Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 162(3): 564-79, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26232226

RESUMEN

During differentiation, human embryonic stem cells (hESCs) shut down the regulatory network conferring pluripotency in a process we designated pluripotent state dissolution (PSD). In a high-throughput RNAi screen using an inclusive set of differentiation conditions, we identify centrally important and context-dependent processes regulating PSD in hESCs, including histone acetylation, chromatin remodeling, RNA splicing, and signaling pathways. Strikingly, we detected a strong and specific enrichment of cell-cycle genes involved in DNA replication and G2 phase progression. Genetic and chemical perturbation studies demonstrate that the S and G2 phases attenuate PSD because they possess an intrinsic propensity toward the pluripotent state that is independent of G1 phase. Our data therefore functionally establish that pluripotency control is hardwired to the cell-cycle machinery, where S and G2 phase-specific pathways deterministically restrict PSD, whereas the absence of such pathways in G1 phase potentially permits the initiation of differentiation.


Asunto(s)
Ciclo Celular , Células Madre Embrionarias/citología , Redes Reguladoras de Genes , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Diferenciación Celular , Ciclina B2/metabolismo , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
2.
Mol Cell ; 62(4): 603-17, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27184079

RESUMEN

Identifying pairwise RNA-RNA interactions is key to understanding how RNAs fold and interact with other RNAs inside the cell. We present a high-throughput approach, sequencing of psoralen crosslinked, ligated, and selected hybrids (SPLASH), that maps pairwise RNA interactions in vivo with high sensitivity and specificity, genome-wide. Applying SPLASH to human and yeast transcriptomes revealed the diversity and dynamics of thousands of long-range intra- and intermolecular RNA-RNA interactions. Our analysis highlighted key structural features of RNA classes, including the modular organization of mRNAs, its impact on translation and decay, and the enrichment of long-range interactions in noncoding RNAs. Additionally, intermolecular mRNA interactions were organized into network clusters and were remodeled during cellular differentiation. We also identified hundreds of known and new snoRNA-rRNA binding sites, expanding our knowledge of rRNA biogenesis. These results highlight the underexplored complexity of RNA interactomes and pave the way to better understanding how RNA organization impacts biology.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN de Hongos/genética , ARN Mensajero/genética , ARN Neoplásico/genética , ARN Ribosómico/genética , ARN Nucleolar Pequeño/genética , Saccharomyces cerevisiae/genética , Transcriptoma , Sitios de Unión , Diferenciación Celular , Biología Computacional , Reactivos de Enlaces Cruzados/química , Bases de Datos Genéticas , Células Madre Embrionarias/metabolismo , Ficusina/química , Regulación Fúngica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Células HeLa , Humanos , Conformación de Ácido Nucleico , Estabilidad del ARN , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Neoplásico/química , ARN Neoplásico/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36233151

RESUMEN

Metabolic (dysfunction) associated fatty liver disease (MAFLD) is one of the most prevalent liver diseases and has no approved therapeutics. The high failure rates witnessed in late-phase MAFLD drug trials reflect the complexity of the disease, and how the disease develops and progresses remains to be fully understood. In vitro, human disease models play a pivotal role in mechanistic studies to unravel novel disease drivers and in drug testing studies to evaluate human-specific responses. This review focuses on MAFLD disease modeling using human cell and organoid models. The spectrum of patient-derived primary cells and immortalized cell lines employed to model various liver parenchymal and non-parenchymal cell types essential for MAFLD development and progression is discussed. Diverse forms of cell culture platforms utilized to recapitulate tissue-level pathophysiology in different stages of the disease are also reviewed.


Asunto(s)
Hepatopatías , Enfermedad del Hígado Graso no Alcohólico , Técnicas de Cultivo de Célula , Humanos , Organoides
4.
Gastroenterology ; 159(4): 1471-1486.e12, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32553762

RESUMEN

BACKGROUND & AIMS: There are few in vitro models for studying the 3-dimensional interactions among different liver cell types during organogenesis or disease development. We aimed to generate hepatic organoids that comprise different parenchymal liver cell types and have structural features of the liver, using human pluripotent stem cells. METHODS: We cultured H1 human embryonic stem cells (WA-01, passage 27-40) and induced pluripotent stem cells (GM23338) with a series of chemically defined and serum-free media to induce formation of posterior foregut cells, which were differentiated in 3 dimensions into hepatic endoderm spheroids and stepwise into hepatoblast spheroids. Hepatoblast spheroids were reseeded in a high-throughput format and induced to form hepatic organoids; development of functional bile canaliculi was imaged live. Levels of albumin and apolipoprotein B were measured in cell culture supernatants using an enzyme-linked immunosorbent assay. Levels of gamma glutamyl transferase and alkaline phosphatase were measured in cholangiocytes. Organoids were incubated with troglitazone for varying periods and bile transport and accumulation were visualized by live-imaging microscopy. Organoids were incubated with oleic and palmitic acid, and formation of lipid droplets was visualized by staining. We compared gene expression profiles of organoids incubated with free fatty acids or without. We also compared gene expression profiles between liver tissue samples from patients with nonalcoholic steatohepatitis (NASH) versus without. We quantified hepatocyte and cholangiocyte populations in organoids using immunostaining and flow cytometry; cholangiocyte proliferation of cholangiocytes was measured. We compared the bile canaliculi network in the organoids incubated with versus without free fatty acids by live imaging. RESULTS: Cells in organoids differentiated into hepatocytes and cholangiocytes, based on the expression of albumin and cytokeratin 7. Hepatocytes were functional, based on secretion of albumin and apolipoprotein B and cytochrome P450 activity; cholangiocytes were functional, based on gamma glutamyl transferase and alkaline phosphatase activity and proliferative responses to secretin. The organoids organized a functional bile canaliculi system, which was disrupted by cholestasis-inducing drugs such as troglitazone. Organoids incubated with free fatty acids had gene expression signatures similar to those of liver tissues from patients with NASH. Incubation of organoids with free fatty acid-enriched media resulted in structural changes associated with nonalcoholic fatty liver disease, such as decay of bile canaliculi network and ductular reactions. CONCLUSIONS: We developed a hepatic organoid platform with human cells that can be used to model complex liver diseases, including NASH.


Asunto(s)
Hepatocitos/citología , Hepatopatías/etiología , Hepatopatías/patología , Organoides/crecimiento & desarrollo , Células Madre Pluripotentes/fisiología , Técnicas de Cultivo de Célula , Humanos , Modelos Biológicos
5.
Mol Cell ; 50(6): 844-55, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23727019

RESUMEN

The extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase signal-transduction cascade is one of the key pathways regulating proliferation and differentiation in development and disease. ERK signaling is required for human embryonic stem cells' (hESCs') self-renewing property. Here, we studied the convergence of the ERK signaling cascade at the DNA by mapping genome-wide kinase-chromatin interactions for ERK2 in hESCs. We observed that ERK2 binding occurs near noncoding genes and histone, cell-cycle, metabolism, and pluripotency-associated genes. We find that the transcription factor ELK1 is essential in hESCs and that ERK2 co-occupies promoters bound by ELK1. Strikingly, promoters bound by ELK1 without ERK2 are occupied by Polycomb group proteins that repress genes involved in lineage commitment. In summary, we propose a model wherein extracellular-signaling-stimulated proliferation and intrinsic repression of differentiation are integrated to maintain the identity of hESCs.


Asunto(s)
Cromatina/enzimología , Células Madre Embrionarias/enzimología , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Elk-1 con Dominio ets/metabolismo , Secuencia de Bases , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Secuencia de Consenso , Células Madre Embrionarias/fisiología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genoma Humano , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Interferente Pequeño/genética , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Transcripción Genética , Transcriptoma , Proteína Elk-1 con Dominio ets/genética
6.
Gastroenterology ; 157(6): 1615-1629.e17, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31446059

RESUMEN

BACKGROUND & AIMS: Some oncogenes encode transcription factors, but few drugs have been successfully developed to block their activity specifically in cancer cells. The transcription factor SALL4 is aberrantly expressed in solid tumor and leukemia cells. We developed a screen to identify compounds that reduce the viability of liver cancer cells that express high levels of SALL4, and we investigated their mechanisms. METHODS: We developed a stringent high-throughput screening platform comprising unmodified SNU-387 and SNU-398 liver cancer cell lines and SNU-387 cell lines engineered to express low and high levels of SALL4. We screened 1597 pharmacologically active small molecules and 21,575 natural product extracts from plant, bacteria, and fungal sources for those that selectively reduce the viability of cells with high levels of SALL4 (SALL4hi cells). We compared gene expression patterns of SALL4hi cells vs SALL4-knockdown cells using RNA sequencing and real-time polymerase chain reaction analyses. Xenograft tumors were grown in NOD/SCID gamma mice from SALL4hi SNU-398 or HCC26.1 cells or from SALL4lo patient-derived xenograft (PDX) cells; mice were given injections of identified compounds or sorafenib, and the effects on tumor growth were measured. RESULTS: Our screening identified 1 small molecule (PI-103) and 4 natural compound analogues (oligomycin, efrapeptin, antimycin, and leucinostatin) that selectively reduced viability of SALL4hi cells. We performed validation studies, and 4 of these compounds were found to inhibit oxidative phosphorylation. The adenosine triphosphate (ATP) synthase inhibitor oligomycin reduced the viability of SALL4hi hepatocellular carcinoma and non-small-cell lung cancer cell lines with minimal effects on SALL4lo cells. Oligomycin also reduced the growth of xenograft tumors grown from SALL4hi SNU-398 or HCC26.1 cells to a greater extent than sorafenib, but oligomycin had little effect on tumors grown from SALL4lo PDX cells. Oligomycin was not toxic to mice. Analyses of chromatin immunoprecipitation sequencing data showed that SALL4 binds approximately 50% of mitochondrial genes, including many oxidative phosphorylation genes, to activate their transcription. In comparing SALL4hi and SALL4-knockdown cells, we found SALL4 to increase oxidative phosphorylation, oxygen consumption rate, mitochondrial membrane potential, and use of oxidative phosphorylation-related metabolites to generate ATP. CONCLUSIONS: In a screening for compounds that reduce the viability of cells that express high levels of the transcription factor SALL4, we identified inhibitors of oxidative phosphorylation, which slowed the growth of xenograft tumors from SALL4hi cells in mice. SALL4 activates the transcription of genes that regulate oxidative phosphorylation to increase oxygen consumption, mitochondrial membrane potential, and ATP generation in cancer cells. Inhibitors of oxidative phosphorylation might be used for the treatment of liver tumors with high levels of SALL4.


Asunto(s)
Antineoplásicos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Factores de Transcripción/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Fosforilación Oxidativa/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Gastroenterology ; 160(6): 2209, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33484685
8.
Nature ; 468(7321): 316-20, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-20953172

RESUMEN

The derivation of human ES cells (hESCs) from human blastocysts represents one of the milestones in stem cell biology. The full potential of hESCs in research and clinical applications requires a detailed understanding of the genetic network that governs the unique properties of hESCs. Here, we report a genome-wide RNA interference screen to identify genes which regulate self-renewal and pluripotency properties in hESCs. Interestingly, functionally distinct complexes involved in transcriptional regulation and chromatin remodelling are among the factors identified in the screen. To understand the roles of these potential regulators of hESCs, we studied transcription factor PRDM14 to gain new insights into its functional roles in the regulation of pluripotency. We showed that PRDM14 regulates directly the expression of key pluripotency gene POU5F1 through its proximal enhancer. Genome-wide location profiling experiments revealed that PRDM14 colocalized extensively with other key transcription factors such as OCT4, NANOG and SOX2, indicating that PRDM14 is integrated into the core transcriptional regulatory network. More importantly, in a gain-of-function assay, we showed that PRDM14 is able to enhance the efficiency of reprogramming of human fibroblasts in conjunction with OCT4, SOX2 and KLF4. Altogether, our study uncovers a wealth of novel hESC regulators wherein PRDM14 exemplifies a key transcription factor required for the maintenance of hESC identity and the reacquisition of pluripotency in human somatic cells.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Genoma Humano/genética , Interferencia de ARN , Proteínas Represoras/metabolismo , Animales , Secuencia de Bases , Línea Celular , Reprogramación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas de Unión al ARN , Proteínas Represoras/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción
9.
Stem Cells ; 31(4): 682-92, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23280602

RESUMEN

PRDM14 is an important determinant of the human embryonic stem cell (ESC) identity and works in concert with the core ESC regulators to activate pluripotency-associated genes. PRDM14 has been previously reported to exhibit repressive activity in mouse ESCs and primordial germ cells; and while PRDM14 has been implicated to suppress differentiation genes in human ESCs, the exact mechanism of this repressive activity remains unknown. In this study, we provide evidence that PRDM14 is a direct repressor of developmental genes in human ESCs. PRDM14 binds to silenced genes in human ESCs and its global binding profile is enriched for the repressive trimethylation of histone H3 lysine 27 (H3K27me3) modification. Further investigation reveals that PRDM14 interacts directly with the chromatin regulator polycomb repressive complex 2 (PRC2) and PRC2 binding is detected at PRDM14-bound loci in human ESCs. Depletion of PRDM14 reduces PRC2 binding at these loci and the concomitant reduction of H3K27me3 modification. Using reporter assays, we demonstrate that gene loci bound by PRDM14 exhibit repressive activity that is dependent on both PRDM14 and PRC2. In reprogramming human fibroblasts into induced pluripotent stem cells (iPSCs), ectopically expressed PRDM14 can repress these developmental genes in fibroblasts. In addition, we show that PRDM14 recruits PRC2 to repress a key mesenchymal gene ZEB1, which enhances mesenchymal-to-epithelial transition in the initiation event of iPSC reprogramming. In summary, our study reveals a repressive role of PRDM14 in the maintenance and induction of pluripotency and identifies PRDM14 as a new regulator of PRC2.


Asunto(s)
Reprogramación Celular/fisiología , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteínas Represoras/metabolismo , Reprogramación Celular/genética , Proteínas de Unión al ADN , Células Madre Embrionarias/citología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Complejo Represivo Polycomb 2/genética , Unión Proteica , Proteínas de Unión al ARN , Proteínas Represoras/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
10.
Nat Commun ; 15(1): 3169, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609353

RESUMEN

Solid tumors are complex ecosystems with heterogeneous 3D structures, but the spatial intra-tumor heterogeneity (sITH) at the macroscopic (i.e., whole tumor) level is under-explored. Using a phylogeographic approach, we sequence genomes and transcriptomes from 235 spatially informed sectors across 13 hepatocellular carcinomas (HCC), generating one of the largest datasets for studying sITH. We find that tumor heterogeneity in HCC segregates into spatially variegated blocks with large genotypic and phenotypic differences. By dissecting the transcriptomic heterogeneity, we discover that 30% of patients had a "spatially competing distribution" (SCD), where different spatial blocks have distinct transcriptomic subtypes co-existing within a tumor, capturing the critical transition period in disease progression. Interestingly, the tumor regions with more advanced transcriptomic subtypes (e.g., higher cell cycle) often take clonal dominance with a wider geographic range, rejecting neutral evolution for SCD patients. Extending the statistical tests for detecting natural selection to many non-SCD patients reveal varying levels of selective signal across different tumors, implying that many evolutionary forces including natural selection and geographic isolation can influence the overall pattern of sITH. Taken together, tumor phylogeography unravels a dynamic landscape of sITH, pinpointing important evolutionary and clinical consequences of spatial heterogeneity in cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Ecosistema , Filogeografía , Neoplasias Hepáticas/genética , Perfilación de la Expresión Génica
11.
Clin Mol Hepatol ; 29(3): 643-669, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36880210

RESUMEN

Liver organoids are three-dimensional cellular tissue models in which cells interact to form unique structures in culture. During the past 10 years, liver organoids with various cellular compositions, structural features, and functional properties have been described. Methods to create these advanced human cell models range from simple tissue culture techniques to complex bioengineering approaches. Liver organoid culture platforms have been used in various research fields, from modeling liver diseases to regenerative therapy. This review discusses how liver organoids are used to model disease, including hereditary liver diseases, primary liver cancer, viral hepatitis, and nonalcoholic fatty liver disease. Specifically, we focus on studies that used either of two widely adopted approaches: differentiation from pluripotent stem cells or epithelial organoids cultured from patient tissues. These approaches have enabled the generation of advanced human liver models and, more importantly, the establishment of patient-tailored models for evaluating disease phenotypes and therapeutic responses at the individual level.


Asunto(s)
Hepatopatías , Organoides , Humanos , Hepatopatías/terapia , Diferenciación Celular
12.
Cancers (Basel) ; 15(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36831585

RESUMEN

As one of few viral-positive cancers, nasopharyngeal carcinoma (NPC) is extremely rare across the world but very frequent in several regions of the world, including Southern China (known as the Cantonese cancer). Even though several genomic studies have been conducted for NPC, their sample sizes are relatively small and systematic comparison with other cancer types has not been explored. In this study, we collected four-hundred-thirty-one samples from six previous studies and provided the first integrative analysis of NPC genomes. Combining several statistical methods for detecting driver genes, we identified 25 novel drivers for NPC, including ATG14 and NLRC5. Many of these novel drivers are enriched in several important pathways, such as autophagy and immunity. By comparing NPC with many other cancer types, we found NPC is a unique cancer type in which a high proportion of patients (45.2%) do not have any known driver mutations (termed as "missing driver events") but have a preponderance of deletion events, including chromosome 3p deletion. Through signature analysis, we identified many known and novel signatures, including single-base signatures (n = 12), double-base signatures (n = 1), indel signatures (n = 9) and copy number signatures (n = 8). Many of these new signatures are involved in DNA repair and have unknown etiology and genome instability, implying an unprecedented dynamic mutational process possibly driven by complex interactions between viral and host genomes. By combining clinical, molecular and intra-tumor heterogeneity features, we constructed the first integrative survival model for NPC, providing a strong basis for patient prognosis and stratification. Taken together, we have performed one of the first integrative analyses of NPC genomes and brought unique genomic insights into tumorigenesis of a viral-driven cancer.

13.
ACS Nano ; 17(22): 22901-22915, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37939210

RESUMEN

Intestinal epithelium undergoes regeneration after injuries, and the disruption of this process can lead to inflammatory bowel disease and tumorigenesis. Intestinal stem cells (ISCs) residing in the crypts are crucial for maintaining the intestinal epithelium's homeostasis and promoting regeneration upon injury. However, the precise role of DGCR8, a critical component in microRNA (miRNA) biogenesis, in intestinal regeneration remains poorly understood. In this study, we provide compelling evidence demonstrating the indispensable role of epithelial miRNAs in the regeneration of the intestine in mice subjected to 5-FU or irradiation-induced injury. Through a comprehensive pooled screen of miRNA function in Dgcr8-deficient organoids, we observe that the loss of the miR-200 family leads to the hyperactivation of the p53 pathway, thereby reducing ISCs and impairing epithelial regeneration. Notably, downregulation of the miR-200 family and hyperactivation of the p53 pathway are verified in colonic tissues from patients with active ulcerative colitis (UC). Most importantly, the transient supply of miR-200 through the oral delivery of lipid nanoparticles (LNPs) carrying miR-200 restores ISCs and promotes intestinal regeneration in mice following acute injury. Our study implies the miR-200/p53 pathway as a promising therapeutic target for active UC patients with diminished levels of the miR-200 family. Furthermore, our findings suggest that the clinical application of LNP-miRNAs could enhance the efficacy, safety, and acceptability of existing therapeutic modalities for intestinal diseases.


Asunto(s)
Colitis Ulcerosa , MicroARNs , Humanos , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regeneración , Proteínas de Unión al ARN , Intestinos , Mucosa Intestinal , Colitis Ulcerosa/metabolismo
14.
Nat Commun ; 14(1): 3646, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339952

RESUMEN

Acquisition of new stem cell fates relies on the dissolution of the prior regulatory network sustaining the existing cell fates. Currently, extensive insights have been revealed for the totipotency regulatory network around the zygotic genome activation (ZGA) period. However, how the dissolution of the totipotency network is triggered to ensure the timely embryonic development following ZGA is largely unknown. In this study, we identify the unexpected role of a highly expressed 2-cell (2C) embryo specific transcription factor, ZFP352, in facilitating the dissolution of the totipotency network. We find that ZFP352 has selective binding towards two different retrotransposon sub-families. ZFP352 coordinates with DUX to bind the 2C specific MT2_Mm sub-family. On the other hand, without DUX, ZFP352 switches affinity to bind extensively onto SINE_B1/Alu sub-family. This leads to the activation of later developmental programs like ubiquitination pathways, to facilitate the dissolution of the 2C state. Correspondingly, depleting ZFP352 in mouse embryos delays the 2C to morula transition process. Thus, through a shift of binding from MT2_Mm to SINE_B1/Alu, ZFP352 can trigger spontaneous dissolution of the totipotency network. Our study highlights the importance of different retrotransposons sub-families in facilitating the timely and programmed cell fates transition during early embryogenesis.


Asunto(s)
Retroelementos , Factores de Transcripción , Animales , Ratones , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Retroelementos/genética , Solubilidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cigoto/metabolismo
15.
J Immunother Cancer ; 11(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37586766

RESUMEN

BACKGROUND: Combination therapy with radioembolization (yttrium-90)-resin microspheres) followed by nivolumab has shown a promising response rate of 30.6% in a Phase II trial (CA209-678) for advanced hepatocellular carcinoma (HCC); however, the response mechanisms and relevant biomarkers remain unknown. METHODS: By collecting both pretreatment and on-treatment samples, we performed multimodal profiling of tissue and blood samples and investigated molecular changes associated with favorable responses in 33 patients from the trial. RESULTS: We found that higher tumor mutation burden, NCOR1 mutations and higher expression of interferon gamma pathways occurred more frequently in responders. Meanwhile, non-responders tended to be enriched for a novel Asian-specific transcriptomic subtype (Kaya_P2) with a high frequency of chromosome 16 deletions and upregulated cell cycle pathways. Strikingly, unlike other cancer types, we did not observe any association between T-cell populations and treatment response, but tumors from responders had a higher proportion of CXCL9+/CXCR3+ macrophages. Moreover, biomarkers discovered in previous immunotherapy trials were not predictive in the current cohort, suggesting a distinctive molecular landscape associated with differential responses to the combination therapy. CONCLUSIONS: This study unraveled extensive molecular changes underlying distinctive responses to the novel treatment and pinpointed new directions for harnessing combination therapy in patients with advanced HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Microesferas , Nivolumab/farmacología , Nivolumab/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Deleción Cromosómica
16.
Theranostics ; 12(10): 4703-4717, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832070

RESUMEN

Hepatocellular carcinoma (HCC) is one of the deadliest cancer types with diverse etiological factors across the world. Although large scale genomic studies have been conducted in different countries, integrative analysis of HCC genomes and ethnic comparison across cohorts are lacking. Methods: We first integrated genomes of 1,349 HCC patients from five large cohorts across the world and applied multiple statistical methods in identifying driver genes. Subsequently, we systematically compared HCC genomes and transcriptomes between Asians and Europeans using the TCGA cohort. Results: We identified 29 novel candidate driver genes, many of which are infrequent tumor suppressors driving late-stage tumor progression. When we systematically compared ethnic differences in the genomic landscape between Asian and European HCCs using the TCGA cohort (n = 348), we found little differences in driver frequencies. Through multi-modal integrative analysis, we found higher genomic instability in Asians together with a collection of molecular events ranging from tumor mutation burden (TMB), copy number alterations as well as transcriptomic subtypes segregating distinctively between two ethnic backgrounds. Strikingly, we identified an Asian specific transcriptomic subtype with multiple ethnically enriched genomic alterations, in particular chromosome 16 deletion, leading to a clinically aggressive RNA subgroup unique to Asians. Integrating multi-modal information, we found that survival models predict patient prognosis much better in Asians than in Europeans, demonstrating a higher potential for precision medicine applications in Asia. Conclusion: For the first time, we have uncovered an unprecedented amount of genomic differences segregating distinctively across ethnicities in HCC and highlighted the importance of differential disease biology and management in HCC across ethnic backgrounds.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Pueblo Asiatico/genética , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , Inestabilidad Genómica/genética , Humanos , Neoplasias Hepáticas/patología
17.
Cell Rep ; 40(8): 111240, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001968

RESUMEN

Endogenous retroviruses (ERVs) have been reported to participate in pre-implantation development of mammalian embryos. In early human embryogenesis, different ERV sub-families are activated in a highly stage-specific manner. How the specificity of ERV activation is achieved remains largely unknown. Here, we demonstrate the mechanism of how LTR7Ys, the human morula-blastocyst-specific HERVH long terminal repeats, are activated by the naive pluripotency transcription network. We find that KLF5 interacts with and rewires NANOG to bind and regulate LTR7Ys; in contrast, the primed-specific LTR7s are preferentially bound by NANOG in the absence of KLF5. The specific activation of LTR7Ys by KLF5 and NANOG in pluripotent stem cells contributes to human-specific naive pluripotency regulation. KLF5-LTR7Y axis also promotes the expression of trophectoderm genes and contributes to the expanded cell potential toward extra-embryonic lineage. Our study suggests that HERVs are activated by cell-state-specific transcription machinery and promote stage-specific transcription network and cell potency.


Asunto(s)
Células Madre Embrionarias , Factores de Transcripción de Tipo Kruppel/metabolismo , Células Madre Pluripotentes , Blastocisto/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo
18.
Prog Drug Res ; 67: 239-52, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21141733

RESUMEN

Transcriptional regulation is one of the most fundamental processes in biology, governing the morphology, function, and behavior of cells and thus the survival of organisms. The embryonic stem cell (ESC) provides a good model for the understanding of transcriptional regulation in vertebrate systems. Recent efforts have led to the identification of molecular events, which confer upon these cells the unique properties of pluripotency and self renewal. The core regulatory network maintaining the ESC identity involves three master regulators: Oct4, Sox2, and Nanog. Large-scale mapping studies interrogating the binding sites of these and other transcription factors showed co-occupancy of distinct sets of transcription factors. The assembly of multitranscription factor complexes could serve as a mechanism for providing specificity in regulating ESC-specific gene expression. These studies are also beginning to unravel the transcriptional regulatory networks that govern the ESC identity. Loss-of-function RNAi screens also identified novel regulatory molecules involved in the stable propagation of the ESC state. This argues for an ESC transcriptional regulation program in which interconnected transcriptional regulatory networks involving large numbers of transcription factors and epigenetic modifiers work in concert on ESC- and differentiation-specific genes to achieve cell state stability. This chapter traces the major efforts made over the past decade in dissecting the transcriptional regulatory network governing ESC identity and offers perspectives on the future directions of the field.


Asunto(s)
Células Madre Embrionarias/metabolismo , Redes Reguladoras de Genes , Animales , Perfilación de la Expresión Génica , Humanos
19.
Cell Regen ; 10(1): 27, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34341842

RESUMEN

Building human organs in a dish has been a long term goal of researchers in pursue of physiologically relevant models of human disease and for replacement of worn out and diseased organs. The liver has been an organ of interest for its central role in regulating body homeostasis as well as drug metabolism. An accurate liver replica should contain the multiple cell types found in the organ and these cells should be spatially organized to resemble tissue structures. More importantly, the in vitro model should recapitulate cellular and tissue level functions. Progress in cell culture techniques and bioengineering approaches have greatly accelerated the development of advance 3-dimensional (3D) cellular models commonly referred to as liver organoids. These 3D models described range from single to multiple cell type containing cultures with diverse applications from establishing patient-specific liver cells to modeling of chronic liver diseases and regenerative therapy. Each organoid platform is advantageous for specific applications and presents its own limitations. This review aims to provide a comprehensive summary of major liver organoid platforms and technologies developed for diverse applications.

20.
Stem Cells ; 27(9): 2114-25, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19522013

RESUMEN

Insight into the regulation of core transcription factors is important for a better understanding of the molecular mechanisms that control self-renewal and pluripotency of human ESCs (hESCs). However, the transcriptional regulation of NANOG itself in hESCs has largely been elusive. We established a NANOG promoter luciferase reporter assay as a fast read-out for indicating the pluripotent status of hESCs. From the functional cDNA screens and NANOG promoter characterization, we successfully identified a zinc finger transcription factor KLF4 and a homeodomain transcription factor PBX1 as two novel transcriptional regulators that maintain the pluripotent and undifferentiated state of hESCs. We showed that both KLF4 and PBX1 mRNA and protein expression were downregulated during hESC differentiation. In addition, overexpression of KLF4 and PBX1 upregulated NANOG promoter activity and also the endogenous NANOG protein expression in hESCs. Direct binding of KLF4 on NANOG proximal promoter and PBX1 on a new upstream enhancer and proximal promoter were confirmed by chromatin immunoprecipitation and electrophoretic mobility shift assay. Knockdown of KLF4/PBX1 or mutation of KLF4/PBX1 binding motifs significantly downregulated NANOG promoter activity. We also showed that specific members of the SP/KLF and PBX family are functionally redundant at the NANOG promoter and that KLF4 and PBX1 cooperated with OCT4 and SOX2, and transactivated synergistically the NANOG promoter activity. Our results show two novel upstream transcription activators of NANOG that are functionally important for the self-renewal of hESC and provide new insights into the expanded regulatory circuitry that maintains hESC pluripotency.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Células Madre Embrionarias , Proteínas de Homeodominio/genética , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Proteína Homeótica Nanog , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA