(TDA)4 (4) with KC8 gives the mono(arene) complex [K[2.2.2]cryptand][Th(TDA)3(THF)] (5). The C-C bond lengths and torsion angles in the bound arene of 5 suggest a direduced arene bound to a Th(IV) metal center; this conclusion is supported by DFT calculations.


Asunto(s)
Complejos de Coordinación/química , Uranio/química , Complejos de Coordinación/síntesis química , Teoría Funcional de la Densidad , Ligandos , Modelos Químicos , Oxidación-Reducción , Torio/química
9.
Inorg Chem ; 60(23): 18553-18560, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34807605

RESUMEN

Spin-vibronic coupling leads to spin relaxation in paramagnetic molecules, and an understanding of factors that contribute to this phenomenon is essential for designing next-generation spintronics technology, including single-molecule magnets and spin-based qubits, wherein long-lifetime magnetic ground states are desired. We report spectroscopic and magnetic characterization of the isoelectronic and isostructural series of homoleptic zerovalent transition metal triad M(CNDipp)6 (M = V, Nb, Ta; CNDipp = 2,6-diisopropylphenyl isocyanide) and show experimentally the significant increase in spin relaxation rate upon going from V to Nb to Ta. Correlated electronic calculations and first principle spin-phonon computations support the role of spin-orbit coupling in modulating spin-phonon relaxation. Our results provide experimental evidence that increasing magnetic anisotropy through spin-orbit coupling interactions leads to increased spin-vibronic relaxation, which is detrimental to long spin lifetime in paramagnetic molecules.

10.
J Am Chem Soc ; 142(45): 19161-19169, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33111523

RESUMEN

We present an extensive study of tetranuclear transition-metal cluster compounds M4(NPtBu3)4 and [M4(NPtBu3)4][B(C6F5)4] (M = Ni, Cu; tBu = tert-butyl), which feature low-coordinate metal centers and direct metal-metal orbital overlap. X-ray diffraction, electrochemical, magnetic, spectroscopic, and computational analysis elucidate the nature of the bonding interactions in these clusters and the impact of these interactions on the electronic and magnetic properties. Direct orbital overlap results in strongly coupled, large-spin ground states in the [Ni4(NPtBu3)4]+/0 clusters and fully delocalized, spin-correlated electrons. Correlated electronic structure calculations confirm the presence of ferromagnetic ground states that arise from direct exchange between magnetic orbitals, and, in the case of the neutral cluster, itinerant electron magnetism similar to that in metallic ferromagnets. The cationic nickel cluster also possesses large magnetic anisotropy exemplified by a large, positive axial zero-field splitting parameter of D = +7.95 or +9.2 cm-1, as determined by magnetometry or electron paramagnetic resonance spectroscopy, respectively. The [Ni4(NPtBu3)4]+ cluster is also the first molecule with easy-plane magnetic anisotropy to exhibit zero-field slow magnetic relaxation, and under a small applied field, it exhibits relaxation exclusively through an Orbach mechanism with a spin relaxation barrier of 16 cm-1. The S = 1/2 complex [Cu4(NPtBu3)4]+ exhibits slow magnetic relaxation via a Raman process on the millisecond time scale, supporting the presence of slow relaxation via an Orbach process in the nickel analogue. Overall, this work highlights the unique electronic and magnetic properties that can be realized in metal clusters featuring direct metal-metal orbital interactions between low-coordinate metal centers.

11.
J Am Chem Soc ; 142(50): 21197-21209, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33322909

RESUMEN

Systematic analysis of related compounds is crucial to the design of single-molecule magnets with improved properties, yet such studies on multinuclear lanthanide complexes with strong magnetic coupling remain rare. Herein, we present the synthesis and magnetic characterization of the series of radical-bridged dilanthanide complex salts [(Cp*2Ln)2(µ-5,5'-R2bpym)](BPh4) (Ln = Gd, Dy; R = NMe2 (1), OEt (2), Me (3), F (4); bpym = 2,2'-bipyrimidine). Modification of the substituent on the bridging 5,5'-R2bpym radical anion allows the magnetic exchange coupling constant, JGd-rad, for the gadolinium compounds in this series to be tuned over a range from -2.7 cm-1 (1) to -11.1 cm-1 (4), with electron-withdrawing or -donating substituents increasing or decreasing the strength of exchange coupling, respectively. Modulation of the exchange coupling interaction has a significant impact on the magnetic relaxation dynamics of the single-molecule magnets 1-Dy through 4-Dy, where stronger JGd-rad for the corresponding Gd3+ compounds is associated with larger thermal barriers to magnetic relaxation (Ueff), open magnetic hysteresis at higher temperatures, and slower magnetic relaxation rates for through-barrier processes. Further, we derive an empirical linear correlation between the experimental Ueff values for 1-Dy through 4-Dy and the magnitude of JGd-rad for the corresponding gadolinium derivatives that provides insight into the electronic structure of these complexes. This simple model applies to other organic radical-bridged dysprosium complexes in the literature, and it establishes clear design criteria for increasing magnetic operating temperatures in radical-bridged molecules.

12.
J Am Chem Soc ; 142(34): 14627-14637, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32786654

RESUMEN

Developing O2-selective adsorbents that can produce high-purity oxygen from air remains a significant challenge. Here, we show that chemically reduced metal-organic framework materials of the type AxFe2(bdp)3 (A = Na+, K+; bdp2- = 1,4-benzenedipyrazolate; 0 < x ≤ 2), which feature coordinatively saturated iron centers, are capable of strong and selective adsorption of O2 over N2 at ambient (25 °C) or even elevated (200 °C) temperature. A combination of gas adsorption analysis, single-crystal X-ray diffraction, magnetic susceptibility measurements, and a range of spectroscopic methods, including 23Na solid-state NMR, Mössbauer, and X-ray photoelectron spectroscopies, are employed as probes of O2 uptake. Significantly, the results support a selective adsorption mechanism involving outer-sphere electron transfer from the framework to form superoxide species, which are subsequently stabilized by intercalated alkali metal cations that reside in the one-dimensional triangular pores of the structure. We further demonstrate O2 uptake behavior similar to that of AxFe2(bdp)3 in an expanded-pore framework analogue and thereby gain additional insight into the O2 adsorption mechanism. The chemical reduction of a robust metal-organic framework to render it capable of binding O2 through such an outer-sphere electron transfer mechanism represents a promising and underexplored strategy for the design of next-generation O2 adsorbents.


Asunto(s)
Hierro/química , Estructuras Metalorgánicas/química , Oxígeno/química , Pirazoles/química , Temperatura , Adsorción , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
13.
J Am Chem Soc ; 142(48): 20489-20501, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33207117

RESUMEN

Biological and heterogeneous catalysts for the electrochemical CO2 reduction reaction (CO2RR) often exhibit a high degree of electronic delocalization that serves to minimize overpotential and maximize selectivity over the hydrogen evolution reaction (HER). Here, we report a molecular iron(II) system that captures this design concept in a homogeneous setting through the use of a redox non-innocent terpyridine-based pentapyridine ligand (tpyPY2Me). As a result of strong metal-ligand exchange coupling between the Fe(II) center and ligand, [Fe(tpyPY2Me)]2+ exhibits redox behavior at potentials 640 mV more positive than the isostructural [Zn(tpyPY2Me)]2+ analog containing the redox-inactive Zn(II) ion. This shift in redox potential is attributed to the requirement for both an open-shell metal ion and a redox non-innocent ligand. The metal-ligand cooperativity in [Fe(tpyPY2Me)]2+ drives the electrochemical reduction of CO2 to CO at low overpotentials with high selectivity for CO2RR (>90%) and turnover frequencies of 100 000 s-1 with no degradation over 20 h. The decrease in the thermodynamic barrier engendered by this coupling also enables homogeneous CO2 reduction catalysis in water without compromising selectivity or rates. Synthesis of the two-electron reduction product, [Fe(tpyPY2Me)]0, and characterization by X-ray crystallography, Mössbauer spectroscopy, X-ray absorption spectroscopy (XAS), variable temperature NMR, and density functional theory (DFT) calculations, support assignment of an open-shell singlet electronic structure that maintains a formal Fe(II) oxidation state with a doubly reduced ligand system. This work provides a starting point for the design of systems that exploit metal-ligand cooperativity for electrocatalysis where the electrochemical potential of redox non-innocent ligands can be tuned through secondary metal-dependent interactions.


Asunto(s)
Dióxido de Carbono/química , Complejos de Coordinación/química , Hierro/química , Catálisis , Teoría Funcional de la Densidad , Técnicas Electroquímicas , Ligandos , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Piridinas/química , Temperatura , Termodinámica , Zinc/química
14.
J Am Chem Soc ; 140(6): 2058-2061, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29359930

RESUMEN

The tetranuclear cobalt cluster compound [Co4(µ-NPtBu3)4][B(C6F5)4] (tBu = tert-butyl) was synthesized by chemical oxidation of Co4(NPtBu3)4 with [FeCp2][B(C6F5)4] and magnetically characterized to study the effect of electronic communication between low-coordinate metal centers on slow magnetic relaxation in a transition metal cluster. The dc magnetic susceptibility data reveal that the complex exhibits a well-isolated S = 9/2 ground state, which persists even to 300 K and is attributed to the existence of direct metal-metal orbital overlap. The ac magnetic susceptibility data further reveals that the complex exhibits slow magnetic relaxation in the absence of an applied field, and that the relaxation dynamics can be fit with a combination of Orbach, quantum tunneling, and Raman relaxation processes. The effective spin reversal barrier for this molecule is 87 cm-1, the largest reported to date for a transition metal cluster, and arises due to the presence of a large easy-axis magnetic anisotropy. The complex additionally exhibits waist-restricted magnetic hysteresis and magnetic blocking below 3.6 K. Taken together, these results indicate that coupling of low-coordinate metal centers is a promising strategy to enhance magnetic anisotropy and slow magnetic relaxation in transition metal cluster compounds.

15.
J Am Chem Soc ; 140(27): 8526-8534, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29893567

RESUMEN

Metal-organic frameworks are of interest for use in a variety of electrochemical and electronic applications, although a detailed understanding of their charge transport behavior, which is of critical importance for enhancing electronic conductivities, remains limited. Herein, we report isolation of the mixed-valence framework materials, Fe(tri)2(BF4) x (tri- = 1,2,3-triazolate; x = 0.09, 0.22, and 0.33), obtained from the stoichiometric chemical oxidation of the poorly conductive iron(II) framework Fe(tri)2, and find that the conductivity increases dramatically with iron oxidation level. Notably, the most oxidized variant, Fe(tri)2(BF4)0.33, displays a room-temperature conductivity of 0.3(1) S/cm, which represents an increase of 8 orders of magnitude from that of the parent material and is one of the highest conductivity values reported among three-dimensional metal-organic frameworks. Detailed characterization of Fe(tri)2 and the Fe(tri)2(BF4) x materials via powder X-ray diffraction, Mössbauer spectroscopy, and IR and UV-vis-NIR diffuse reflectance spectroscopies reveals that the high conductivity arises from intervalence charge transfer between mixed-valence low-spin FeII/III centers. Further, Mössbauer spectroscopy indicates the presence of a valence-delocalized FeII/III species in Fe(tri)2(BF4) x at 290 K, one of the first such observations for a metal-organic framework. The electronic structure of valence-pure Fe(tri)2 and the charge transport mechanism and electronic structure of mixed-valence Fe(tri)2(BF4) x frameworks are discussed in detail.

16.
Angew Chem Int Ed Engl ; 57(7): 1933-1938, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29285845

RESUMEN

The first dysprosium complexes with a terminal fluoride ligand are obtained as air-stable compounds. The strong, highly electrostatic dysprosium-fluoride bond generates a large axial crystal-field splitting of the J=15/2 ground state, as evidenced by high-resolution luminescence spectroscopy and correlated with the single-molecule magnet behavior through experimental magnetic susceptibility data and ab initio calculations.

17.
Angew Chem Int Ed Engl ; 56(35): 10577-10581, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28697283

RESUMEN

Hexakis(2,6-diisopropylphenylisocyanide)tantalum is the first isocyanide analogue of the highly unstable Ta(CO)6 and represents the only well-defined zerovalent tantalum complex to be prepared by conventional laboratory methods. Two prior examples of homoleptic Ta0 complexes are known, Ta(benzene)2 and Ta(dmpe)3 , dmpe=1,2-bis(dimethylphosphano)ethane, but these have only been accessed via ligand co-condensation with tantalum vapor in a sophisticated metal-atom reactor. Consistent with its 17-electron nature, Ta(CNDipp)6 undergoes facile one-electron oxidation, reduction, or disproportionation reactions. In this sense, it qualitatively resembles V(CO)6 , the only paramagnetic homoleptic metal carbonyl isolable under ambient conditions.

18.
Inorg Chem ; 55(12): 6178-85, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27267865

RESUMEN

Metaphosphate acids cannot be thoroughly studied in aqueous media because their acidity is leveled by the solvent, and the resulting metaphosphates are susceptible to acid-catalyzed hydrolysis. Exploration of metaphosphate acid chemistry has now been made possible with the development of a general synthetic method for organic media soluble metaphosphate acids. Protonation of the [PPN](+) salts ([PPN](+) = [N(PPh3)2](+)) of tri-, tetra-, and hexametaphosphates results in five new metaphosphate acids, [PPN]2[P3O9H] (2), [PPN]4[(P4O12)3H8] (3), [PPN]4[P6O18H2]·2H2O (4), [PPN]3[P6O18H3] (5), and [PPN]2[P6O18H2(H3O)2] (6), obtained in yields of 80, 71, 66, 88, and 76%, respectively. Additionally, our synthetic method can be extended to pyrophosphate to produce [PPN][P2O7H3] (7) in 77% yield. The structural configurations of these oxoacids are dictated by strong hydrogen bonds and the anticooperative effect. Intramolecular hydrogen bonds are observed in 2, 4, and 5 and the previously reported [PPN]2[P4O12H2] (1), while intermolecular hydrogen bonds are observed in 3, 6, and 7. The hydrogen bonds in 3-7 possess short distances and are classified as low-barrier hydrogen bonds. Gas-phase acidity computations reveal that the parent tri- and tetrametaphosphoric acids are superacids. Their remarkable acidity is attributable to the stabilization of their corresponding conjugate bases via intramolecular hydrogen bonding.

19.
J Am Chem Soc ; 136(34): 11894-7, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25102033

RESUMEN

Dihydrogen tetrametaphosphate [P4O12H2](2-) (1) can now be synthesized and isolated as its PPN salt ([PPN](+) = [N(PPh3)2](+)) via treatment of [PPN]4[P4O12] with trifluoroacetic anhydride in wet acetone; this simple procedure affords the oxoacid salt in 94% yield. A pKa of 15.83 ± 0.11 in acetonitrile was determined. [P4O12H2](2-) reacts with the dehydrating agent N,N'-dicyclohexylcarbodiimide to afford tetrametaphosphate anhydride [P4O11](2-) (2) in 82% yield, also as the PPN salt. From 2 a monohydrogen tetrametaphosphate ester [P4O10(OH)(OMe)](2-) (3, 96%) was derived by addition of methanol, illustrating that 2 can function as a reagent for chemical phosphorylation. Addition of water to 2 regenerates 1 quantitatively. Deprotonation of 1 by metal amides in the +2 oxidation state led to the unconventional monomeric tin(II) κ(4) tetrametaphosphate [Sn(P4O12)](2-) (4, 78%, a molecular analog of SnO) and binary dimeric chromium(II) bis(µ2,κ(2),κ(2)) derivative [Cr2(P4O12)2](4-) (5, 82%). Structural data stemming from single-crystal X-ray diffraction studies for the PPN salts of anions 1-5 are also reported.

20.
ACS Omega ; 9(34): 36380-36388, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39220524

RESUMEN

Currently, amidst atmospheric menace where natural calamities such as wildfire and floods are becoming more frequent than ever, biobased derivatives offer a sustainable alternative to conventional ways, for instance, petrochemical commodities. Biobased products, obtained from agricultural waste, including 5-(hydroxymethyl)furfural (HMF), 2,5-bis(hydroxymethyl)furan (BHMF), and 2,5-furandicarboxylic acid (FDCA) are promising chemical platforms in the biorefinery, which is yet to be explored. The Diels-Alder cycloaddition of BHMF and N-phenylmaleimide derivatives under optimal reaction conditions is investigated in this report. First, HMF is reduced to BHMF in the presence of NaBH4, and then the Diels-Alder reaction of BHMF and N-phenylmaleimide derivatives is investigated to produce Diels-Alder adducts. All novel compounds are synthesized in acceptable yields and effectively characterized by employing important techniques such as one-dimensional (1D) NMR spectroscopy (1H, 13C, DEPT-90, and DEPT- 135), two-dimensional (2D) NMR spectroscopy (1H-1H COSY, 1H-13C HSQC, and 1H-13C HMBC), IR spectroscopy, elemental analysis, mass spectrum (QTOF), and single-crystal X-ray diffraction (SC-XRD). Furthermore, this study underlines the necessity of sustainable synthetic methodologies and gives critical insights into the progress of ecologically friendly methodologies, providing a new avenue as a tunable precursor for the challenging functionalized polymer in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA