Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36616615

RESUMEN

A collaborative painting robot that can be used as an alternative to workers has been developed using a digital twin framework and its performance was demonstrated experimentally. The digital twin of the automatic painting robot simulates the entire process and estimates the paint result before the real execution. An operator can view the simulated process and result with an option to either confirm or cancel the task. If the task is accepted, the digital twin generates all the parameters, including the end effector trajectory of the robot, the material flow to the collaborative robot, and a spray mechanism. This ability means that the painting process can be practiced in a virtual environment to decrease set costs, waste, and time, all of which are highly demanded in single-item production. In this study, the screen was fixtureless and, thus, a camera was used to capture it in a physical environment, which was further analyzed to determine its pose. The digital twin then builds the screen in real-time in a virtual environment. The communication between the physical and digital twins is bidirectional in this scenario. An operator can design a painting pattern, such as a basic shape and/or letter, along with its size and paint location, in the resulting procedure. The digital twin then generates the simulation and expected painting result using the physical twin's screen pose. The painting results show that the root mean square error (RMSE) of the painting is less than 1.5 mm and the standard deviation of RMSE is less than 0.85 mm. Additionally, the initial benefits of the technique include lower setup costs, waste, and time, as well as an easy-to-use operating procedure. More benefits are expected from the digital twin framework, such as the ability of the digital twin to (1) find a solution when a fault arises, (2) refine the control or optimize the operation, and (3) plan using historic data.

2.
Talanta ; 233: 122538, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34215041

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans. More than 400 million people worldwide are affected by this genetic condition. Testing for G6PD deficiency before drug administration is essential for patient safety. Rapidly ascertaining the G6PD status of a person is desirable for proper treatment. The device described in this study, the G6PD diaxBOX, was developed to quantify G6PD deficiency using paper-based analytical devices (PADs) and a colorimetric assay. The G6PD diaxBOX is a straightforward, affordable, portable, and instrument-free analytical system. The major components of the G6PD diaxBox are a banknote-checking UV fluorescent lamp and camera that are easy to access and analysis software. When NADPH is generated, it absorbs at UV 340 nm and emits colored light that is detected with the camera. The determined Pearson's coefficient shows that the color intensity measured from the G6PD diaxBOX correlated with G6PD activity level. Also, a Bland-Altman analysis indicated that more than 95% of the measurement error was in the upper and lower boundaries (±2 SD) and the error from the severe and moderate deficiency group was less than ± 1 SD. Therefore, the error from G6PD diaxBOX was within the limit boundary and the overall accuracy was more than 80%. The G6PD diaxBOX facilitates the effective and efficient quantification of G6PD deficiency and as such represents a clinically well-suited, rapid point-of-care test.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa , Glucosafosfato Deshidrogenasa , Colorimetría , Humanos , Pruebas en el Punto de Atención , Programas Informáticos
3.
PLoS One ; 16(11): e0259438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34780504

RESUMEN

Autonomous vehicles are regarded as future transport mechanisms that drive the vehicles without the need of drivers. The photonic-based radar technology is a promising candidate for delivering attractive applications to autonomous vehicles such as self-parking assistance, navigation, recognition of traffic environment, etc. Alternatively, microwave radars are not able to meet the demand of next-generation autonomous vehicles due to its limited bandwidth availability. Moreover, the performance of microwave radars is limited by atmospheric fluctuation which causes severe attenuation at higher frequencies. In this work, we have developed coherent-based frequency-modulated photonic radar to detect target locations with longer distance. Furthermore, the performance of the proposed photonic radar is investigated under the impact of various atmospheric weather conditions, particularly fog and rain. The reported results show the achievement of significant signal to noise ratio (SNR) and received power of reflected echoes from the target for the proposed photonic radar under the influence of bad weather conditions. Moreover, a conventional radar is designed to establish the effectiveness of the proposed photonic radar by considering similar parameters such as frequency and sweep time.


Asunto(s)
Vehículos Autónomos , Radar
4.
PLoS One ; 15(11): e0242613, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33253264

RESUMEN

This paper aims to further increase the reliability of optimal results by setting the simulation conditions to be as close as possible to the real or actual operation to create a Cyber-Physical System (CPS) view for the installation of the Fractional-Order PID (FOPID) controller. For this purpose, we consider two different sources of variability in such a CPS control model. The first source refers to the changeability of a target of the control model (multiple setpoints) because of environmental noise factors and the second source refers to an anomaly in sensors that is raised in a feedback loop. We develop a new approach to optimize two objective functions under uncertainty including signal energy control and response error control while obtaining the robustness among the source of variability with the lowest computational cost. A new hybrid surrogate-metaheuristic approach is developed using Particle Swarm Optimization (PSO) to update the Gaussian Process (GP) surrogate for a sequential improvement of the robust optimal result. The application of efficient global optimization is extended to estimate surrogate prediction error with less computational cost using a jackknife leave-one-out estimator. This paper examines the challenges of such a robust multi-objective optimization for FOPID control of a five-bar linkage robot manipulator. The results show the applicability and effectiveness of our proposed method in obtaining robustness and reliability in a CPS control system by tackling required computational efforts.


Asunto(s)
Algoritmos , Modelos Teóricos , Robótica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA