Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Org Biomol Chem ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113550

RESUMEN

Natural product ring distortion strategies have enabled rapid access to unique libraries of stereochemically complex compounds to explore new chemical space and increase our understanding of biological processes related to human disease. Herein is described the development of a ring-cleavage strategy using the indole alkaloids yohimbine, apovincamine, vinburnine, and reserpine that were reacted with a diversity of chloroformates paired with various alcohol/thiol nucleophiles to enable the rapid synthesis of 47 novel small molecules. Ring cleavage reactions of yohimbine and reserpine produced two diastereomeric products in moderate to excellent yields, whereas apovincamine and vinburnine produced a single diastereomeric product in significantly lower yields. Free energy calculations indicated that diastereoselectivity regarding select ring cleavage reactions from yohimbine and apovincamine is dictated by the geometry and three-dimensional structure of reactive cationic intermediates. These compounds were screened for antiplasmodial activity due to the need for novel antimalarial agents. Reserpine derivative 41 was found to exhibit interesting antiplasmodial activities against Plasmodium falciparum parasites (EC50 = 0.50 µM against Dd2 cultures), while its diastereomer 40 was found to be three-fold less active (EC50 = 1.78 µM). Overall, these studies demonstrate that the ring distortion of available indole alkaloids can lead to unique compound collections with re-engineered biological activities for exploring and potentially treating human disease.

2.
J Nat Prod ; 86(6): 1596-1605, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37276438

RESUMEN

Xanthoquinodins make up a distinctive class of xanthone-anthraquinone heterodimers reported as secondary metabolites from several fungal species. Through a collaborative multi-institutional screening program, a fungal extract prepared from a Trichocladium sp. was identified that exhibited strong inhibitory effects against several human pathogens (Mycoplasma genitalium, Plasmodium falciparum, Cryptosporidium parvum, and Trichomonas vaginalis). This report focuses on one of the unique samples that exhibited a desirable combination of biological effects: namely, it inhibited all four test pathogens and demonstrated low levels of toxicity toward HepG2 (human liver) cells. Fractionation and purification of the bioactive components and their congeners led to the identification of six new compounds [xanthoquinodins NPDG A1-A5 (1-5) and B1 (6)] as well as several previously reported natural products (7-14). The chemical structures of 1-14 were determined based on interpretation of their 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) data. Biological testing of the purified metabolites revealed that they possessed widely varying levels of inhibitory activity against a panel of human pathogens. Xanthoquinodins A1 (7) and A2 (8) exhibited the most promising broad-spectrum inhibitory effects against M. genitalium (EC50 values: 0.13 and 0.12 µM, respectively), C. parvum (EC50 values: 5.2 and 3.5 µM, respectively), T. vaginalis (EC50 values: 3.9 and 6.8 µM, respectively), and P. falciparum (EC50 values: 0.29 and 0.50 µM, respectively) with no cytotoxicity detected at the highest concentration tested (HepG2 EC50 > 25 µM).


Asunto(s)
Antiinfecciosos , Criptosporidiosis , Cryptosporidium , Hongos Mitospóricos , Humanos , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Estructura Molecular
3.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139243

RESUMEN

Thiazole and piperazine are two important heterocyclic rings that play a prominent role in nature and have a broad range of applications in agricultural and medicinal chemistry. Herein, we report the parallel synthesis of a library of diverse piperazine-tethered thiazole compounds. The reaction of piperazine with newly generated 4-chloromethyl-2-amino thiazoles led to the desired piperazine thiazole compounds with high purities and good overall yields. Using a variety of commercially available carboxylic acids, the parallel synthesis of a variety of disubstituted 4-(piperazin-1-ylmethyl)thiazol-2-amine derivatives is described. the screening of the compounds led to the identification of antiplasmodial compounds that exhibited interesting antimalarial activity, primarily against the Plasmodium falciparum chloroquine-resistant Dd2 strain. The hit compound 2291-61 demonstrated an antiplasmodial EC50 of 102 nM in the chloroquine-resistant Dd2 strain and a selectivity of over 140.


Asunto(s)
Antimaláricos , Antimaláricos/química , Piperazina , Tiazoles/química , Cloroquina/farmacología , Cloroquina/química , Plasmodium falciparum
4.
Bioorg Med Chem ; 57: 116629, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091169

RESUMEN

Malaria is a prevalent and lethal disease. The fast emergence and spread of resistance to current therapies is a major concern and the development of a novel line of therapy that could overcome, the problem of drug resistance, is imperative. Screening of a set of compounds with drug/natural product-based sub-structural motifs led to the identification of spirocyclic chroman-4-one 1 with promising antimalarial activity against the chloroquine-resistant Dd2 and chloroquine-sensitive 3D7 strains of the parasite. Extensive structure-activity and structure-property relationship studies were conducted to identify the essential features necessary for its activity and properties.


Asunto(s)
Antimaláricos/farmacología , Cromanos/farmacología , Malaria/tratamiento farmacológico , Plasmodium/efectos de los fármacos , Compuestos de Espiro/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Supervivencia Celular/efectos de los fármacos , Cromanos/síntesis química , Cromanos/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Relación Estructura-Actividad
5.
J Nat Prod ; 84(2): 503-517, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33565879

RESUMEN

Malaria remains a worldwide threat, afflicting over 200 million people each year. The emergence of drug resistance against existing therapeutics threatens to destabilize global efforts aimed at controlling Plasmodium spp. parasites, which is expected to leave vast portions of humanity unprotected against the disease. To address this need, systematic testing of a fungal natural product extract library assembled through the University of Oklahoma Citizen Science Soil Collection Program has generated an initial set of bioactive extracts that exhibit potent antiplasmodial activity (EC50 < 0.30 µg/mL) and low levels of toxicity against human cells (less than 50% reduction in HepG2 growth at 25 µg/mL). Analysis of the two top-performing extracts from Trichoderma sp. and Hypocrea sp. isolates revealed both contained chemically diverse assemblages of putative peptaibol-like compounds that were responsible for their antiplasmodial actions. Purification and structure determination efforts yielded 30 new peptaibols and lipopeptaibols (1-14 and 28-43), along with 22 known metabolites (15-27 and 44-52). While several compounds displayed promising activity profiles, one of the new metabolites, harzianin NPDG I (14), stood out from the others due to its noteworthy potency (EC50 = 0.10 µM against multi-drug-resistant P. falciparum line Dd2) and absence of gross toxicity toward HepG2 at the highest concentrations tested (HepG2 EC50 > 25 µM, selectivity index > 250). The unique chemodiversity afforded by these fungal isolates serves to unlock new opportunities for translating peptaibols into a bioactive scaffold worthy of further development.


Asunto(s)
Antimaláricos/farmacología , Hypocrea/química , Peptaiboles/biosíntesis , Trichoderma/química , Productos Biológicos/farmacología , Resistencia a Medicamentos , Células Hep G2 , Humanos , Estructura Molecular , Pennsylvania , Peptaiboles/farmacología , Plasmodium falciparum/efectos de los fármacos , Microbiología del Suelo , Texas
6.
Mar Drugs ; 19(4)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805935

RESUMEN

Novel drug leads for malaria therapy are urgently needed because of the widespread emergence of resistance to all available drugs. Screening of the Harbor Branch enriched fraction library against the Plasmodium falciparum chloroquine-resistant strain (Dd2) followed by bioassay-guided fractionation led to the identification of two potent antiplasmodials; a novel diterpene designated as bebrycin A (1) and the known C21 degraded terpene nitenin (2). A SYBR Green I assay was used to establish a Dd2 EC50 of 1.08 ± 0.21 and 0.29 ± 0.02 µM for bebrycin A and nitenin, respectively. Further analysis was then performed to assess the stage specificity of the inhibitors antiplasmodial effects on the Dd2 intraerythrocytic life cycle. Exposure to bebrycin A was found to block parasite maturation at the schizont stage if added any time prior to late schizogony at 42 hours post invasion, (HPI). In contrast, early life cycle exposure to nitenin (prior to 18 HPI) was identified as crucial to parasite inhibition, suggesting nitenin may target the maturation of the parasite during the transition from ring to early trophozoite (6-18 HPI), a novel property among known antimalarials.


Asunto(s)
Antozoos/metabolismo , Antimaláricos/farmacología , Diterpenos/farmacología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Poríferos/metabolismo , Animales , Antimaláricos/aislamiento & purificación , Diterpenos/aislamiento & purificación , Células Hep G2 , Humanos , Estadios del Ciclo de Vida , Malaria Falciparum/parasitología , Estructura Molecular , Plasmodium falciparum/crecimiento & desarrollo , Relación Estructura-Actividad , Factores de Tiempo
7.
Tetrahedron Lett ; 60(26): 1736-1740, 2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31802783

RESUMEN

A rapid and efficient synthesis of 2-vinylquinolines via trifluoromethanesulfonamidemediated olefination of 2-methylquinoline and aldehyde under microwave irradiation is reported. Biological evaluation of these scaffolds demonstrates that 2-vinylquinolines 3x - 3z possess excellent antimalarial activities against chloroquine-resistant Dd2 strain of Plasmodium falciparum (IC50 < 100 nM).

8.
Molecules ; 24(6)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897744

RESUMEN

The screening of more than 30 million compounds derived from 81 small molecule libraries built on 81 distinct scaffolds identified pyrrolidine bis-cyclic guanidine library (TPI-1955) to be one of the most active and selective antiplasmodial libraries. The screening of the positional scanning library TPI-1955 arranged on four sets of sublibraries (26 + 26 + 26 + 40), totaling 120 samples for testing provided information about the most important groups of each variable position in the TPI-1955 library containing 738,192 unique compounds. The parallel synthesis of the individual compounds derived from the deconvolution of the positional scanning library led to the identification of active selective antiplasmodial pyrrolidine bis-cyclic guanidines.


Asunto(s)
Antimaláricos/uso terapéutico , Guanidinas/química , Animales , Técnicas Químicas Combinatorias , Malaria/tratamiento farmacológico , Ratones , Plasmodium/efectos de los fármacos , Técnicas de Síntesis en Fase Sólida/métodos
9.
J Proteome Res ; 17(6): 2112-2123, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29678115

RESUMEN

PfPK7 is an "orphan" kinase displaying regions of homology to multiple protein kinase families. PfPK7 functions in regulating parasite proliferation/development as evident from the phenotype analysis of knockout parasites. Despite this regulatory role, the functions of PfPK7 in signaling pathways are not known. To better understand PfPK7-regulated phosphorylation events, we performed isobaric tag-based quantitative comparative phosphoproteomics of the schizont and segmenter stages from wild-type and pfpk7 - parasite lines. This analysis identified 3,875 phosphorylation sites on 1,047 proteins. Among these phosphorylation events, 146 proteins with 239 phosphorylation sites displayed reduction in phosphorylation in the absence of PfPK7. Further analysis of the phosphopeptides revealed three motifs whose phosphorylation was down regulated in the pfpk7 - cell line in both schizonts and segmenters. Decreased phosphorylation following loss of PfPK7 indicates that these proteins may function as direct substrates of PfPK7. We demonstrated that PfPK7 is active toward three of these potential novel substrates; however, PfPK7 did not phosphorylate many of the other proteins, suggesting that decreased phosphorylation in these proteins is an indirect effect. Our phosphoproteomics analysis is the first study to identify direct substrates of PfPK7 and reveals potential downstream or compensatory signaling pathways.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/deficiencia , Fosfoproteínas/metabolismo , Fosforilación , Plasmodium falciparum/química , Plasmodium falciparum/enzimología , Proteínas Quinasas , Proteínas Protozoarias/fisiología , Esquizontes/química , Esquizontes/metabolismo , Transducción de Señal , Especificidad por Sustrato
10.
Mar Drugs ; 15(1)2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-28085024

RESUMEN

A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya. Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N-(2-mercaptoethyl)-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, Plasmodium falciparum, and a panel of pancreatic cancer cell lines.


Asunto(s)
Alcaloides Indólicos/química , Poríferos/química , Animales , Línea Celular Tumoral , Humanos , Alcaloides Indólicos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Pirazinas/química , Pirazinas/farmacología , Agua de Mar
11.
Int J Mol Sci ; 15(12): 22320-30, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25479077

RESUMEN

There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS) interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS) in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.


Asunto(s)
Malaria/parasitología , Melatonina/farmacología , Parásitos/genética , Plasmodium falciparum/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Regulación hacia Arriba/genética , Animales , Humanos , Parásitos/efectos de los fármacos , Parásitos/enzimología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Factores de Tiempo , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
12.
Microbiol Spectr ; 12(4): e0414223, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38421191

RESUMEN

In an effort to identify novel compounds with potent inhibition against Toxoplasma gondii, a phenotypic screen was performed utilizing a library of 683 pure compounds derived primarily from terrestrial and marine fungi. An initial screen with a fixed concentration of 5 µM yielded 91 hits with inhibition comparable to an equal concentration of artemisinin. These compounds were then triaged based on known biological and chemical concerns and liabilities. From these, 49 prioritized compounds were tested in a dose response format with T. gondii and human foreskin fibroblasts (HFFs) for cytotoxicity. Ten compounds were identified with an IC50 less than 150 nM and a selectivity index (SI) greater than 100. An additional eight compounds demonstrated submicromolar IC50 and SI values equal to or greater than 35. While the majority of these scaffolds have been previously implicated against apicomplexan parasites, their activities in T. gondii were largely unknown. Herein, we report the T. gondii activity of these compounds with chemotypes including xanthoquinodins, peptaibols, heptelidic acid analogs, and fumagillin analogs, with multiple compounds demonstrating exceptional potency in T. gondii and limited toxicity to HFFs at the highest concentrations tested. IMPORTANCE: Current therapeutics for treating toxoplasmosis remain insufficient, demonstrating high cytotoxicity, poor bioavailability, limited efficacy, and drug resistance. Additional research is needed to develop novel compounds with high efficacy and low cytotoxicity. The success of artemisinin and other natural products in treating malaria highlights the potential of natural products as anti-protozoan therapeutics. However, the exploration of natural products in T. gondii drug discovery has been less comprehensive, leaving untapped potential. By leveraging the resources available for the malaria drug discovery campaign, we conducted a phenotypic screen utilizing a set of natural products previously screened against Plasmodium falciparum. Our study revealed 18 compounds with high potency and low cytotoxicity in T. gondii, including four novel scaffolds with no previously reported activity in T. gondii. These new scaffolds may serve as starting points for the development of toxoplasmosis therapeutics but could also serve as tool compounds for target identification studies using chemogenomic approach.


Asunto(s)
Antiprotozoarios , Artemisininas , Productos Biológicos , Malaria , Toxoplasma , Toxoplasmosis , Humanos , Antiprotozoarios/farmacología , Productos Biológicos/farmacología , Artemisininas/farmacología
13.
bioRxiv ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38826280

RESUMEN

Natural product libraries are crucial to drug development, but large libraries drastically increase the time and cost during initial high throughput screens. Here, we developed a method that leverages liquid chromatography-tandem mass spectrometry spectral similarity to dramatically reduce library size, with minimal bioactive loss. This method offers a broadly applicable strategy for accelerated drug discovery with cost reductions, which enable implementation in resource-limited settings.

14.
ACS Infect Dis ; 10(6): 2276-2287, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38810215

RESUMEN

Our previous work identified a series of 12 xanthoquinodin analogues and 2 emodin-dianthrones with broad-spectrum activities against Trichomonas vaginalis, Mycoplasma genitalium, Cryptosporidium parvum, and Plasmodium falciparum. Analyses conducted in this study revealed that the most active analogue, xanthoquinodin A1, also inhibits Toxoplasma gondii tachyzoites and the liver stage of Plasmodium berghei, with no cross-resistance to the known antimalarial targets PfACS, PfCARL, PfPI4K, or DHODH. In Plasmodium, inhibition occurs prior to multinucleation and induces parasite death following 12 h of compound exposure. This moderately fast activity has impeded resistance line generation, with xanthoquinodin A1 demonstrating an irresistible phenotype in both T. gondii and P. falciparum.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Plasmodium berghei , Plasmodium falciparum , Toxoplasma , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/química , Toxoplasma/efectos de los fármacos , Plasmodium berghei/efectos de los fármacos , Animales , Antraquinonas/farmacología , Antraquinonas/química , Humanos
15.
J Med Chem ; 67(2): 1460-1480, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38214254

RESUMEN

While progress has been made in the effort to eradicate malaria, the disease remains a significant threat to global health. Acquired resistance to frontline treatments is emerging in Africa, urging a need for the development of novel antimalarial agents. Repurposing human kinase inhibitors provides a potential expedited route given the availability of a diverse array of kinase-targeting drugs that are approved or in clinical trials. Phenotypic screening of a library of type II human kinase inhibitors identified compound 1 as a lead antimalarial, which was initially developed to target human ephrin type A receptor 2 (EphA2). Here, we report a structure-activity relationship study and lead optimization of compound 1, which led to compound 33, with improved antimalarial activity and selectivity.


Asunto(s)
Antimaláricos , Malaria , Receptor EphA2 , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Relación Estructura-Actividad , África , Plasmodium falciparum
16.
Cell Chem Biol ; 31(2): 312-325.e9, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37995692

RESUMEN

Our previous study identified 52 antiplasmodial peptaibols isolated from fungi. To understand their antiplasmodial mechanism of action, we conducted phenotypic assays, assessed the in vitro evolution of resistance, and performed a transcriptome analysis of the most potent peptaibol, HZ NPDG-I. HZ NPDG-I and 2 additional peptaibols were compared for their killing action and stage dependency, each showing a loss of digestive vacuole (DV) content via ultrastructural analysis. HZ NPDG-I demonstrated a stepwise increase in DV pH, impaired DV membrane permeability, and the ability to form ion channels upon reconstitution in planar membranes. This compound showed no signs of cross resistance to targets of current clinical candidates, and 3 independent lines evolved to resist HZ NPDG-I acquired nonsynonymous changes in the P. falciparum multidrug resistance transporter, pfmdr1. Conditional knockdown of PfMDR1 showed varying effects to other peptaibol analogs, suggesting differing sensitivity.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Peptaiboles/metabolismo , Peptaiboles/farmacología , Antimaláricos/farmacología , Proteínas de Transporte de Membrana , Permeabilidad de la Membrana Celular
17.
J Proteome Res ; 12(9): 4028-45, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23914800

RESUMEN

During asexual intraerythrocytic development, Plasmodium falciparum diverges from the paradigm of the eukaryotic cell cycles by undergoing multiple rounds of DNA replication and nuclear division without cytokinesis. A better understanding of the molecular switches that coordinate a myriad of events for the progression of the parasite through the intraerythrocytic developmental stages will be of fundamental importance for rational design of intervention strategies. To achieve this goal, we performed isobaric tag-based quantitative proteomics and phosphoproteomics analyses of three developmental stages in the Plasmodium asexual cycle and identified 2767 proteins, 1337 phosphoproteins, and 6293 phosphorylation sites. Approximately 34% of identified proteins and 75% of phosphorylation sites exhibit changes in abundance as the intraerythrocytic cycle progresses. Our study identified 43 distinct phosphorylation motifs and a range of potential MAPK/CDK substrates. Further analysis of phosphorylated kinases identified 30 protein kinases with 126 phosphorylation sites within the kinase domain or in N- or C-terminal tails. Many of these phosphorylations are likely CK2-mediated. We define the constitutive and regulated expression of the Plasmodium proteome during the intraerythrocytic developmental cycle, offering an insight into the dynamics of phosphorylation during asexual cycle progression. Our system-wide comprehensive analysis is a major step toward defining kinase-substrate pairs operative in various signaling networks in the parasite.


Asunto(s)
Eritrocitos/parasitología , Plasmodium falciparum/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Células Cultivadas , Humanos , Datos de Secuencia Molecular , Fosfoproteínas/química , Fosfoproteínas/aislamiento & purificación , Fosfoproteínas/metabolismo , Fosforilación , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Quinasas/química , Proteínas Quinasas/aislamiento & purificación , Proteínas Quinasas/metabolismo , Proteoma/química , Proteoma/aislamiento & purificación , Proteínas Protozoarias/química , Proteínas Protozoarias/aislamiento & purificación , Transducción de Señal , Coloración y Etiquetado
18.
Antimicrob Agents Chemother ; 57(5): 2362-4, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23403429

RESUMEN

A library of enriched marine natural product fractions was screened for their antiplasmodial activity using a SYBR green I fluorescence-based assay. Fractions derived from a sponge of the genus Spongosorites exhibited potent inhibition of Plasmodium falciparum growth. This genus of sponge has been reported to contain the nortopsentin and topsentin class of bis-indole imidazole alkaloids. This is the first report of nortopsentin A inhibiting parasite growth at the trophozoite stage at submicromolar 50% inhibitory concentrations (IC(50)).


Asunto(s)
Alcaloides/farmacología , Antimaláricos/farmacología , Imidazoles/farmacología , Indoles/farmacología , Plasmodium falciparum/efectos de los fármacos , Poríferos/química , Bibliotecas de Moléculas Pequeñas/farmacología , Trofozoítos/efectos de los fármacos , Alcaloides/aislamiento & purificación , Animales , Antimaláricos/aislamiento & purificación , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Humanos , Imidazoles/aislamiento & purificación , Indoles/aislamiento & purificación , Concentración 50 Inhibidora , Plasmodium falciparum/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Trofozoítos/crecimiento & desarrollo
19.
ACS Infect Dis ; 9(4): 1004-1021, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36919909

RESUMEN

Protein kinases have proven to be a very productive class of therapeutic targets, and over 90 inhibitors are currently in clinical use primarily for the treatment of cancer. Repurposing these inhibitors as antimalarials could provide an accelerated path to drug development. In this study, we identified BI-2536, a known potent human polo-like kinase 1 inhibitor, with low nanomolar antiplasmodial activity. Screening of additional PLK1 inhibitors revealed further antiplasmodial candidates despite the lack of an obvious orthologue of PLKs in Plasmodium. A subset of these inhibitors was profiled for their in vitro killing profile, and commonalities between the killing rate and inhibition of nuclear replication were noted. A kinase panel screen identified PfNEK3 as a shared target of these PLK1 inhibitors; however, phosphoproteome analysis confirmed distinct signaling pathways were disrupted by two structurally distinct inhibitors, suggesting PfNEK3 may not be the sole target. Genomic analysis of BI-2536-resistant parasites revealed mutations in genes associated with the starvation-induced stress response, suggesting BI-2536 may also inhibit an aminoacyl-tRNA synthetase.


Asunto(s)
Antimaláricos , Humanos , Antimaláricos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa Tipo Polo 1
20.
J Pineal Res ; 53(2): 147-53, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22348509

RESUMEN

We previously reported that melatonin modulates the Plasmodium falciparum erythrocytic cycle by increasing schizont stage population as well as diminishing ring stage population. In addition, the importance of calcium and cAMP in melatonin signaling pathway in P. falciparum was also demonstrated. Nevertheless, the molecular effectors of the indoleamine signaling pathway remain elusive. We now demonstrate by real-time PCR that melatonin treatment up-regulates genes related to ubiquitin/proteasome system (UPS) components and that luzindole, a melatonin receptor antagonist, inhibits UPS transcription modulation. We also show that protein kinase PfPK7, a P. falciparum orphan kinase, plays a crucial role in the melatonin transduction pathway, since following melatonin treatment of P. falciparum parasites where pfpk7 gene is disrupted (pfpk7(-) parasites) (i) the ratio of asexual stages remain unchanged, (ii) the increase in cytoplasmatic calcium in response to melatonin was strongly diminished and (iii) up-regulation of UPS genes did not occur. The wild-type melatonin-induced alterations in cell cycle features, calcium rise and UPS gene transcription were restored by re-introduction of a functional copy of the pfpk7 gene in the pfpk7(-) parasites.


Asunto(s)
Melatonina/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Plasmodium falciparum/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Protozoarias/metabolismo , Ubiquitina/metabolismo , Animales , Malaria Falciparum , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Plasmodium falciparum/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Protozoarias/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Ubiquitina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA