Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Arch Biochem Biophys ; 709: 108981, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34214556

RESUMEN

Screening of inhibitors that slow down or suppress amyloid fibrils formation relies on some simple but sensitive spectroscopy techniques. Thioflavin T (ThT) fluorescence assay is one of the most common, amyloid specific and sensitive method. However, if an inhibitor is itself fluorescent in the ThT fluorescence range, its screening becomes complicated and require complementary assays. One of such molecules, 6, 7-dihydroxycoumarin (6, 7-DHC, also known as aesculetin, esculetin, and cichorigenin) is fluorescent in the ThT emission range and absorbs in the ThT excitation range. Therefore, it can produce a subtractive effect attributed to primary inner filter effect and/or additive effect due to its self-fluorescence in ThT assay. Our study shows that 6, 7-DHC produces an additive effect in ThT fluorescence, which is minimized at high concentration of ThT and decrease in ThT fluorescence is solely due to its inhibitory effect against HSA fibrillation. These ThT fluorescence-based results are verified through other complementary assays, such as Rayleigh and dynamic light scattering and amyloid-specific Congo red binding assay. Furthermore, hydrophobicity reduction is studied through Nile red (NR) and kinetics through far-UV circular dichroism (far-UV CD) in place of the most commonly employed ThT assay owing to extremely high fluorescence of 6, 7-DHC during initial incubation period.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Benzotiazoles/química , Colorantes Fluorescentes/farmacología , Multimerización de Proteína/efectos de los fármacos , Albúmina Sérica Humana/metabolismo , Umbeliferonas/farmacología , Colorantes Fluorescentes/química , Colorantes Fluorescentes/toxicidad , Humanos , Dispersión de Radiación , Umbeliferonas/química , Umbeliferonas/toxicidad
2.
Comput Biol Chem ; 107: 107964, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820470

RESUMEN

Diabetes mellitus Type 2 (DM2T) is a rapidly expanding metabolic endocrine disorder worldwide. It is caused due to inadequate insulin secretion by pancreatic beta cells as well as development of insulin resistance. This study aimed to investigate the anti-α-glucosidase, insulin stabilization effect, and non-cytotoxic nature of Gymnema latifolium leaf aqueous extract (GLAE). FTIR analysis revealed the functional groups of compounds present in GLAE. Through LC/ESI-MS/MS analysis, about 12 compounds which belongs to different classes, triterpene glycosides, flavonoids, phenolics, stilbene glycosides and chlorophenolic glycosides were identified. GLAE showed in vitro antioxidant activity. GLAE stabilized insulin by increasing its α-helical content. GLAE inhibited the mammalian α-glucosidase (IC50 = 144 µg/mL) activity through competitive mode (Ki = 61.30 µg/mL). GLAE did not affect the viability of normal cell line (Vero cell line) which shows its non-toxic nature. Molecular docking of phytocompounds identified in GLAE was done with human α-glucosidase and insulin. The top 2 compounds [Gymnema saponin V (GSV) and quercetin 3-(2-galloylglucoside) (QGG) with α-glucosidase; GSV and Z)-resveratrol 3,4'-diglucoside (RDG) with human insulin] with low binding free energy were subjected to 100 ns molecular dynamics simulation to ascertain the stable binding of ligand with protein. The MM/GBSA analysis revealed binding free energy of GSV/α-glucosidase and QGG /α-glucosidase to be - 20.9935 and, - 30.9461 kcal/mol, respectively. Altogether GLAE is valuable source of anti-α-glucosidase inhibitors and insulin stabilizing compounds, suggesting potential lead for further exploration as complementary medicine against DM2T.


Asunto(s)
Gymnema , Insulinas , Animales , Humanos , alfa-Glucosidasas/metabolismo , Glicósidos/análisis , Insulinas/análisis , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Espectrometría de Masas en Tándem
3.
ACS Chem Neurosci ; 11(3): 373-384, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31935057

RESUMEN

Increasing prevalence of protein misfolding disorders urges the search for effective therapies. Although several antiaggregation molecules have been identified, their molecular process of aggregation and clinical trials are underway. The present study is focused on the mechanism through which phenyl butyrate (PB), a chemical chaperone, triggers inhibition of human serum albumin (HSA) fibrillation. Turbidity and Rayleigh light scattering (RLS) measurements reveal the marked presence of aggregates in HSA that were confirmed as amyloid fibrils by thioflavin T (ThT) and Congo red (CR) and were subsequently inhibited by PB in a dose dependent manner. ThT fluorescence kinetics reveals a decrease in the apparent rate constant, Kapp, in the presence of PB without triggering a lag phase in HSA suggesting PB's interference with the elongation phase. Dynamic light scattering (DLS) results display a reduction in the aggregate size in the presence of PB. Isothermal titration calorimetry (ITC) data reveals strong binding of PB at site II both at 25 °C (Kb ≈ 1.94 × 105 M-1) and 65 °C (Kb ≈ 2.90 × 104 M-1), mediated by hydrogen bonding. Overall, our finding establishes that PB stabilizes partially unfolded HSA molecules through hydrogen bonding, thereby preventing establishment of hydrogen bonds between them and hindering their progression into amyloid fibrils. This is in contrast to its chaperone effect manifested with other proteins.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Amiloidosis/metabolismo , Agregado de Proteínas/fisiología , Albúmina Sérica/metabolismo , Dispersión Dinámica de Luz/métodos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Albúmina Sérica/química , Termodinámica
4.
Int J Biol Macromol ; 154: 1448-1459, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31778695

RESUMEN

This study is based on the analysis of the recent trend of medication in neurodegenerative diseases. Due to the asymptomatic nature of the diseases, medication delays. Therefore, mechanism of medication assists in removal of the symptoms. Therefore, in order to find out remedy for complete prevention of the disease we have considered "inhibition verses disaggregation" study. Various biophysical techniques such as turbidity measurement (TM), Thioflavin T (ThT) binding assays, circular dichroism (CD), transmission electron microscopy (TEM) etc. has been performed. Isoprenaline hydrochloride (ISO) was a good candidate for inhibition and disaggregation of preformed fibrils of BSA. Therefore, it is concluded that inhibition of fibrillation process was more momentous, effective procedure in restricting the aggregation by stabilizing the native conformation of BSA than the removal of preformed amyloid fibrils under in vitro condition. Forwarding ahead, to understand the efficiency of the two processes under in vivo condition, this study can be applied on animal models so that we can look forward on human beings as well for the development of vaccines. This study is concerned about the applied aspect of research in future so that we can hope for prevention of the disease instead of only removal of the symptoms.


Asunto(s)
Isoproterenol/farmacología , Agregado de Proteínas/efectos de los fármacos , Albúmina Sérica Bovina/química , Animales , Bovinos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cinética
6.
Biochim Biophys Acta Proteins Proteom ; 1867(3): 275-285, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30312771

RESUMEN

Protein aggregation have been associated with several human neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases. There are several small molecules that can reduce aggregation of proteins. The present study aimed to test the hypothesis that the application of more than one inhibitor either simultaneously or consecutively may result in more efficient inhibition of protein aggregation. To this end, the anti-amyloidogenic behaviour of benserazide hydrochloride (BH) and levodopa (LD) individually and in combination (BH + LD) was investigated using various biophysical, microscopic, and computational techniques. BH, LD, and BH + LD treatments showed inhibitory effects on protein aggregation and had the ability to minimise the amyloid-induced cytotoxicity in human neuroblastoma cell line (SH-SY5Y). The two drugs in combination showed synergism (combination index, CI < 1) between them. These drugs also destabilised the preformed fibrils of human serum albumin (HSA). Our studies consistently showed that the BH + LD treatment showed highest efficacy towards inhibition and disaggregation of amyloid fibrils in comparison to treatment with BH and LD individually. Therefore, application of drugs in combination against fibrillogenesis may represent a new route for development of means for prevention or delaying of the aggregation-related diseases.


Asunto(s)
Amiloide/metabolismo , Benserazida/farmacología , Dopaminérgicos/farmacología , Levodopa/farmacología , Agregado de Proteínas/efectos de los fármacos , Albúmina Sérica Humana/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Combinación de Medicamentos , Humanos , Enfermedad de Parkinson/tratamiento farmacológico
7.
Int J Biol Macromol ; 106: 1115-1129, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28890370

RESUMEN

This review article summarises the possible mechanisms of the protein-ligand interaction, folding, misfolding, aggregation and inhibition of protein aggregates. Under certain stressed condition the folding process deviates from its path and results into misfolding and aggregation of proteins. So aggregates have to be inhibited in order to cure the diseases. In some cases of protein-ligand interaction studies we have seen that the interaction of a protein with more than one ligand may show both type of quenching mechanisms i.e. dynamic as well as static quenching rather than single type of quenching mechanism, that result can be entirely different by the result of binding study utilising single ligand. So, likewise it is hypothesized that if the aggregates are inhibited by using more than one inhibitor may give more fruitful results rather than application of single inhibitor in inhibition and disaggregation of the preformed aggregates. Therefore, we have hypothesized mechanisms for the inhibition of protein aggregates that may assist in curing the neurodegenerative diseases. Thus, besides the mechanism of protein-ligand interaction, folding, misfolding and aggregation; the hypothesized mechanisms for the inhibition of protein aggregates may show new route to researchers either directly or indirectly in treating the diseases.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Proteínas/química , Humanos , Ligandos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/patología , Agregación Patológica de Proteínas/patología , Pliegue de Proteína , Proteínas/metabolismo
8.
J Biomol Struct Dyn ; 36(1): 54-67, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27910732

RESUMEN

Isoprenaline hydrochloride is a potential cardiovascular drug helps in the smooth functioning of the heart muscles. So, we have performed the binding study of ISO with BSA. This study was investigated by UV absorption, fluorescence, synchronous fluorescence, circular dichroism, etc. The analysis of intrinsic fluorescence data showed the low binding affinity of ISO. The binding constant Kb was 2.8 × 103 M-1 and binding stoichiometry (n) was approximately one and the Gibb's free energy change at 310 K was determined to be -8.69 kcal mol-1. Negative Gibb's free energy change shows the spontaneity of the BSA and ISO interaction. We have found ISO-induced alternation in the UV absorption, synchronous fluorescence and CD spectra in the absence and presence of the quencher indicates the complex formation. In synchronous fluorescence, red shift was obtained because of the complex formation of BSA and ISO. The distance (r) between the BSA (donor) and ISO (acceptor) was 2.89 nm, determined by FRET. DLS measurements interpreted complex formation due to the reduction in hydrodynamic radii of the protein in the presence of the drug. The binding site of ISO was found to be nearer to Trp 134 with the help of molecular docking and the ΔG° was found to be -10.2 kcal mol-1. The esterase activity result suggests that ISO acts as competitive inhibitor. Thus, this study would help to determine the binding capacity of the drug to the protein which may indicate the efficiency of diffusion of ISO into the blood for the treatment of heart diseases.


Asunto(s)
Dicroismo Circular/métodos , Isoproterenol/química , Simulación del Acoplamiento Molecular , Albúmina Sérica Bovina/química , Espectrofotometría/métodos , Algoritmos , Animales , Sitios de Unión , Cardiotónicos/química , Cardiotónicos/metabolismo , Bovinos , Dispersión Dinámica de Luz , Isoproterenol/metabolismo , Cinética , Unión Proteica , Albúmina Sérica Bovina/metabolismo , Termodinámica
9.
J Biomol Struct Dyn ; 36(10): 2543-2557, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28768117

RESUMEN

Protein aggregation into oligomers and mature fibrils are associated with more than 20 diseases in humans. The interactions between cationic surfactants dodecyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB) with varying alkyl chain lengths and bovine liver catalase (BLC) were examined by various biophysical approaches. The delicate coordination of electrostatic and hydrophobic interactions with protein, play imperative role in aggregation. In this article, we have reconnoitered the relation between charge, hydrophobicity and cationic surfactants DTAB and TTAB on BLC at pH 7.4 and 9.4 which are two and four units above pI, respectively. We have used techniques like turbidity, Rayleigh light scattering, far-UV CD, ThT, ANS, Congo red binding assay, DLS, and transmission electron microscopy. The low concentration ranges of DTAB (0-600 µM) and TTAB (0-250 µM) were observed to increase aggregation at pH 9.4. Nevertheless, at pH 7.4 only TTAB was capable of inducing aggregate. DTAB did not produce any significant change in secondary structure at pH 7.4 suggestive of the role of respective charges on surfactants and protein according to the pI and alkyl chain length. The morphology of aggregates was further determined by TEM, which proved the existence of a fibrillar structure. The surfactants interaction with BLC was primarily electrostatic as examined by ITC. Our work demystifies the critical role of charge as well as hydrophobicity in amyloid formation.


Asunto(s)
Fenómenos Biofísicos , Catalasa/química , Tensoactivos/química , Animales , Benzotiazoles/metabolismo , Calorimetría , Catalasa/ultraestructura , Cationes , Bovinos , Dicroismo Circular , Dispersión Dinámica de Luz , Hidrodinámica , Concentración de Iones de Hidrógeno , Nefelometría y Turbidimetría , Compuestos de Amonio Cuaternario/química , Espectrometría de Fluorescencia , Termodinámica , Compuestos de Trimetilamonio/química
10.
J Biomol Struct Dyn ; 36(5): 1261-1273, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28399705

RESUMEN

The aggregation phenomenon (amyloid and amorphous) is associated with several pathological complications in human, such as Alzheimer's, Parkinson's, Huntington, Cataract diseases, and Diabetes mellitus type 2. In the present study we are offering evidence and breaking the general belief with regard to the polyphenols action as protein aggregate inhibitors. Herein we confirm that tannic acid (TA) is not only an amyloid inducer, but also it switches one type of conformation, ultimately morphology, into another. We ascertain based on our findings that aggregates are not rigid structures and the stability can be challenged under certain conditions. This study also confirms that unfolded and amorphous aggregates can serve as precursors of amyloids and TA interactions with unordered aggregates (amorphous) bringing orderliness in the conformation via amyloidosis. The shifting of unordered conformation toward orderliness is governed by the modulation in surface hydrophobic patches in Concanavalin A (ConA). Hence, a degree of exposed hydrophobic cluster can be claimed as a strong parameter to detect and distinguish the native, amorphous and both types of amyloids. Turbidity and Rayleigh light scattering measurements followed similar pattern while Thioflavin T and 1-anilino-8-naphthalene sulfonate fluorescence assays of the binding with amorphous and amyloid followed an inverse relation. Electron microscopic studies revealed the morphological variation in the ConA at 65°C as amorphous while the ConA treated with TA followed by heat treatment at 65°C was defined as amyloid in nature. Interestingly for the first time we are reporting the slight agglutination activity by the ConA amyloids.


Asunto(s)
Amiloide/química , Fenómenos Biofísicos , Concanavalina A/química , Conformación Proteica , Taninos/química , Amiloide/metabolismo , Amiloide/ultraestructura , Benzotiazoles/química , Agregado de Proteínas/efectos de los fármacos , Análisis Espectral , Taninos/farmacología
11.
Int J Biol Macromol ; 107(Pt B): 2450-2464, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29102789

RESUMEN

Numerous phenolic compounds have been reported in the last decade that have a good antioxidant property and interaction affinity towards mammalian serum albumins. In the present study, we have utilized mammalian serum albumins as a model protein to examine their comparative interaction property with polyphenolic compound tannic acid (TA) by using various spectroscopic and calorimetric methods We have also monitored the esterase and antioxidant activity of mammalian serum albumins in the absence and presence of TA. The obtain results recommended that the TA have a good binding affinity (∼104 to 106M-1) towards mammalian serum albumins and shows double sequential binding sites, which depends on the concentration of TA that induced the conformational alteration which responsible for the thermal stability of proteins. Binding affinity, structural transition and thermodynamic parameters were calculated from spectroscopic and calorimetric method reveals that non-covalent interaction causes partial conformational alteration in the secondary structure of protein ie.; increase in α-helical content with decrease in ß-sheet, random coil and other structure. Meanwhile, we have found that esterase activities of serum albumins were also stabilized against hydrolysis and shows higher antioxidant activity in the presence of TA because albumins its self have an immense antioxidant activity beside TA.


Asunto(s)
Polifenoles/química , Unión Proteica , Albúmina Sérica/química , Taninos/química , Animales , Sitios de Unión , Fenómenos Biofísicos , Bovinos , Dicroismo Circular , Humanos , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Estructura Secundaria de Proteína , Albúmina Sérica/ultraestructura , Termodinámica
12.
Int J Biol Macromol ; 105(Pt 1): 556-565, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28716747

RESUMEN

Protein aggregation and misfolding have been allied with numerous human disorders and thus inhibition of such occurrence has been center for intense research efforts against these diseases. Here, we investigated anti-fibrillation activity of cysteine and its effect on kinetics of stem bromelain amyloid fibril formation. We established the anti-fibrillation and anti aggregation activities of cysteine by using multiple approaches like turbidity measurements, dye binding assays (ThT and ANS) and structural changes were monitored by circular dichroism (CD) followed by electron microscopy. Our experimental study inferred that cysteine inhibits temperature induced fibrillation of protein in a concentration dependent way. In addition, MDA-MB-231 cell viability of pre-formed amyloid was increased in presence of cysteine as compared to the fibrils alone. Furthermore, dynamic light scattering studies of native, aggregated as well as incubated (amyloids in presence of cysteine) samples indicates that cysteine restores native like structures of stem bromelain. Isothermal titration calorimetric results revealed that hydrogen bonding between cysteine and stem bromelain plays a significant role during inhibition of stem bromelain aggregation. However, thiophilic interaction between thiol group of cysteine and aromatic amino acid residue of stem bromelain may also have noteworthy role in inhibition of amyloid formation.


Asunto(s)
Proteínas Amiloidogénicas/toxicidad , Cisteína/farmacología , Citotoxinas/toxicidad , Proteínas Amiloidogénicas/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citotoxinas/química , Humanos , Agregado de Proteínas/efectos de los fármacos , Estructura Secundaria de Proteína/efectos de los fármacos
13.
Int J Biol Macromol ; 94(Pt A): 301-308, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27744056

RESUMEN

Studying amyloid associated neurodegenerative diseases is an active area of research. Cure for these diseases are still to be discovered. In the present study we have performed comprehensive biophysical and computational experiments showing levodopa not only significantly inhibits heat induced fibrillization of human serum albumin but also disaggregates preformed fibrils. Thioflavin T (ThT) binding assay was used to monitor the fibrillation process of human serum albumin (HSA) at 65°C in the presence and absence of levodopa. Binding of levodopa was studied using isothermal titration calorimetry (ITC), binding constant was found to be 3.6×103M-1. Thermal stabilization effect of levodopa on HSA was studied using differential scanning calorimetry (DSC). Microscopic imaging techniques were employed to analyze the morphology of aggregates and effect of levodopa on aggregation. Further, molecular docking study was also utilized to decipher the amino acid residues involved in the binding interaction of levodopa with HSA. Levodopa interferes in the Fibrillogenesis of HSA by interacting with the amino acid residues near to drug binding site II on the HSA with the binding constant of the order of 103 and stabilizes the protein. The results are indicative of the potential use of levodopa as a therapeutic agent for the treatment of amyloid diseases.


Asunto(s)
Amiloide/química , Antiparkinsonianos/química , Levodopa/química , Albúmina Sérica/química , Sitios de Unión , Rastreo Diferencial de Calorimetría , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Estabilidad Proteica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA