Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 56(14): 8497-8503, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28665594

RESUMEN

Six ruthenium complexes, [Ru(bpy)3]2+ (1), [Ru(bpy)2(deeb)]2+ (2), [Ru(deeb)2(dmbpy)]2+ (3), [Ru(deeb)2(bpy)]2+ (4), [Ru(deeb)3]2+ (5), and [Ru(deeb)2(bpz)] 2+ (6) (bpy: 2,2'-bipyridine; deeb: 4,4'-diethylester-2,2'-bipyridine; dmbpy: 4,4'-dimethyl-2,2'-bipyridine, bpz: 2,2'-bipyrazine), have been employed to sensitize photochemical oxidation of bromide to bromine. The oxidation potential for complexes 1-6 are 1.26, 1.36, 1.42, 1.46, 1.56, and 1.66 V vs SCE, respectively. The bimolecular rate constants for the quenching of complexes 1-6 by ArN2+ (bromobenzenediazonium) are determined as 1.1 × 109, 1.6 × 108, 1.4 × 108, 1.2 × 108, 6.4 × 107, and 8.9 × 106 M-1 s-1, respectively. Transient kinetics indicated that Br- reacted with photogenerated Ru(III) species at different rates. Bimolecular rate constants for the oxidation of Br- by the Ru(III) species derived from complexes 1-5 are observed as 1.2 × 108, 1.3 × 109, 4.0 × 109, 4.8 × 109, and 1.1 × 1010, M-1 s-1, respectively. The last reaction kinetics observed in the three-component system consisting of a Ru sensitizer, quencher, and bromide is shown to be independent of the Ru sensitizer. The final product was identified as bromine by its reaction with hexene. The last reaction kinetics is assigned to the disproportionation reaction of Br2-• ions, for which the rate constant is determined as 5 × 109 M-1 s-1. Though complex 6 has the highest oxidation potential in the Ru(II)/Ru(III) couple, its excited state fails to react with ArN2+ sufficiently for subsequent reactions. The Ru(III) species derived from complex 1 reacts with Br- at the slowest rate. Complexes 2-5 are excellent photosensitizers to drive photooxidation of bromide to bromine.

2.
Inorg Chem ; 56(2): 693-696, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-27603303

RESUMEN

Three consecutive bimolecular reactions are employed to photocatalyze bromide oxidation to bromine. The system consists of a ruthenium(II) complex, [Ru(deeb)2(dmbpy)]2+ (deeb = 4,4'-diethylester-2,2'-bipyridine; dmbpy = 4,4'-dimethyl-2,2'-bipyridine), 4-bromobenzenediazonium tetrafluoroborate (ArN2BF4), and Br-. Varying reagent concentrations allowed us to optimize the sequence of reactions for product formation. The electronically excited ruthenium complex (*Ru) reacts first with ArN2BF4 to produce a ruthenium(III) (RuIII) intermediate, triggering a subsequent reaction with Br-. Transient absorption measured at 486 and 380 nm provides insight into the time-dependent concentrations of *Ru, RuIII, and Br2•-. Without interference of back-electron transfer, the rate constant for an equal concentration bimolecular reaction of Br2•- was determined to be 5 × 109 M-1 s-1. The final products, bromine and tribromide, were spectroscopically characterized, and the turnover number (TON) was 230.

3.
Inorg Chem ; 49(11): 4934-41, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20459139

RESUMEN

Undecanuclear silver clusters [Ag(11)(mu(9)-Se)(mu(3)-Br)(3){Se(2)P(OR)(2)}(6)] (R = Et, (i)Pr, (2)Bu) were isolated from the reaction of [Ag(CH(3)CN)(4)](PF(6)), NH(4)[Se(2)P(OR)(2)], and Bu(4)NBr in a molar ratio of 4:3:1 in CH(2)Cl(2) at -20 degrees C. Clusters were characterized by elemental analysis, NMR spectroscopy ((1)H, (31)P, and (77)Se), positive FAB mass spectrometry, and X-ray crystallography of the isopropyl derivative. Structural elucidations revealed that the Ag(11)Se core geometry of clusters is a selenide-centered, slightly distorted 3,3,4,4,4-pentacapped trigonal prism surrounded by six diselenophosphato ligands, each in a tetrametallic tetraconnective (mu(2), mu(2)) coordination mode, and three mu(3)-bromide anions. All compounds exhibited orange luminescence both as a solid and in solution. The electronic structure of these clusters was studied by DFT calculations, and their optical properties were rationalized through a TDDFT investigation. The computed metrical parameters of the clusters were consistent with the corresponding X-ray data of [Ag(11)(mu(9)-Se)(mu(3)-Br)(3){Se(2)P(O(i)Pr)(2)}(6)] . The theoretical investigations affirmed that the low-energy absorptions as well as emissions were due to transitions from an orbital mostly of a selenophosphate ligand/central Se atom character to an orbital of metal character.


Asunto(s)
Simulación por Computador , Compuestos Organometálicos/química , Selenio/química , Plata/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Fotoquímica , Estereoisomerismo
4.
J Phys Chem B ; 111(24): 6857-60, 2007 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-17539675

RESUMEN

Photophysical properties such as absorption and emission spectra, lifetimes, and redox potentials of eight ruthenium complexes, Ru(LL)2(MebpyCOOH)2+, where LL represents bpy, phen, Me2bpy, Me4bpy, (MeO)2bpy, (EtO)2bpy, Cl2bpy, and NO2phen, have been measured. The acid dissociation constants of ground and excited states have been determined. The ground-state pKa values were obtained from the pH dependence of the complex absorbance changes. The excited-state pKa* values were extracted from the emission titration curve and corrected for the excited-state lifetime of both protonated and deprotonated species. The largest DeltapKa, pKa*-pKa, found for Ru(Me2bpy)2(MebpyCOOH)2+ and Ru(Me4bpy)2(MebpyCOOH)2+ of 1.7 indicate that MebpyCOOH gains most of the MLCT excited-state electron. The big negative DeltapKa found for Ru(Cl2bpy)2(MebpyCOOH)2+, -4.2, clearly indicates the metal-to-ligand charge transfer to the Cl2bpy ligands.

5.
J Phys Chem B ; 110(1): 410-9, 2006 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-16471550

RESUMEN

The excited-state relaxation dynamics of a synthetic porphyrin, ZnCAPEBPP, in solution, coated on a glass substrate as solid films, mixed with PMMA and coated on a glass substrate as solid films, and sensitized on nanocrystalline TiO2 films were investigated by using femtosecond fluorescence up-conversion spectroscopy with excitation in the Soret band, S2. We found that the S2--> S1 electronic relaxation of ZnCAPEBPP in solution and on PMMA films occurs in 910 and 690 fs, respectively, but it becomes extremely rapid, <100 fs, in solid films and TiO2 films due to formation of porphyrin aggregates. When probed in the S1 state of porphyrin, the fluorescence transients of the solid films show a biphasic kinetic feature with the rapid and slow components decaying in 1.9-2.4 and 19-26 ps, respectively. The transients in ZnCAPEBPP/TiO2 films also feature two relaxation processes but they occur on different time scales, 100-300 fs and 0.8-4.1 ps, and contain a small offset. According to the variation of relaxation period as a function of molecular density on a TiO2 surface, we assigned the femtosecond component of the TiO2 films as due to indirect interfacial electron transfer through a phenylethynyl bridge attached to one of four meso positions of the porphyrin ring, and the picosecond component arising from intermolecular energy transfer among porphyrins. The observed variation of aggregate-induced relaxation periods between solid and TiO2 films is due mainly to aggregation of two types: J-type aggregation is dominant in the former case whereas H-type aggregation prevails in the latter case.

6.
Chem Commun (Camb) ; (13): 1430-2, 2006 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-16550290

RESUMEN

UV-visible absorption and AFM studies suggest that carboxyphenylethynyl zinc porphyrins aggregate on nanocrystalline TiO2 surfaces in an H-type fashion.

7.
J Food Drug Anal ; 24(3): 464-470, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-28911550

RESUMEN

The chemical compositions of seven essential oils from Taiwan were analyzed by gas chromatography-mass spectrometry. The eluates were identified by matching the mass fragment patents to the National Institute of Standards and Technology (NIST) 08 database. The quantitative analysis showed that the major components of lemon verbena are geranial (26.9%) and neral (23.1%); those of sweet marjoram are γ-terpinene (18.5%), thymol methyl ether (15.5%), and terpinen-4-ol (12.0%); those of clove basil are eugenol (73.6%), and ß-(Z)-ocimene (15.4%); those of patchouli are carvacrol (47.5%) and p-cymene (15.2%); those of rosemary are α-pinene (54.8%) and 1,8-cineole (22.2%); those of tea tree are terpinen-4-ol (33.0%) and 1,8-cineole (27.7%); and those of rose geranium are citronellol (28.9%) and 6,9-guaiadiene (20.1%). These components are somewhat different from the same essential oils that were obtained from other origins. Lemon verbena has the same major components everywhere. Tea tree, rose geranium, and clove basil have at least one major component throughout different origins. The major components and their amounts in sweet marjoram, patchouli, and rosemary vary widely from one place to another. These results demonstrate that essential oils have a large diversity in their composition in line with their different origins. The antibacterial activity of essential oils against Escherichia coli was evaluated using the optical density method (turbidimetry). Patchouli is a very effective inhibitor, in that it completely inhibits the growth of E. coli at 0.05%. Clove basil and sweet marjoram are good inhibitors, and the upper limit of their minimum inhibitory concentration is 0.1%.


Asunto(s)
Escherichia coli , Antibacterianos , Monoterpenos Ciclohexánicos , Monoterpenos , Aceites Volátiles , Taiwán
8.
J Mol Biol ; 320(2): 159-64, 2002 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-12079375

RESUMEN

We have investigated the folding energy landscape of cytochrome c by exploiting the widely different electron-transfer (ET) reactivities of buried and exposed Zn(II)-substituted hemes. An electronically excited Zn-porphyrin in guanidine hydrochloride denatured Zn-substituted cytochrome c (Zn-cyt c) reduces ruthenium(III) hexaammine about ten times faster than when embedded in the fully folded protein. Measurements of ET kinetics during Zn-cyt c folding reveal a burst intermediate in which one-third of the ensemble has a protected Zn-porphyrin and slow ET kinetics; the remaining fraction exhibits fast ET characteristic of a solvent-exposed redox cofactor. The ET data show that, under solvent conditions favoring the folded protein, collapsed non-native structures are not substantially more stable than extended conformations, and that the two populations interchange rapidly. Most of the folding free energy, then, is released when compact structures evolve into the native fold.


Asunto(s)
Grupo Citocromo c/química , Zinc/química , Electrones , Cinética , Oxidación-Reducción , Porfirinas/química , Pliegue de Proteína
9.
Dalton Trans ; 39(11): 2928-35, 2010 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-20200721

RESUMEN

The rhenium-based rectangles [{Re(CO)(3)(mu-bpy)Br}{Re(CO)(3)(mu-L)Br}](2) (I, L = 4,4'-dipyridylacetylene (dpa); II, L = 4,4'-dipyridylbutadiyne (dpb); III, L = 1,4-bis(4'-pyridylethynyl)benzene (bpeb); bpy = 4,4'-bipyridine) are emissive in solution at room temperature. The presence of extended pi conjugation leads to an increase in electron delocalization, which, in turn, results in improved luminescence and lower nuclear reorganization energy. These rectangles, upon electronic excitation, undergo facile electron transfer (ET) reactions with quinones and both the dynamic and static quenching contribute to the reaction. Spectral and electrochemical measurements show that quinone 7,7,8,8-tetracyanoquinodimethane (TCNQ) binds strongly to rectangle I. The driving force dependence of k(et), deduced from the luminescence quenching of rectangles with quinones, can be well accounted for within the context of the Marcus theory of electron transfer.

10.
J Phys Chem A ; 111(43): 10953-60, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17918811

RESUMEN

Alkoxy-bridged rhenium(I) rectangles [{(CO)(3)Re(mu-OR)(2)Re(CO)(3)}(2)(mu-bpy)(2)] (1, R = C(4)H(9); 2, R = C(8)H(17); 3, R = C(12)H(25); bpy = 4,4'-bipyridine) comprising long alkyl chains form optically transparent aggregates and exhibit luminescence enhancement in the presence of water. The aggregation of Re(I)-rectangle was followed using a light-scattering technique. Presumably, the enhanced luminescence efficiency resulted from restriction of torsional molecular motion in the aggregates. In addition, the rate of bimolecular quenching of Re(I)-aggregates in the triplet excited state by various electron donors (amines) and acceptors (quinones) was efficient. These results indicate that the excited state of aggregated Re(I) surfactants with an electron acceptor and donor facilitate the electron-transfer quenching process after they became preassociated inside the Re(I)-aggregated species. These synthesized compounds may be useful fluorescent materials in optoelectronic applications.

11.
Inorg Chem ; 45(5): 2335-40, 2006 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-16499400

RESUMEN

Three clusters [Ag11(mu9-Se)(mu3-I)3{Se2P(OR)2}6] (R = Et, 1; iPr, 2; 2Bu, 3) were isolated from the reaction of [Ag(CH3CN)4](PF6), NH4[Se2P(OR)2], and Bu4NI in a molar ratio of 4:3:1 in CH2Cl2 in 47-55% yield. Compounds 1 and 2 can also be synthesized with high yield from the reaction of Ag10(Se)[Se2P(OR)2]8 with 8 equiv of Bu4NI. In the positive fast atom bombardment mass spectra of 1-3, two major peaks that correspond to the intact molecule with the loss of an iodide ion, [Ag11(mu9-Se)(mu3-I)(2){Se2P(OR)2}6]+, and a diselenophosphate ligand, [Ag11(mu9-Se)(mu3-I)3{Se2P(OR)2}5]+, were identified. Single-crystal X-ray analyses of 2 and 3 reveal an Ag11Se core stabilized by three iodide anions and six diselenophosphato ligands in a tetrametallic tetraconnective (mu2,mu2) coordination mode. The central core adopts the geometry of a 3,3,4,4,4-pentacapped trigonal prism with a selenium atom in the center. In addition, weak intermolecular Se...I interactions exist in 2 and form a one-dimensional polymeric chain structure. Furthermore, all compounds exhibit orange-red luminescence in both the solid state and solution.

12.
Proc Natl Acad Sci U S A ; 100(7): 3838-40, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12646702

RESUMEN

The kinetics of electron transfer from the triplet-excited Zn-porphyrin to a Ru(NH(3))(5)(His-33)(3+) complex have been measured in Zn-substituted ruthenium-modified cytochrome c under denaturing conditions. In the folded protein, the electron-tunneling rate constant is 7.5 x 10(5) s(-1). As the protein is denatured with guanidine hydrochloride, a faster adiabatic electron-transfer reaction appears (4.0 x 10(6) s(-1), [guanidine hydrochloride] = 5.4 M) that is limited by the rate of intrachain diffusion to bring the Zn-porphyrin and Ru complex into contact. The 250-ns contact time for formation of a 15-residue loop in denatured cytochrome c is in accord with a statistical model developed by Camacho and Thirumalai [Camacho, C. J. & Thirumalai, D. (1995) Proc. Natl. Acad. Sci. USA 92, 1277-1281] that predicts that the most probable transient loops formed in denatured proteins are comprised of 10 amino acids. Extrapolation of the cytochrome c contact time to a 10-residue loop sets the folding speed limit at approximately 10(7) s(-1).


Asunto(s)
Grupo Citocromo c/química , Grupo Citocromo c/metabolismo , Citocromos c , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Grupo Citocromo c/efectos de los fármacos , Transporte de Electrón , Guanidina , Histidina , Cinética , Sustancias Macromoleculares , Metaloporfirinas/química , Metaloporfirinas/metabolismo , Modelos Moleculares , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Rutenio , Sacarosa/farmacología , Factores de Tiempo , Zinc
13.
Inorg Chem ; 41(21): 5323-5, 2002 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-12377024

RESUMEN

Self-assembly of rhenium(I)-based molecular rectangles containing long alkyl chains has been achieved in one-pot synthesis by solvothermal methods. An enormous enhancement in the emission intensity, quantum yield, and lifetime of the rectangles has been observed when the solvent medium is changed from organic to aqueous. Addition of water favors the aggregation of Re(I) molecular rectangle resulting in the luminescence enhancement, and this phenomenon has been traced out using light scattering techniques.

14.
Inorg Chem ; 42(20): 6388-94, 2003 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-14514314

RESUMEN

A series of neutral luminescent molecular rectangles [[Re(CO)(3)(mu-bpy)Br][Re(CO)(3)(mu-L)Br]](2) (1-4) having fac-Re(CO)(3)Br as corners and 4,4'-bipyridine (bpy) as the bridging ligand on one side and other bipyridyl ligands of varying length (L) on the other side have been synthesized and characterized. The crystal structure of 1 shows a rectangular cavity with the dimensions of 11.44 x 7.21 A. When the cavity size is tuned from 1 to 4, a dimension of 11.4 x 20.8 A could be achieved, as revealed by the molecular modeling. These rectangles exhibit luminescence in solution at room temperature. In particular, compound 4 containing 1,4-bis(4'-pyridylethynyl)benzene (bpeb) as bridging ligand shows the excited-state lifetime of 495 ns. Fine-tuning of the cavity size of the rectangles improves their excited-state properties. These properties facilitate the study of excited-state electron-transfer reactions with electron acceptors and donors and host-guest binding. Crystallographic information: 1.6CH(3)COCH(3) is monoclinic, P2(1)/c, with a = 12.0890(2), b = 24.2982(2), and c = 12.8721(2) A, beta = 107.923(1) degrees, and Z = 2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA