Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121660

RESUMEN

Multidrug Resistance Proteins (MRPs) are transporters that play critical roles in cancer even though the physiological substrates of these enigmatic transporters are poorly elucidated. In Caenorhabditis elegans, MRP5/ABCC5 is an essential heme exporter because mrp-5 mutants are unviable due to their inability to export heme from the intestine to extraintestinal tissues. Heme supplementation restores viability of these mutants but fails to restore male reproductive deficits. Correspondingly, cell biological studies show that MRP5 regulates heme levels in the mammalian secretory pathway even though MRP5 knockout (KO) mice do not show reproductive phenotypes. The closest homolog of MRP5 is MRP9/ABCC12, which is absent in C. elegans, raising the possibility that MRP9 may genetically compensate for MRP5. Here, we show that MRP5 and MRP9 double KO (DKO) mice are viable but reveal significant male reproductive deficits. Although MRP9 is highly expressed in sperm, MRP9 KO mice show reproductive phenotypes only when MRP5 is absent. Both ABCC transporters localize to mitochondrial-associated membranes, dynamic scaffolds that associate the mitochondria and endoplasmic reticulum. Consequently, DKO mice reveal abnormal sperm mitochondria with reduced mitochondrial membrane potential and fertilization rates. Metabolomics show striking differences in metabolite profiles in the DKO testes, and RNA sequencing shows significant alterations in genes related to mitochondrial function and retinoic acid metabolism. Targeted functional metabolomics reveal lower retinoic acid levels in the DKO testes and higher levels of triglycerides in the mitochondria. These findings establish a model in which MRP5 and MRP9 play a concerted role in regulating male reproductive functions and mitochondrial sufficiency.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Mitocondrias/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Reproducción/fisiología , Subfamilia B de Transportador de Casetes de Unión a ATP , Animales , Transporte Biológico/fisiología , Caenorhabditis elegans/metabolismo , Hemo/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Espermatozoides/metabolismo , Testículo/metabolismo
2.
Glia ; 2024 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-39501820

RESUMEN

Oligodendrocytes (OLs) of the central nervous system require iron for proteolipid biosynthesis during the myelination process. Although most heme is found complexed to hemoglobin in red blood cells, surprisingly, we found that Slc48a1, encoding the heme transporter Hrg1, is expressed at higher levels in OLs than any other cell type in rodent and humans. We confirmed in situ that Hrg1 is expressed in OLs but not their precursors (OPCs) and found that Hrg1 proteins in CNS white matter co-localized within myelin sheaths. In older Hrg1 null mutant mice we observed reduced expression of myelin associated glycoprotein (Mag) and ultrastructural myelin defects reminiscent of Mag-null animals, suggesting myelin adhesion deficiency. Further, we confirmed reduced myelin iron levels in Hrg1 null animals in vivo, and show that OLs in vitro can directly import both the fluorescent heme analogue ZnMP and heme itself, which rescued iron deficiency induced inhibition of OL differentiation in a heme-oxidase-dependent manner. Together these findings indicate OL Hrg1 encodes a functional heme transporter required for myelin integrity.

3.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33999993

RESUMEN

In mammals, the pre-gastrula proximal epiblast gives rise to primordial germ cells (PGCs) or somatic precursors in response to BMP4 and WNT signaling. Entry into the germline requires activation of a naïve-like pluripotency gene regulatory network (GRN). Recent work has shown that suppression of OTX2 expression in the epiblast by BMP4 allows cells to develop a PGC fate in a precise temporal window. However, the mechanisms by which OTX2 suppresses PGC fate are unknown. Here, we show that, in mice, OTX2 prevents epiblast cells from activating the pluripotency GRN by direct repression of Oct4 and Nanog. Loss of this control during PGC differentiation in vitro causes widespread activation of the pluripotency GRN and a deregulated response to LIF, BMP4 and WNT signaling. These abnormalities, in specific cell culture conditions, result in massive germline entry at the expense of somatic mesoderm differentiation. Increased generation of PGCs also occurs in mutant embryos. We propose that the OTX2-mediated repressive control of Oct4 and Nanog is the basis of the mechanism that determines epiblast contribution to germline and somatic lineage.


Asunto(s)
Células Germinativas/citología , Estratos Germinativos/citología , Proteína Homeótica Nanog/antagonistas & inhibidores , Factor 3 de Transcripción de Unión a Octámeros/antagonistas & inhibidores , Factores de Transcripción Otx/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/genética , Factor Inhibidor de Leucemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Pluripotentes/citología , Vía de Señalización Wnt/fisiología
4.
Cell ; 138(4): 722-37, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19703398

RESUMEN

Pluripotency is generated naturally during mammalian development through formation of the epiblast, founder tissue of the embryo proper. Pluripotency can be recreated by somatic cell reprogramming. Here we present evidence that the homeodomain protein Nanog mediates acquisition of both embryonic and induced pluripotency. Production of pluripotent hybrids by cell fusion is promoted by and dependent on Nanog. In transcription factor-induced molecular reprogramming, Nanog is initially dispensable but becomes essential for dedifferentiated intermediates to transit to ground state pluripotency. In the embryo, Nanog specifically demarcates the nascent epiblast, coincident with the domain of X chromosome reprogramming. Without Nanog, pluripotency does not develop, and the inner cell mass is trapped in a pre-pluripotent, indeterminate state that is ultimately nonviable. These findings suggest that Nanog choreographs synthesis of the naive epiblast ground state in the embryo and that this function is recapitulated in the culmination of somatic cell reprogramming.


Asunto(s)
Reprogramación Celular , Proteínas de Homeodominio/metabolismo , Células Madre Adultas/citología , Animales , Blastocisto/citología , Desdiferenciación Celular , Células Madre Embrionarias/citología , Femenino , Estratos Germinativos/citología , Proteínas de Homeodominio/genética , Ratones , Proteína Homeótica Nanog , Cromosoma X/metabolismo
5.
Nature ; 562(7728): 595-599, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30283136

RESUMEN

The successful segregation of germ cells from somatic lineages is vital for sexual reproduction and species survival. In the mouse, primordial germ cells (PGCs), precursors of all germ cells, are induced from the post-implantation epiblast1. Induction requires BMP4 signalling to prospective PGCs2 and the intrinsic action of PGC transcription factors3-6. However, the molecular mechanisms that connect BMP4 to induction of the PGC transcription factors that are responsible for segregating PGCs from somatic lineages are unknown. Here we show that the transcription factor OTX2 is a key regulator of these processes. Downregulation of Otx2 precedes the initiation of the PGC programme both in vitro and in vivo. Deletion of Otx2 in vitro markedly increases the efficiency of PGC-like cell differentiation and prolongs the period of PGC competence. In the absence of Otx2 activity, differentiation of PGC-like cells becomes independent of the otherwise essential cytokine signals, with germline entry initiating even in the absence of the PGC transcription factor BLIMP1. Deletion of Otx2 in vivo increases PGC numbers. These data demonstrate that OTX2 functions repressively upstream of PGC transcription factors, acting as a roadblock to limit entry of epiblast cells to the germline to a small window in space and time, thereby ensuring correct numerical segregation of germline cells from the soma.


Asunto(s)
Células Germinativas/citología , Células Germinativas/metabolismo , Factores de Transcripción Otx/metabolismo , Animales , Recuento de Células , Diferenciación Celular/genética , Linaje de la Célula/genética , Citocinas/metabolismo , Regulación hacia Abajo , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Factores de Transcripción Otx/deficiencia , Factores de Transcripción Otx/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo
6.
Genes Dev ; 30(9): 1101-15, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27125671

RESUMEN

An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells.


Asunto(s)
Heterocromatina/genética , Heterocromatina/metabolismo , Células Madre Embrionarias de Ratones/fisiología , Proteína Homeótica Nanog/metabolismo , Animales , Línea Celular , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Regulación hacia Abajo , Eliminación de Gen , Ratones , Proteína Homeótica Nanog/genética , Dominios Proteicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
EMBO J ; 37(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30275266

RESUMEN

Self-renewal of embryonic stem cells (ESCs) cultured in LIF/fetal calf serum (FCS) is incomplete with some cells initiating differentiation. While this is reflected in heterogeneous expression of naive pluripotency transcription factors (TFs), the link between TF heterogeneity and differentiation is not fully understood. Here, we purify ESCs with distinct TF expression levels from LIF/FCS cultures to uncover early events during commitment from naïve pluripotency. ESCs carrying fluorescent Nanog and Esrrb reporters show Esrrb downregulation only in Nanoglow cells. Independent Esrrb reporter lines demonstrate that Esrrbnegative ESCs cannot effectively self-renew. Upon Esrrb loss, pre-implantation pluripotency gene expression collapses. ChIP-Seq identifies different regulatory element classes that bind both OCT4 and NANOG in Esrrbpositive cells. Class I elements lose NANOG and OCT4 binding in Esrrbnegative ESCs and associate with genes expressed preferentially in naïve ESCs. In contrast, Class II elements retain OCT4 but not NANOG binding in ESRRB-negative cells and associate with more broadly expressed genes. Therefore, mechanistic differences in TF function act cumulatively to restrict potency during exit from naïve pluripotency.


Asunto(s)
Diferenciación Celular , Regulación hacia Abajo , Células Madre Embrionarias de Ratones/metabolismo , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Línea Celular , Ratones , Células Madre Embrionarias de Ratones/citología , Proteína Homeótica Nanog/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Receptores de Estrógenos/genética
8.
Eur J Neurosci ; 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619763

RESUMEN

The ventral tegmental area (VTA) contains dopamine neurons intermixed with GABA-releasing (expressing vesicular GABA transporter, VGaT), glutamate-releasing (expressing vesicular glutamate transporter 2, VGluT2), and glutamate-GABA co-releasing (co-expressing VGluT2 and VGaT) neurons. By delivering INTRSECT viral vectors into the VTA of double vglut2-Cre/vgat-Flp transgenic mice, we targeted specific VTA cell populations for ex vivo recordings. We found that VGluT2+ VGaT- and VGluT2+ VGaT+ neurons on average had relatively hyperpolarized resting membrane potential, greater rheobase, and lower spontaneous firing frequency compared to VGluT2- VGaT+ neurons, suggesting that VTA glutamate-releasing and glutamate-GABA co-releasing neurons require stronger excitatory drive to fire than GABA-releasing neurons. In addition, we detected expression of Oprm1mRNA (encoding µ opioid receptors, MOR) in VGluT2+ VGaT- and VGluT2- VGaT+ neurons, and that the MOR agonist DAMGO hyperpolarized neurons with these phenotypes. Collectively, we demonstrate the utility of the double transgenic mouse to access VTA glutamate, glutamate-GABA, and GABA neurons to determine their electrophysiological properties. SIGNIFICANT STATEMENT: Some physiological properties of VTA glutamate-releasing and glutamate-GABA co-releasing neurons are distinct from those of VTA GABA-releasing neurons. µ-opioid receptor activation hyperpolarizes some VTA glutamate-releasing and some GABA-releasing neurons.

9.
PLoS Genet ; 14(9): e1007665, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30248094

RESUMEN

Heme-iron recycling from senescent red blood cells (erythrophagocytosis) accounts for the majority of total body iron in humans. Studies in cultured cells have ascribed a role for HRG1/SLC48A1 in heme-iron transport but the in vivo function of this heme transporter is unclear. Here we present genetic evidence in a zebrafish model that Hrg1 is essential for macrophage-mediated heme-iron recycling during erythrophagocytosis in the kidney. Furthermore, we show that zebrafish Hrg1a and its paralog Hrg1b are functional heme transporters, and genetic ablation of both transporters in double knockout (DKO) animals shows lower iron accumulation concomitant with higher amounts of heme sequestered in kidney macrophages. RNA-seq analyses of DKO kidney revealed large-scale perturbation in genes related to heme, iron metabolism and immune functions. Taken together, our results establish the kidney as the major organ for erythrophagocytosis and identify Hrg1 as an important regulator of heme-iron recycling by macrophages in the adult zebrafish.


Asunto(s)
Citofagocitosis/fisiología , Eritrocitos/fisiología , Riñón Cefálico/metabolismo , Hemoproteínas/metabolismo , Proteínas Transportadoras de Solutos/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Femenino , Técnicas de Inactivación de Genes , Hematopoyesis/fisiología , Hemo/metabolismo , Hemoproteínas/genética , Hierro/metabolismo , Macrófagos/metabolismo , Masculino , Modelos Animales , Proteínas Transportadoras de Solutos/genética , Proteínas de Pez Cebra/genética
10.
Genes Dev ; 26(13): 1445-58, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22713603

RESUMEN

The transcription factors Nanog and Gata6 are critical to specify the epiblast versus primitive endoderm (PrE) lineages. However, little is known about the mechanisms that regulate the protein stability and activity of these factors in the developing embryo. Here we uncover an early developmental function for the Polycomb group member Bmi1 in supporting PrE lineage formation through Gata6 protein stabilization. We show that Bmi1 is enriched in the extraembryonic (endoderm [XEN] and trophectodermal stem [TS]) compartment and repressed by Nanog in pluripotent embryonic stem (ES) cells. In vivo, Bmi1 overlaps with the nascent Gata6 and Nanog protein from the eight-cell stage onward before it preferentially cosegregates with Gata6 in PrE progenitors. Mechanistically, we demonstrate that Bmi1 interacts with Gata6 in a Ring finger-dependent manner to confer protection against Gata6 ubiquitination and proteasomal degradation. A direct role for Bmi1 in cell fate allocation is established by loss-of-function experiments in chimeric embryoid bodies. We thus propose a novel regulatory pathway by which Bmi1 action on Gata6 stability could alter the balance between Gata6 and Nanog protein levels to introduce a bias toward a PrE identity in a cell-autonomous manner.


Asunto(s)
Endodermo/metabolismo , Factor de Transcripción GATA6/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Animales , Linaje de la Célula , Endodermo/citología , Factor de Transcripción GATA6/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Proteína Homeótica Nanog , Proteínas Nucleares/genética , Células Madre Pluripotentes/metabolismo , Complejo Represivo Polycomb 1 , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Transcripción Genética
11.
Med J Aust ; 211(3): 113-119, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31168828

RESUMEN

OBJECTIVES: To report human papillomavirus (HPV) testing patterns and rates of oncogenic HPV-positivity for specimens submitted during the first 6 months after the National Cervical Screening Program switched from cytology- to primary HPV-based screening. DESIGN, PARTICIPANTS: Retrospective cross-sectional review of 195 606 specimens submitted for HPV testing, 1 December 2017 - 31 May 2018. SETTING: Large community-based general pathology laboratory in metropolitan Sydney. MAIN OUTCOME MEASURES: Prevalence of oncogenic HPV types (all, HPV16/18, non-HPV16/18) by reason for HPV test (primary screening, non-screening); for oncogenic HPV-positive women in the age band recommended for primary HPV screening (25-74 years), prevalence of cytologic abnormality and rates of 12-month follow-up and colposcopy recommendations. RESULTS: 195 606 samples were received: 157 700 (80.6%) for primary screening, 37 906 (19.4%) for non-screening tests. Oncogenic HPV was detected in 8.1% of screening tests (95% CI, 7.9-8.2%) and 20.9% of non-screening tests (95% CI, 20.5-21.3%); 35.5% (95% CI, 34.7-36.4%) of women of recommended screening age with positive oncogenic HPV screening test results also had a cytologic abnormality. The proportion of HPV16/18-positive samples with high grade abnormality was 15.3% (95% CI, 14.2-16.6%); for samples positive for other oncogenic HPV types, the proportion was 6.3% (95% CI, 5.8-6.8%). Repeat HPV testing after 12 months was recommended for 5.4% (95% CI, 5.3-5.5%) and direct colposcopy for 2.6% (95% CI, 2.5-2.7%) of screened women aged 25-74 years. CONCLUSIONS: High grade cytologic abnormalities were more common in women positive for HPV16/18, supporting their higher risk classification. Colposcopy referral rates were higher than during primary cytology-based testing, as predicted by clinical trial and modelling data. The prevalence of HPV was much higher in non-screening than in primary screening samples. Our findings indicate the renewed program is performing as expected during the initial HPV screening round.


Asunto(s)
Papillomavirus Humano 16/aislamiento & purificación , Papillomavirus Humano 18/aislamiento & purificación , Tamizaje Masivo/métodos , Infecciones por Papillomavirus/epidemiología , Neoplasias del Cuello Uterino/diagnóstico , Adulto , Anciano , Australia/epidemiología , Colposcopía , Análisis Costo-Beneficio , Estudios Transversales , Detección Precoz del Cáncer/métodos , Femenino , Humanos , Persona de Mediana Edad , Infecciones por Papillomavirus/prevención & control , Estudios Retrospectivos , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología , Frotis Vaginal
12.
Nature ; 501(7466): 227-31, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23883933

RESUMEN

It is becoming increasingly clear that the shape of the genome importantly influences transcription regulation. Pluripotent stem cells such as embryonic stem cells were recently shown to organize their chromosomes into topological domains that are largely invariant between cell types. Here we combine chromatin conformation capture technologies with chromatin factor binding data to demonstrate that inactive chromatin is unusually disorganized in pluripotent stem-cell nuclei. We show that gene promoters engage in contacts between topological domains in a largely tissue-independent manner, whereas enhancers have a more tissue-restricted interaction profile. Notably, genomic clusters of pluripotency factor binding sites find each other very efficiently, in a manner that is strictly pluripotent-stem-cell-specific, dependent on the presence of Oct4 and Nanog protein and inducible after artificial recruitment of Nanog to a selected chromosomal site. We conclude that pluripotent stem cells have a unique higher-order genome structure shaped by pluripotency factors. We speculate that this interactome enhances the robustness of the pluripotent state.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Posicionamiento de Cromosoma , Genoma/genética , Imagenología Tridimensional , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Sitios de Unión , Línea Celular , Cromatina/genética , Inmunoprecipitación de Cromatina , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Imagen Molecular , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Especificidad de Órganos , Regiones Promotoras Genéticas , Factores de Transcripción SOXB1/metabolismo
13.
Biochem J ; 475(6): 1075-1089, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29487166

RESUMEN

Oct4 and Sox2 regulate the expression of target genes such as Nanog, Fgf4, and Utf1, by binding to their respective regulatory motifs. Their functional cooperation is reflected in their ability to heterodimerize on adjacent cis regulatory motifs, the composite Sox/Oct motif. Given that Oct4 and Sox2 regulate many developmental genes, a quantitative analysis of their synergistic action on different Sox/Oct motifs would yield valuable insights into the mechanisms of early embryonic development. In the present study, we measured binding affinities of Oct4 and Sox2 to different Sox/Oct motifs using fluorescence correlation spectroscopy. We found that the synergistic binding interaction is driven mainly by the level of Sox2 in the case of the Fgf4 Sox/Oct motif. Taking into account Sox2 expression levels fluctuate more than Oct4, our finding provides an explanation on how Sox2 controls the segregation of the epiblast and primitive endoderm populations within the inner cell mass of the developing rodent blastocyst.


Asunto(s)
Blastocisto/metabolismo , Factores de Transcripción SOXB1/genética , Animales , Células CHO , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Cricetinae , Cricetulus , Embrión de Mamíferos , Endodermo/embriología , Endodermo/metabolismo , Femenino , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Embarazo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal/genética
14.
EMBO J ; 32(16): 2231-47, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23892456

RESUMEN

Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog-Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog-Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2-Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal.


Asunto(s)
Proliferación Celular , Células Madre Embrionarias/fisiología , Proteínas de Homeodominio/metabolismo , Dominios y Motivos de Interacción de Proteínas/genética , Factores de Transcripción SOXB1/metabolismo , Animales , Ensayo de Unidades Formadoras de Colonias , Células Madre Embrionarias/metabolismo , Immunoblotting , Inmunoprecipitación , Ratones , Proteína Homeótica Nanog , Plásmidos/genética , Mapeo de Interacción de Proteínas , Técnica SELEX de Producción de Aptámeros , Triptófano/metabolismo , Tirosina/metabolismo
15.
Development ; 141(11): 2173-81, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24866112

RESUMEN

When pluripotent cells are exposed to a uniform culture environment they routinely display heterogeneous gene expression. Aspects of this heterogeneity, such as Nanog expression, are linked to differences in the propensity of individual cells to either self-renew or commit towards differentiation. Recent findings have provided new insight into the underlying causes of this heterogeneity, which we summarise here using Nanog, a key regulator of pluripotency, as a model gene. We discuss the role of transcription factor heterogeneity in facilitating the intrinsically dynamic and stochastic nature of the pluripotency network, which in turn provides a potential benefit to a population of cells that needs to balance cell fate decisions.


Asunto(s)
Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Alelos , Animales , Diferenciación Celular , Linaje de la Célula , Núcleo Celular/metabolismo , Redes Reguladoras de Genes , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Modelos Teóricos , Proteína Homeótica Nanog , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Procesos Estocásticos , Transcripción Genética
16.
EMBO Rep ; 16(9): 1177-91, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26265007

RESUMEN

Embryonic stem cell (ESC) identity is orchestrated by co-operativity between the transcription factors (TFs) Sox2 and the class V POU-TF Oct4 at composite Sox/Oct motifs. Neural stem cells (NSCs) lack Oct4 but express Sox2 and class III POU-TFs Oct6, Brn1 and Brn2. This raises the question of how Sox2 interacts with POU-TFs to transcriptionally specify ESCs versus NSCs. Here, we show that Oct4 alone binds the Sox/Oct motif and the octamer-containing palindromic MORE equally well. Sox2 binding selectively increases the affinity of Oct4 for the Sox/Oct motif. In contrast, Oct6 binds preferentially to MORE and is unaffected by Sox2. ChIP-Seq in NSCs shows the MORE to be the most enriched motif for class III POU-TFs, including MORE subtypes, and that the Sox/Oct motif is not enriched. These results suggest that in NSCs, co-operativity between Sox2 and class III POU-TFs may not occur and that POU-TF-driven transcription uses predominantly the MORE cis architecture. Thus, distinct interactions between Sox2 and POU-TF subclasses distinguish pluripotent ESCs from multipotent NSCs, providing molecular insight into how Oct4 alone can convert NSCs to pluripotency.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células-Madre Neurales/metabolismo , Factores del Dominio POU/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Animales , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores del Dominio POU/genética , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética
18.
EMBO J ; 31(24): 4547-62, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23178592

RESUMEN

NANOG, OCT4 and SOX2 form the core network of transcription factors supporting embryonic stem (ES) cell self-renewal. While OCT4 and SOX2 expression is relatively uniform, ES cells fluctuate between states of high NANOG expression possessing high self-renewal efficiency, and low NANOG expression exhibiting increased differentiation propensity. NANOG, OCT4 and SOX2 are currently considered to activate transcription of each of the three genes, an architecture that cannot readily account for NANOG heterogeneity. Here, we examine the architecture of the Nanog-centred network using inducible NANOG gain- and loss-of-function approaches. Rather than activating itself, Nanog activity is autorepressive and OCT4/SOX2-independent. Moreover, the influence of Nanog on Oct4 and Sox2 expression is minimal. Using Nanog:GFP reporters, we show that Nanog autorepression is a major regulator of Nanog transcription switching. We conclude that the architecture of the pluripotency gene regulatory network encodes the capacity to generate reversible states of Nanog transcription via a Nanog-centred autorepressive loop. Therefore, cellular variability in self-renewal efficiency is an emergent property of the pluripotency gene regulatory network.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes/genética , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Inmunoprecipitación de Cromatina , Retroalimentación Fisiológica , Citometría de Flujo , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes , Hibridación Fluorescente in Situ , Ratones , Proteína Homeótica Nanog , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Nature ; 468(7322): 457-60, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21085182

RESUMEN

The reprogramming of X-chromosome inactivation during the acquisition of pluripotency in vivo and in vitro is accompanied by the repression of Xist, the trigger of X-inactivation, and the upregulation of its antisense counterpart Tsix. We have shown that key factors supporting pluripotency-Nanog, Oct4 and Sox2-bind within Xist intron 1 in undifferentiated embryonic stem cells (ESC) to repress Xist transcription. However, the relationship between transcription factors of the pluripotency network and Tsix regulation has remained unclear. Here we show that Tsix upregulation in embryonic stem cells depends on the recruitment of the pluripotent marker Rex1, and of the reprogramming-associated factors Klf4 and c-Myc, by the DXPas34 minisatellite associated with the Tsix promoter. Upon deletion of DXPas34, binding of the three factors is abrogated and the transcriptional machinery is no longer efficiently recruited to the Tsix promoter. Additional analyses including knockdown experiments further demonstrate that Rex1 is critically important for efficient transcription elongation of Tsix. Hence, distinct embryonic-stem-cell-specific complexes couple X-inactivation reprogramming and pluripotency, with Nanog, Oct4 and Sox2 repressing Xist to facilitate the reactivation of the inactive X, and Klf4, c-Myc and Rex1 activating Tsix to remodel Xist chromatin and ensure random X-inactivation upon differentiation. The holistic pattern of Xist/Tsix regulation by pluripotent factors that we have identified suggests a general direct governance of complex epigenetic processes by the machinery dedicated to pluripotency.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/metabolismo , ARN no Traducido/genética , Transcripción Genética/genética , Regulación hacia Arriba/genética , Animales , Células Madre Embrionarias/citología , Femenino , Proteínas de Homeodominio/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Repeticiones de Minisatélite/genética , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo , Inactivación del Cromosoma X/genética
20.
Development ; 139(14): 2457-61, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22736242

RESUMEN

The Keystone Symposium entitled 'The Life of a Stem Cell: from Birth to Death' was held at Squaw Valley, CA, USA in March 2012. The meeting brought together researchers from across the world and showcased the most recent developments in stem cell research. Here, we review the proceedings at this meeting and discuss the major advances in fundamental and applied stem cell biology that emerged.


Asunto(s)
Células Madre/citología , Células Madre/metabolismo , Animales , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Congresos como Asunto , Humanos , Nicho de Células Madre/genética , Nicho de Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA