Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Gen Comp Endocrinol ; 355: 114548, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38761872

RESUMEN

Ecdysteroid molting hormones coordinate arthropod growth and development. Binding of 20-hydroxyecdysone (20E) to ecdysteroid receptor EcR/RXR activates a cascade of nuclear receptor transcription factors that mediate tissue responses to hormone. Insect ecdysteroid responsive and Forkhead box class O (FOXO) transcription factor gene sequences were used to extract orthologs from blackback land crab (Gecarcinus lateralis) Y-organ (YO) transcriptome: Gl-Ecdysone Receptor (EcR), Gl-Broad Complex (Br-C), Gl-E74, Gl-Hormone Receptor 3 (HR3), Gl-Hormone Receptor 4 (HR4), Gl-FOXO, and Gl-Fushi tarazu factor-1 (Ftz-f1). Quantitative polymerase chain reaction quantified mRNA levels in tissues from intermolt animals and in YO of animals induced to molt by multiple limb autotomy (MLA) or eyestalk ablation (ESA). Gl-EcR, Gl-Retinoid X Receptor (RXR), Gl-Br-C, Gl-HR3, Gl-HR4, Gl-E74, Gl-E75, Gl-Ftz-f1, and Gl-FOXO were expressed in all 10 tissues, with Gl-Br-C, Gl-E74, Gl-E75, and Gl-HR4 mRNA levels in the YO lower than those in most of the other tissues. In MLA animals, molting had no effect on Gl-Br-C, Gl-E74, and Gl-Ftz-f1 mRNA levels and little effect on Gl-EcR, Gl-E75, and Gl-HR4 mRNA levels. Gl-HR3 and Gl-FOXO mRNA levels were increased during premolt stages, while Gl-RXR mRNA level was highest during intermolt and premolt stages and lowest at postmolt stage. In ESA animals, YO mRNA levels were not correlated with hemolymph ecdysteroid titers. ESA had no effect on Gl-EcR, Gl-E74, Gl-HR3, Gl-HR4, Gl-Ftz-f1, and Gl-FOXO mRNA levels, while Gl-RXR, Gl-Br-C, and Gl-E75 mRNA levels were decreased at 3 days post-ESA. These data suggest that transcriptional up-regulation of Gl-FOXO and Gl-HR3 contributes to increased YO ecdysteroidogenesis during premolt. By contrast, transcriptional regulation of ecdysteroid responsive genes and ecdysteroidogenesis were uncoupled in the YO of ESA animals.


Asunto(s)
Ecdisteroides , Muda , Animales , Muda/genética , Ecdisteroides/metabolismo , Ecdisteroides/genética , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Ecdisterona/metabolismo , Braquiuros/genética , Braquiuros/metabolismo , Braquiuros/crecimiento & desarrollo , Glándulas Endocrinas/metabolismo
2.
Gen Comp Endocrinol ; 340: 114304, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127083

RESUMEN

A pair of Y-organs (YOs) synthesize ecdysteroids that initiate and coordinate molting processes in decapod crustaceans. The YO converts cholesterol to secreted products through a biosynthetic pathway involving a Rieske oxygenase encoded by Neverland (Nvd) and cytochrome P450 monooxygenases encoded by Halloween genes Spook (Spo; Cyp307a1), Phantom (Phm; Cyp306a1), Disembodied (Dib; Cyp302a1), and Shadow (Sad; Cyp315a1). NAD kinase (NADK) and 5-aminolevulinic acid synthase (ALAS) support ecdysteroid synthesis in insects. A 20-hydroxylase, encoded by Shed in decapods and Shade in insects, converts ecdysone to the active hormone 20-hydroxyecdysone (20E). 20E is inactivated by cytochrome P450 26-hydroxylase (Cyp18a1). Contigs encoding these eight proteins were extracted from a Gecarcinus lateralis YO transcriptome and their expression was quantified by quantitative polymerase chain reaction. mRNA levels of Gl-Spo and Gl-Phm were four orders of magnitude higher in YO than those in nine other tissues, while mRNA levels of Gl-NADK and Gl-ALAS were similar in all ten tissues. In G. lateralis induced to molt by multiple leg autotomy, YO mRNA levels of Gl-Nvd, Gl-Spo, Gl-Phm, Gl-NADK, and Gl-ALAS were highest in intermolt and premolt stages and lower in postmolt. Gl-Dib mRNA level was not affected by molt stage. mRNA level of Gl-Sad, which converts 2-deoxyecdysone to ecdysone, was higher in mid- and late premolt stages, when YO ecdysteroidogenic capacity is greatest. Gl-Cyp18a1 mRNA level was highest in intermolt, decreased in premolt stages, and was lowest in postmolt. In animals induced to molt by eyestalk ablation, YO mRNA levels of all eight genes were not correlated with increased hemolymph 20E titers. These results suggest that YO ecdysteroidogenic genes are differentially regulated at transcriptional and translational levels.


Asunto(s)
Braquiuros , Animales , Braquiuros/genética , Braquiuros/metabolismo , Transducción de Señal/genética , Ecdisteroides/metabolismo , Muda/genética , Ecdisona , ARN Mensajero/metabolismo
3.
Gen Comp Endocrinol ; 294: 113493, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32339519

RESUMEN

Endocrine control of molting in decapod crustaceans involves the eyestalk neurosecretory center (X-organ/sinus gland complex), regenerating limbs, and a pair of Y-organs (YOs), as molting is induced by eyestalk ablation or multiple leg autotomy and suspended in early premolt by limb bud autotomy. Molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH), produced in the X-organ/sinus gland complex, inhibit the YO. The YO transitions through four physiological states over the molt cycle: basal in intermolt; activated in early premolt; committed in mid- and late premolt; and repressed in postmolt. We assembled the first comprehensive YO transcriptome over the molt cycle in the land crab, Gecarcinus lateralis, showing that as many as 23 signaling pathways may interact in controlling ecdysteroidogenesis. A proposed model of the MIH/cyclic nucleotide pathway, which maintains the basal YO, consists of cAMP/Ca2+ triggering and nitric oxide (NO)/cGMP summation phases. Mechanistic target of rapamycin (mTOR) signaling is required for YO activation in early premolt and affects the mRNA levels of thousands of genes. Transforming Growth Factor-ß (TGFß)/Activin signaling is required for YO commitment in mid-premolt and high ecdysteroid titers at the end of premolt may trigger YO repression. The G. lateralis YO expresses 99 G protein-coupled receptors, three of which are putative receptors for MIH/CHH. Proteomic analysis shows the importance of radical oxygen species scavenging, cytoskeleton, vesicular secretion, immune response, and protein homeostasis and turnover proteins associated with YO function over the molt cycle. In addition to eyestalk ganglia, MIH mRNA and protein are present in brain, optic nerve, ventral nerve cord, and thoracic ganglion, suggesting that they are secondary sources of MIH. Down-regulation of mTOR signaling genes, in particular Ras homolog enriched in brain or Rheb, compensates for the effects of elevated temperature in the YO, heart, and eyestalk ganglia in juvenile Metacarcinus magister. Rheb expression increases in the activated and committed YO. These data suggest that mTOR plays a central role in mediating molt regulation by physiological and environmental factors.


Asunto(s)
Braquiuros/genética , Braquiuros/metabolismo , Hormonas/metabolismo , Muda/genética , Proteómica , Transcriptoma/genética , Animales , Transducción de Señal/genética
4.
J Exp Biol ; 222(Pt 20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31492818

RESUMEN

Holometabolous insects have been able to radiate to vast ecological niches as adults through the evolution of adult-specific structures such as wings, antennae and eyes. These structures arise from imaginal discs that show regenerative capacity when damaged. During imaginal disc regeneration, development has been shown to be delayed in the fruit fly Drosophila melanogaster, but how conserved the delay-inducing mechanisms are across holometabolous insects has not been assessed. The goal of this research was to develop the hornworm Manduca sexta as an alternative model organism to study such damage-induced mechanisms, with the advantage of a larger hemolymph volume enabling access to the hormonal responses to imaginal disc damage. Upon whole-body X-ray exposure, we noted that the imaginal discs were selectively damaged, as assessed by TUNEL and Acridine Orange stains. Moreover, development was delayed, predominantly at the pupal-to-adult transition, with a concomitant delay in the prepupal ecdysteroid peak. The delays to eclosion were dose dependent, with some ability for repair of damaged tissues. We noted a shift in critical weight, as assessed by the point at which starvation no longer impacted developmental timing, without a change in growth rate, which was uncoupled from juvenile hormone clearance in the body. The developmental profile was different from that of D. melanogaster, which suggests species differences may exist in the mechanisms delaying development.


Asunto(s)
Discos Imaginales/patología , Manduca/crecimiento & desarrollo , Nicotiana/parasitología , Animales , Peso Corporal/efectos de la radiación , Ecdisteroides/metabolismo , Cabeza , Discos Imaginales/efectos de la radiación , Hormonas Juveniles/metabolismo , Estadios del Ciclo de Vida/efectos de la radiación , Manduca/efectos de la radiación , Modelos Biológicos , Factores de Tiempo , Rayos X
5.
J Exp Biol ; 221(Pt 21)2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30171095

RESUMEN

Mechanistic target of rapamymcin (mTOR) is a highly conserved protein kinase that controls cellular protein synthesis and energy homeostasis. We hypothesize that mTOR integrates intrinsic signals (moulting hormones) and extrinsic signals (thermal stress) to regulate moulting and growth in decapod crustaceans. The effects of temperature on survival, moulting and mRNA levels of mTOR signalling genes (Mm-Rheb, Mm-mTOR, Mm-AMPKα, Mm-S6K and Mm-AKT) and neuropeptides (Mm-CHH and Mm-MIH) were quantified in juvenile Metacarcinus magister Crabs at different moult stages (12, 19 or 26 days postmoult) were transferred from ambient temperature (∼15°C) to temperatures between 5 and 30°C for up to 14 days. Survival was 97-100% from 5 to 20°C, but none survived at 25 or 30°C. Moult stage progression accelerated from 5 to 15°C, but did not accelerate further at 20°C. In eyestalk ganglia, Mm-Rheb, Mm-AMPKα and Mm-AKT mRNA levels decreased with increasing temperatures. Mm-MIH and Mm-CHH mRNA levels were lowest in the eyestalk ganglia of mid-premoult animals at 20°C. In the Y-organ, Mm-Rheb mRNA levels decreased with increasing temperature and increased during premoult, and were positively correlated with haemolymph ecdysteroid titre. In the heart, moult stage had no effect on mTOR signalling gene mRNA levels; only Mm-Rheb, Mm-S6K and Mm-mTOR mRNA levels were higher in intermoult animals at 10°C. These data suggest that temperature compensation of neuropeptide and mTOR signalling gene expression in the eyestalk ganglia and Y-organ contributes to regulate moulting in the 10 to 20°C range. The limited warm compensation in the heart may contribute to mortality at temperatures above 20°C.


Asunto(s)
Proteínas de Artrópodos/genética , Braquiuros/fisiología , Frío , Regulación de la Expresión Génica/fisiología , Calor , Muda/fisiología , Animales , Proteínas de Artrópodos/metabolismo , Braquiuros/genética , Longevidad/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-27040186

RESUMEN

Molting in decapod crustaceans is controlled by molt-inhibiting hormone (MIH), an eyestalk neuropeptide that suppresses production of ecdysteroids by a pair of molting glands (Y-organs or YOs). Eyestalk ablation (ESA) activates the YOs, which hypertrophy and increase ecdysteroid secretion. At mid premolt, which occurs 7-14days post-ESA, the YO transitions to the committed state; hemolymph ecdysteroid titers increase further and the animal reaches ecdysis ~3weeks post-ESA. Two conserved signaling pathways, mechanistic target of rapamycin (mTOR) and transforming growth factor-ß (TGF-ß), are expressed in the Gecarcinus lateralis YO. Rapamycin, an mTOR antagonist, inhibits YO ecdysteroidogenesis in vitro. In this study, rapamycin lowered hemolymph ecdysteroid titer in ESA G. lateralis in vivo; levels were significantly lower than in control animals at all intervals (1-14days post-ESA). Injection of SB431542, an activin TGF-ß receptor antagonist, lowered hemolymph ecdysteroid titers 7 and 14days post-ESA, but had no effect on ecdysteroid titers at 1 and 3days post-ESA. mRNA levels of mTOR signaling genes Gl-mTOR, Gl-Akt, and Gl-S6k were increased by 3days post-ESA; the increases in Gl-mTOR and Gl-Akt mRNA levels were blocked by SB431542. Gl-elongation factor 2 and Gl-Rheb mRNA levels were not affected by ESA, but SB431542 lowered mRNA levels at Days 3 and 7 post-ESA. The mRNA level of an activin TGF-ß peptide, Gl-myostatin-like factor (Mstn), increased 5.5-fold from 0 to 3days post-ESA, followed by a 50-fold decrease from 3 to 7days post-ESA. These data suggest that (1) YO activation involves an up regulation of the mTOR signaling pathway; (2) mTOR is required for YO commitment; and (3) a Mstn-like factor mediates the transition of the YO from the activated to the committed state.


Asunto(s)
Braquiuros/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Benzamidas/farmacología , Braquiuros/anatomía & histología , Braquiuros/efectos de los fármacos , Dioxoles/farmacología , Ecdisteroides/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hemolinfa/efectos de los fármacos , Hemolinfa/metabolismo , Muda/fisiología , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/genética
7.
J Exp Biol ; 217(Pt 5): 796-808, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24198255

RESUMEN

In decapod crustaceans, regulation of molting is controlled by the X-organ/sinus gland complex in the eyestalks. The complex secretes molt-inhibiting hormone (MIH), which suppresses production of ecdysteroids by the Y-organ (YO). MIH signaling involves nitric oxide and cGMP in the YO, which expresses nitric oxide synthase (NOS) and NO-sensitive guanylyl cyclase (GC-I). Molting can generally be induced by eyestalk ablation (ESA), which removes the primary source of MIH, or by multiple leg autotomy (MLA). In our work on Carcinus maenas, however, ESA has limited effects on hemolymph ecdysteroid titers and animals remain in intermolt at 7 days post-ESA, suggesting that adults are refractory to molt induction techniques. Consequently, the effects of ESA and MLA on molting and YO gene expression in C. maenas green and red color morphotypes were determined at intermediate (16 and 24 days) and long-term (~90 days) intervals. In intermediate-interval experiments, ESA of intermolt animals caused transient twofold to fourfold increases in hemolymph ecdysteroid titers during the first 2 weeks. In intermolt animals, long-term ESA increased hemolymph ecdysteroid titers fourfold to fivefold by 28 days post treatment, but there was no late premolt peak (>400 pg µl(-1)) characteristic of late premolt animals and animals did not molt by 90 days post-ESA. There was no effect of ESA or MLA on the expression of Cm-elongation factor 2 (EF2), Cm-NOS, the beta subunit of GC-I (Cm-GC-Iß), a membrane receptor GC (Cm-GC-II) and a soluble NO-insensitive GC (Cm-GC-III) in green morphs. Red morphs were affected by prolonged ESA and MLA treatments, as indicated by large decreases in Cm-EF2, Cm-GC-II and Cm-GC-III mRNA levels. ESA accelerated the transition of green morphs to the red phenotype in intermolt animals. ESA delayed molting in premolt green morphs, whereas intact and MLA animals molted by 30 days post treatment. There were significant effects on YO gene expression in intact animals: Cm-GC-Iß mRNA increased during premolt and Cm-GC-III mRNA decreased during premolt and increased during postmolt. Cm-MIH transcripts were detected in eyestalk ganglia, the brain and the thoracic ganglion from green intermolt animals, suggesing that MIH in the brain and thoracic ganglion prevents molt induction in green ESA animals.


Asunto(s)
Proteínas de Artrópodos/genética , Braquiuros/fisiología , Ecdisteroides/sangre , Regulación de la Expresión Génica , Muda , Transducción de Señal , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/metabolismo , Braquiuros/genética , Braquiuros/crecimiento & desarrollo , California , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Hemolinfa/metabolismo , Especies Introducidas , Masculino , Datos de Secuencia Molecular , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Factor 2 de Elongación Peptídica/genética , Factor 2 de Elongación Peptídica/metabolismo , Pigmentación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia
8.
Artículo en Inglés | MEDLINE | ID: mdl-24269559

RESUMEN

Mechanistic target of rapamycin (mTOR) controls global translation of mRNA into protein by phosphorylating p70 S6 kinase (S6K) and eIF4E-binding protein-1. Akt and Rheb, a GTP-binding protein, regulate mTOR protein kinase activity. Molting in crustaceans is regulated by ecdysteroids synthesized by a pair of molting glands, or Y-organs (YOs), located in the cephalothorax. During premolt, the YOs hypertrophy and increase production of ecdysteroids. Rapamycin (1µM) inhibited ecdysteroid secretion in Carcinus maenas and Gecarcinus lateralis YOs in vitro, indicating that ecdysteroidogenesis requires mTOR-dependent protein synthesis. The effects of molting on the expression of four key mTOR signaling genes (mTOR, Akt, Rheb, and S6K) in the YO was investigated. Partial cDNAs encoding green crab (C. maenas) mTOR (4031bp), Akt (855bp), and S6K (918bp) were obtained from expressed sequence tags. Identity/similarity of the deduced amino acid sequence of the C. maenas cDNAs to human orthologs were 72%/81% for Cm-mTOR, 58%/73% for Cm-Akt, and 77%/88% for Cm-S6K. mTOR, Akt, S6K, and elongation factor 2 (EF2) in C. maenas and blackback land crab (G. lateralis) were expressed in all tissues examined. The two species differed in the effects of molting on gene expression in the YO. In G. lateralis, Gl-mTOR, Gl-Akt, and Gl-EF2 mRNA levels were increased during premolt. By contrast, molting had no effect on the expression of Cm-mTOR, Cm-Akt, Cm-S6K, Cm-Rheb, and Cm-EF2. These data suggest that YO activation during premolt involves up regulation of mTOR signaling genes in G. lateralis, but is not required in C. maenas.


Asunto(s)
Proteínas de Artrópodos/genética , Braquiuros/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Serina-Treonina Quinasas TOR/genética , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/metabolismo , Secuencia de Bases , Braquiuros/crecimiento & desarrollo , Braquiuros/metabolismo , Clonación Molecular , Ecdisteroides/sangre , Ecdisteroides/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Masculino , Datos de Secuencia Molecular , Muda , Neuropéptidos/genética , Neuropéptidos/metabolismo , Especificidad de Órganos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Homología de Secuencia de Aminoácido , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/biosíntesis , Técnicas de Cultivo de Tejidos
9.
J Exp Biol ; 215(Pt 4): 590-604, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22279066

RESUMEN

Molt-induced claw muscle atrophy in decapod crustaceans facilitates exuviation and is coordinated by ecdysteroid hormones. There is a 4-fold reduction in mass accompanied by remodeling of the contractile apparatus, which is associated with an 11-fold increase in myofibrillar protein synthesis by the end of the premolt period. Loss of a walking limb or claw causes a loss of mass in the associated thoracic musculature; this unweighting atrophy occurs in intermolt and is ecdysteroid independent. Myostatin (Mstn) is a negative regulator of muscle growth in mammals; it suppresses protein synthesis, in part, by inhibiting the insulin/metazoan target of rapamycin (mTOR) signaling pathway. Signaling via mTOR activates translation by phosphorylating ribosomal S6 kinase (s6k) and 4E-binding protein 1. Rheb (Ras homolog enriched in brain), a GTP-binding protein, is a key activator of mTOR and is inhibited by Rheb-GTPase-activating protein (GAP). Akt protein kinase inactivates Rheb-GAP, thus slowing Rheb-GTPase activity and maintaining mTOR in the active state. We hypothesized that the large increase in global protein synthesis in claw muscle was due to regulation of mTOR activity by ecdysteroids, caused either directly or indirectly via Mstn. In the blackback land crab, Gecarcinus lateralis, a Mstn-like gene (Gl-Mstn) is downregulated as much as 17-fold in claw muscle during premolt and upregulated 3-fold in unweighted thoracic muscle during intermolt. Gl-Mstn expression in claw muscle is negatively correlated with hemolymph ecdysteroid level. Full-length cDNAs encoding Rheb orthologs from three crustacean species (G. lateralis, Carcinus maenas and Homarus americanus), as well as partial cDNAs encoding Akt (Gl-Akt), mTOR (Gl-mTOR) and s6k (Gl-s6k) from G. lateralis, were cloned. The effects of molting on insulin/mTOR signaling components were quantified in claw closer, weighted thoracic and unweighted thoracic muscles using quantitative polymerase chain reaction. Gl-Rheb mRNA levels increased 3.4-fold and 3.9-fold during premolt in claw muscles from animals induced to molt by eyestalk ablation (ESA) and multiple leg autotomy (MLA), respectively, and mRNA levels were positively correlated with hemolymph ecdysteroids. There was little or no effect of molting on Gl-Rheb expression in weighted thoracic muscle and no correlation of Gl-Rheb mRNA with ecdysteroid titer. There were significant changes in Gl-Akt, Gl-mTOR and Gl-s6k expression with molt stage. These changes were transient and were not correlated with hemolymph ecdysteroids. The two muscles differed in terms of the relationship between Gl-Rheb and Gl-Mstn expression. In thoracic muscle, Gl-Rheb mRNA was positively correlated with Gl-Mstn mRNA in both ESA and MLA animals. By contrast, Gl-Rheb mRNA in claw muscle was negatively correlated with Gl-Mstn mRNA in ESA animals, and no correlation was observed in MLA animals. Unweighting increased Gl-Rheb expression in thoracic muscle at all molt stages; the greatest difference (2.2-fold) was observed in intermolt animals. There was also a 1.3-fold increase in Gl-s6k mRNA level in unweighted thoracic muscle. These data indicate that the mTOR pathway is upregulated in atrophic muscles. Gl-Rheb, in particular, appears to play a role in the molt-induced increase in protein synthesis in the claw muscle.


Asunto(s)
Braquiuros/metabolismo , Proteínas de Unión al GTP/metabolismo , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Secuencia de Aminoácidos , Animales , Braquiuros/enzimología , Braquiuros/genética , Clonación Molecular , Ecdisteroides/metabolismo , Proteínas de Unión al GTP/biosíntesis , Proteínas de Unión al GTP/genética , Proteínas Activadoras de GTPasa/metabolismo , Regulación de la Expresión Génica , Masculino , Datos de Secuencia Molecular , Muda/fisiología , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Miostatina/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Alineación de Secuencia , Mariscos , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Transcripción Genética
10.
Gen Comp Endocrinol ; 172(3): 323-30, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21501612

RESUMEN

Molting is a highly complex process that requires precise coordination to be successful. We describe the early classical endocrinological experiments that elucidated the hormones and glands responsible for this process. We then describe the more recent experiments that have provided information on the cellular and molecular aspects of molting. In addition to providing a review of the scientific literature, we have also included our perspectives.


Asunto(s)
Crustáceos/crecimiento & desarrollo , Muda/fisiología , Animales , Crustáceos/anatomía & histología , Crustáceos/fisiología , Ecdisteroides/sangre , Hemolinfa/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/fisiología , Transducción de Señal
11.
Artículo en Inglés | MEDLINE | ID: mdl-20959144

RESUMEN

Molting in decapod crustaceans is regulated by ecdysteroids produced by a pair of Y-organs (YOs) located in the cephalothorax. YO ecdysteroidogenesis is suppressed by molt-inhibiting hormone (MIH), a neuropeptide produced in the X-organ of the eyestalk (ES) ganglia. MIH signaling may involve nitric oxide synthase (NOS) and NO-sensitive guanylyl cyclase (GC-I). A full-length cDNA encoding Carcinus maenas NOS (Cm-NOS; 3836 base pairs) of 1164 amino acid residues (estimated mass 131,833 Da) was cloned with 88% identity to Gecarcinus lateralis NOS (Gl-NOS). End-point reverse transcription-polymerase chain reaction (RT-PCR) showed that Cm-NOS was expressed at varying levels in the YO, testis, ovary, hepatopancreas, midgut, hindgut, heart, thoracic ganglion, and skeletal muscle and was not detected in the gill. Immunofluorescence microscopy showed localization of NOS and cGMP in the steroidogenic cells and the surrounding connective tissue layer of the C. maenas YO. ES ablation (ESA) induced molting in G. lateralis; hemolymph ecdysteroid titers increased during premolt and reached a peak of about 400 pg/µL at 20 days and 24 days post-ESA. By contrast, ESA did not induce molting in C. maenas; hemolymph ecdysteroid titers increased about 2-fold (53 to 121 pg/µL) by 3 days post-ESA and remained at that level at 7 days post-ESA. Real time PCR was used to quantify the effects of ESA on the expression of NOS in C. maenas and G. lateralis YOs. ESA caused 32-fold and 5-fold increases in Gl-NOS and Cm-NOS transcripts by 24 days and 7 days post-ESA, respectively, which were correlated with hemolymph ecdysteroid levels. In addition, GC-I catalytic subunit (Gl-GC-Iß) mRNA level increased 7.4-fold by 24 days post-ESA, but there was no significant effect of ESA on membrane GC (Gl-GC-II) mRNA level. These data indicate that the YO up-regulates NO signaling components in response to withdrawal of ES neuropeptides.


Asunto(s)
Estructuras Animales/metabolismo , Braquiuros/anatomía & histología , Braquiuros/enzimología , Ojo , Muda/fisiología , Óxido Nítrico Sintasa/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Braquiuros/genética , Clonación Molecular , Ojo/inervación , Femenino , Ganglios/metabolismo , Branquias/metabolismo , Hemolinfa/metabolismo , Masculino , Datos de Secuencia Molecular , Óxido Nítrico Sintasa/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Especificidad de la Especie , Regulación hacia Arriba
12.
Dis Aquat Organ ; 90(2): 153-66, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20662372

RESUMEN

Technological advances in gear and fishing practices have driven the global expansion of the American lobster live seafood market. These changes have had a positive effect on the lobster industry by increasing capture efficiency. However, it is unknown what effect these improved methods will have on the post-capture fitness and survival of lobsters. This project utilized a repeated measures design to compare the physiological changes that occur in lobsters over time as the result of differences in depth, hauling rate, and storage methodology. The results indicate that lobsters destined for long distance transport or temporary storage in pounds undergo physiological disturbance as part of the capture process. These changes are significant over time for total hemocyte counts, crustacean hyperglycemic hormone, L-lactate, ammonia, and glucose. Repeated measures multivariate analysis of variance (MANOVA) for glucose indicates a significant interaction between depth and storage methodology over time for non-survivors. A Gram-negative bacterium, Photobacterium indicum, was identified in pure culture from hemolymph samples of 100% of weak lobsters. Histopathology revealed the presence of Gram-negative bacteria throughout the tissues with evidence of antemortem edema and necrosis suggestive of septicemia. On the basis of these findings, we recommend to the lobster industry that if a reduction in depth and hauling rate is not economically feasible, fishermen should take particular care in handling lobsters and provide them with a recovery period in recirculating seawater prior to land transport. The ecological role of P. indicum is not fully defined at this time. However, it may be an emerging opportunistic pathogen of stressed lobsters. Judicious preemptive antibiotic therapy may be necessary to reduce mortality in susceptible lobsters destined for high-density holding facilities.


Asunto(s)
Nephropidae/fisiología , Amoníaco/metabolismo , Crianza de Animales Domésticos , Animales , Glucosa/metabolismo , Longevidad , Músculos/microbiología
13.
Artículo en Inglés | MEDLINE | ID: mdl-20696264

RESUMEN

A cDNA encoding a myostatin (Mstn)-like gene from an astacuran crustacean, Homarus americanus, was cloned and characterized. Mstn inhibits skeletal muscle growth in vertebrates and may play a role in crustacean muscle as a suppressor of protein synthesis. Sequence analysis and three-dimensional modeling of the Ha-Mstn protein predicted a high degree of conservation with vertebrate and other invertebrate myostatins. Qualitative polymerase chain reaction (PCR) demonstrated ubiquitous expression of transcript in all tissues, including skeletal muscles. Quantitative PCR analysis was used to determine the effects of natural molting and eyestalk ablation (ESA) on Ha-Mstn expression in the cutter claw (CT) and crusher claw (CR) closer muscles and deep abdominal (DA) muscle. In intermolt lobsters, the Ha-Mstn mRNA level in the DA muscle was significantly lower than the mRNA levels in the CT and CR muscles. Spontaneous molting decreased Ha-Mstn mRNA during premolt, with the CR muscle, which is composed of slow-twitch (S1) fibers, responding preferentially (82% decrease) to the atrophic signal compared to fast fibers in CT (51% decrease) and DA (69% decrease) muscles. However, acute increases in circulating ecdysteroids caused by ESA had no effect on Ha-Mstn mRNA levels in the three muscles. These data indicate that the transcription of Ha-Mstn is differentially regulated during the natural molt cycle and it is an important regulator of protein turnover in molt-induced claw muscle atrophy.


Asunto(s)
Regulación de la Expresión Génica , Muda/genética , Músculo Esquelético/metabolismo , Miostatina/genética , Nephropidae/genética , Regiones no Traducidas 3'/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Miostatina/química , Miostatina/metabolismo , Sistemas de Lectura Abierta/genética , Factor 2 de Elongación Peptídica/genética , Factor 2 de Elongación Peptídica/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia
14.
Mol Biol Rep ; 36(6): 1231-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18595002

RESUMEN

Crustacean hyperglycemic hormone (CHH) is a pleiotropic neuropeptide that regulates carbohydrate and lipid metabolism, molting, reproduction, and osmoregulation in decapod crustaceans. CHH elevates glucose levels in the hemolymph by stimulating glycogenolysis in target tissues. It also inhibits ecdysteroidogenesis in the molting gland, or Y-organ (YO), possibly as a response to environmental stress. CHH acts via binding to a membrane receptor guanylyl cyclase, which is expressed in most tissues, including the YO. Large amounts of biologically active neuropeptide are required to investigate the mechanism of CHH signaling in the YO. Consequently, the eyestalk ganglia CHH (EG-CHH) isoform was cloned into a yeast (Pichia pastoris) expression vector to express recombinant mature peptide (rEG-CHH) with or without a C-terminal c-Myc/polyhistidine tag. Yeast cultures with untagged or tagged rEG-CHH inhibited ecdysteroidogenesis in YOs from European green crab (Carcinus maenas) 36% (P < 0.002) and 51% (P < 0.006), respectively. Purified tagged EG-CHH inhibited YO ecdysteroidogenesis 32% (P < 0.002), but lacked hyperglycemic activity in vivo. This is the first report of recombinant EG-CHH inhibiting YO ecdysteroidogenesis. The data suggest that the tagged recombinant peptide can be used to elucidate the CHH signaling pathway in the crustacean molting gland.


Asunto(s)
Braquiuros/química , Clonación Molecular/métodos , Ecdisteroides/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Animales , Proteínas de Artrópodos , Ecdisteroides/biosíntesis , Hormonas de Invertebrados , Muda , Proteínas del Tejido Nervioso/fisiología , Neuropéptidos , Proteínas Recombinantes , Transducción de Señal
15.
Artículo en Inglés | MEDLINE | ID: mdl-19135164

RESUMEN

Molting processes in crustaceans are regulated by ecdysteroids produced in the molting gland (Y-organ), and molting is indirectly controlled by circulating factors that inhibit the production of these polyhydroxylated steroids. Two of these regulatory factors are the neuropeptides molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH). CHH appears to inhibit ecdysteroidogenesis in the Y-organ through the activation of a receptor guanylyl cyclase. The signaling pathway activated by MIH, however, remains a subject of controversy. It is clear that neuropeptides inhibit ecdysteroidogenesis by simultaneously suppressing ecdysteroid biosynthetic processes, protein synthesis, and uptake of high density lipoproteins. Data demonstrate that cAMP is the primary regulator of critical catabolic, anabolic, and transport processes, which ultimately support the capacity for ecdysteroid production by the Y-organ. While cAMP also regulates acute ecdysteroidogenesis to some extent, data indicate that cGMP is the primary signaling molecule responsible for acute inhibition by neuropeptides. It is clear that the regulatory roles filled by cAMP and cGMP are conserved among decapod crustaceans. It is unknown if these complementary second messengers are linked in a single signaling pathway or are components of independent pathways activated by different factors present in extracts of eyestalk ganglia.


Asunto(s)
Crustáceos/metabolismo , Ecdisteroides/biosíntesis , Muda/fisiología , Nucleótidos Cíclicos/metabolismo , Animales
16.
Biol Bull ; 208(2): 127-37, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15837962

RESUMEN

The organization of skeletal muscles in decapod crustaceans is significantly altered during molting and development. Prior to molting, the claw muscles atrophy dramatically, facilitating their removal from the base of the claw. During development, lobster claw muscles exhibit fiber switching over several molt cycles. Such processes may be influenced by the secretion of steroid molting hormones, known collectively as ecdysteroids. To assay the effects of these hormones, we used eyestalk ablation to trigger an elevation of circulating ecdysteroids and then quantified myofibrillar mRNA levels with real-time PCR and myofibrillar protein levels by SDS-PAGE. Levels of myosin heavy chain (MHC) and actin proteins and the mRNA encoding them were largely unaffected by eyestalk ablation, but in muscles from intact animals, myofibrillar gene expression was modestly elevated in premolt and postmolt animals. In contrast, polyubiquitin mRNA was significantly elevated (about 2-fold) in claw muscles from eyestalk-ablated animals with elevated circulating ecdysteroids. Moreover, patterns of MHC and actin gene expression are significantly different among slow and fast claw muscles. Consistent with these patterns, the three muscle types differed in the relative amounts of myosin heavy chain and actin proteins. All three muscles also co-expressed fast and slow myosin isoforms, even in fibers that are generally regarded as exclusively fast or slow. These results are consistent with other recent data demonstrating co-expression of myosin isoforms in lobster muscles.


Asunto(s)
Actinas/metabolismo , Ecdisteroides/metabolismo , Regulación de la Expresión Génica/fisiología , Hormonas de Invertebrados/deficiencia , Músculo Esquelético/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Nephropidae/metabolismo , Actinas/genética , Análisis de Varianza , Animales , California , Ecdisteroides/sangre , Ecdisteroides/farmacología , Electroforesis en Gel de Poliacrilamida , Regulación de la Expresión Génica/efectos de los fármacos , Hormonas de Invertebrados/metabolismo , Miofibrillas/metabolismo , Cadenas Pesadas de Miosina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Cell Stress Chaperones ; 7(1): 97-106, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11892992

RESUMEN

Using homologous molecular probes, we examined the influence of equivalent temperature shifts on the in vivo expression of genes coding for a constitutive heat shock protein (Hsc70), heat shock proteins (Hsps) (Hsp70 and Hsp90), and polyubiquitin, after acclimation in the American lobster, Homarus americanus. We acclimated sibling, intermolt, juvenile male lobsters to thermal regimes experienced during overwintering conditions (0.4 +/- 0.3 degrees C), and to ambient Pacific Ocean temperatures (13.6 +/- 1.2 degrees C), for 4-5 weeks. Both groups were subjected to an acute thermal stress of 13.0 degrees C, a temperature shift previously found to elicit a robust heat shock response in ambient-acclimated lobsters. Animals were examined after several durations of acute heat shock (0.25-2 hours) and after several recovery periods (2-48 hours) at the previous acclimation temperature, following a 2-hour heat shock. Significant inductions in Hsp70, Hsp90, and polyubiquitin messenger RNA (mRNA) levels were found for the ambient-acclimated group. Alternatively, for the cold-acclimated group, an acute thermal stress over an equivalent interval resulted in no induction in mRNA levels for any of the genes examined. For the ambient-acclimated group, measurements of polyubiquitin mRNA levels showed that hepatopancreas, a digestive tissue, incurred greater irreversible protein damage relative to the abdominal muscle, a tissue possessing superior stability over the thermal intervals tested.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Estrés Fisiológico/fisiopatología , Animales , Expresión Génica/fisiología , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Calor , Masculino , Nephropidae , Desnaturalización Proteica , ARN Mensajero/análisis
18.
Cell Stress Chaperones ; 8(3): 258-64, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14984059

RESUMEN

Lobster claw muscle undergoes atrophy in correlation with increasing ecdysteroid (steroid molting hormone) titers during premolt. In vivo molecular chaperone (constitutive heat shock protein 70 [Hsc70], heat shock protein 70 [Hsp70], and Hsp90) and polyubiquitin messenger ribonucleic acid (mRNA) levels were examined in claw and abdominal muscles from individual premolt or intermolt lobsters. Polyubiquitin gene expression was assayed as a marker for muscle atrophy. Both Hsc70 and Hsp90 mRNA levels were significantly induced in premolt relative to intermolt lobster claw muscle, whereas Hsp70 mRNA levels were not. Hsp90 gene expression was significantly higher in premolt claw muscle when compared with abdominal muscle. Polyubiquitin mRNA levels were elevated in premolt when compared with intermolt claw muscle and significantly elevated relative to premolt abdominal muscle.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Muda , Nephropidae/crecimiento & desarrollo , Nephropidae/metabolismo , Poliubiquitina/genética , Músculos Abdominales/metabolismo , Animales , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/genética , Masculino , Nephropidae/genética , Poliubiquitina/análisis , ARN Mensajero/metabolismo
19.
Biol Bull ; 202(3): 204-12, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12086991

RESUMEN

Molting and limb regeneration are tightly coupled processes, both of which are regulated by ecdysteroid hormone synthesized and secreted by the Y-organs. Regeneration of lost appendages can affect the timing and duration of the proecdysial, or premolt, stage of the molt cycle. Autotomy of all eight walking legs induces precocious molts in various decapod crustacean species. In the land crab Gecarcinus lateralis, autotomy of a partially regenerated limb bud before a critical period during proecdysis (regeneration index <17) delays molting so that a secondary limb bud (2 degrees LB) forms and the animal molts with a complete set of walking legs. It is hypothesized that 2 degrees LBs secrete a factor, termed limb autotomy factor-proecdysis (LAF(pro)), that inhibits molting by suppressing the Y-organs from secreting ecdysone. Molting was induced by autotomy of eight walking legs; autotomy of primary (1 degrees ) LBs reduced the level of ecdysteroid hormone in the hemolymph 73% by one week after limb bud autotomy (LBA). Injection of extracts from 2 degrees LBs, but not 1 degrees LBs, inhibited 1 degrees LB growth in proecdysial animals, thus having the same effect on molting as LBA. The inhibitory activity in 2 degrees LB extracts was stable after boiling in water for 15 min, but was destroyed by boiling 15 min in 0.1 N acetic acid or incubation with proteinase K. These results support the hypothesis that LAF(pro) is a peptide that resembles a molt-inhibiting hormone.


Asunto(s)
Decápodos/metabolismo , Decápodos/fisiología , Hormonas de Invertebrados/metabolismo , Muda/fisiología , Regeneración/fisiología , Animales , Ecdisteroides/metabolismo , Extremidades/fisiología , Hemolinfa/metabolismo , Péptidos/metabolismo
20.
Biol Bull ; 203(3): 331-7, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12480723

RESUMEN

The American lobster, Homarus americanus, encounters osmotic stress throughout its life cycle. To understand the molecular basis of osmotic stress responses in vivo, we used homologous cDNA probes to characterize the mRNA patterns of lobster HSP70 (=70-kDa heat-shock protein), HSP90 (=90-kDa heat-shock protein), and polyubiquitin during hypo- and hyper-osmotic stress in abdominal muscle and hepatopancreas (a digestive tissue) at 30, 60, and 120 min of osmotic stress. Hypo- and hyper-osmotic stress significantly increased the levels of the mRNAs encoding HSP70 and HSP90 in abdominal muscle. Hyper-osmotic stress increased HSP90 mRNA levels in hepatopancreas, but hypo-osmotic stress did not. Both abdominal muscle and hepatopancreas exhibited significant changes in polyubiquitin gene expression during osmotic stress. In abdominal muscle, polyubiquitin mRNA levels increased during both hypo- and hyper-osmotic stress. Hepatopancreas, however, showed a significant elevation in polyubiquitin mRNA only during hypo-osmotic stress.


Asunto(s)
Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/genética , Nephropidae/genética , Nephropidae/fisiología , Enfermedad Aguda , Animales , Sistema Digestivo/metabolismo , Agua Dulce , Hemolinfa/fisiología , Músculo Liso/metabolismo , Presión Osmótica , Poliubiquitina/genética , Agua de Mar , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA