Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.312
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 602(7896): 245-250, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140387

RESUMEN

The kagome lattice1, which is the most prominent structural motif in quantum physics, benefits from inherent non-trivial geometry so that it can host diverse quantum phases, ranging from spin-liquid phases, to topological matter, to intertwined orders2-8 and, most rarely, to unconventional superconductivity6,9. Recently, charge sensitive probes have indicated that the kagome superconductors AV3Sb5 (A = K, Rb, Cs)9-11 exhibit unconventional chiral charge order12-19, which is analogous to the long-sought-after quantum order in the Haldane model20 or Varma model21. However, direct evidence for the time-reversal symmetry breaking of the charge order remains elusive. Here we use muon spin relaxation to probe the kagome charge order and superconductivity in KV3Sb5. We observe a noticeable enhancement of the internal field width sensed by the muon ensemble, which takes place just below the charge ordering temperature and persists into the superconducting state. Notably, the muon spin relaxation rate below the charge ordering temperature is substantially enhanced by applying an external magnetic field. We further show the multigap nature of superconductivity in KV3Sb5 and that the [Formula: see text] ratio (where Tc is the superconducting transition temperature and λab is the magnetic penetration depth in the kagome plane) is comparable to those of unconventional high-temperature superconductors. Our results point to time-reversal symmetry-breaking charge order intertwining with unconventional superconductivity in the correlated kagome lattice.

2.
Nature ; 594(7861): 33-36, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34002091

RESUMEN

The extension of the cosmic-ray spectrum beyond 1 petaelectronvolt (PeV; 1015 electronvolts) indicates the existence of the so-called PeVatrons-cosmic-ray factories that accelerate particles to PeV energies. We need to locate and identify such objects to find the origin of Galactic cosmic rays1. The principal signature of both electron and proton PeVatrons is ultrahigh-energy (exceeding 100 TeV) γ radiation. Evidence of the presence of a proton PeVatron has been found in the Galactic Centre, according to the detection of a hard-spectrum radiation extending to 0.04 PeV (ref. 2). Although γ-rays with energies slightly higher than 0.1 PeV have been reported from a few objects in the Galactic plane3-6, unbiased identification and in-depth exploration of PeVatrons requires detection of γ-rays with energies well above 0.1 PeV. Here we report the detection of more than 530 photons at energies above 100 teraelectronvolts and up to 1.4 PeV from 12 ultrahigh-energy γ-ray sources with a statistical significance greater than seven standard deviations. Despite having several potential counterparts in their proximity, including pulsar wind nebulae, supernova remnants and star-forming regions, the PeVatrons responsible for the ultrahigh-energy γ-rays have not yet been firmly localized and identified (except for the Crab Nebula), leaving open the origin of these extreme accelerators.

3.
Proc Natl Acad Sci U S A ; 121(1): e2303423120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38150501

RESUMEN

The ability to efficiently control charge and spin in the cuprate high-temperature superconductors is crucial for fundamental research and underpins technological development. Here, we explore the tunability of magnetism, superconductivity, and crystal structure in the stripe phase of the cuprate La[Formula: see text]Ba[Formula: see text]CuO[Formula: see text], with [Formula: see text] = 0.115 and 0.135, by employing temperature-dependent (down to 400 mK) muon-spin rotation and AC susceptibility, as well as X-ray scattering experiments under compressive uniaxial stress in the CuO[Formula: see text] plane. A sixfold increase of the three-dimensional (3D) superconducting critical temperature [Formula: see text] and a full recovery of the 3D phase coherence is observed in both samples with the application of extremely low uniaxial stress of [Formula: see text]0.1 GPa. This finding demonstrates the removal of the well-known 1/8-anomaly of cuprates by uniaxial stress. On the other hand, the spin-stripe order temperature as well as the magnetic fraction at 400 mK show only a modest decrease under stress. Moreover, the onset temperatures of 3D superconductivity and spin-stripe order are very similar in the large stress regime. However, strain produces an inhomogeneous suppression of the spin-stripe order at elevated temperatures. Namely, a substantial decrease of the magnetic volume fraction and a full suppression of the low-temperature tetragonal structure is found under stress, which is a necessary condition for the development of the 3D superconducting phase with optimal [Formula: see text]. Our results evidence a remarkable cooperation between the long-range static spin-stripe order and the underlying crystalline order with the three-dimensional fully coherent superconductivity. Overall, these results suggest that the stripe- and the SC order may have a common physical mechanism.

4.
Phys Rev Lett ; 133(6): 061001, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39178452

RESUMEN

In this Letter we try to search for signals generated by ultraheavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible γ rays by dark matter annihilation or decay from 16 dwarf spheroidal galaxies in the field of view of the LHAASO. Dwarf spheroidal galaxies are among the most promising targets for indirect detection of dark matter that have low fluxes of astrophysical γ-ray background while having large amount of dark matter. By analyzing more than 700 days of observational data at LHAASO, no significant dark matter signal from 1 TeV to 1 EeV is detected. Accordingly we derive the most stringent constraints on the ultraheavy dark matter annihilation cross section up to EeV. The constraints on the lifetime of dark matter in decay mode are also derived.

5.
Phys Rev Lett ; 133(7): 071501, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39213544

RESUMEN

On 9 October 2022, the Large High Altitude Air Shower Observatory (LHAASO) reported the observation of the very early TeV afterglow of the brightest-of-all-time gamma-ray burst 221009A, recording the highest photon statistics in the TeV band ever obtained from a gamma-ray burst. We use this unique observation to place stringent constraints on the energy dependence of the speed of light in vacuum, a manifestation of Lorentz invariance violation (LIV) predicted by some quantum gravity (QG) theories. Our results show that the 95% confidence level lower limits on the QG energy scales are E_{QG,1}>10 times the Planck energy E_{Pl} for the linear LIV effect, and E_{QG,2}>6×10^{-8}E_{Pl} for the quadratic LIV effect. Our limits on the quadratic LIV case improve previous best bounds by factors of 5-7.

6.
Phys Rev Lett ; 132(13): 131002, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613275

RESUMEN

We present the measurements of all-particle energy spectrum and mean logarithmic mass of cosmic rays in the energy range of 0.3-30 PeV using data collected from LHAASO-KM2A between September 2021 and December 2022, which is based on a nearly composition-independent energy reconstruction method, achieving unprecedented accuracy. Our analysis reveals the position of the knee at 3.67±0.05±0.15 PeV. Below the knee, the spectral index is found to be -2.7413±0.0004±0.0050, while above the knee, it is -3.128±0.005±0.027, with the sharpness of the transition measured with a statistical error of 2%. The mean logarithmic mass of cosmic rays is almost heavier than helium in the whole measured energy range. It decreases from 1.7 at 0.3 PeV to 1.3 at 3 PeV, representing a 24% decline following a power law with an index of -0.1200±0.0003±0.0341. This is equivalent to an increase in abundance of light components. Above the knee, the mean logarithmic mass exhibits a power law trend towards heavier components, which is reversal to the behavior observed in the all-particle energy spectrum. Additionally, the knee position and the change in power-law index are approximately the same. These findings suggest that the knee observed in the all-particle spectrum corresponds to the knee of the light component, rather than the medium-heavy components.

7.
Phys Rev Lett ; 132(9): 091802, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489649

RESUMEN

By analyzing 7.33 fb^{-1} of e^{+}e^{-} annihilation data collected at center-of-mass energies between 4.128 and 4.226 GeV with the BESIII detector, we report the observation of the semileptonic decay D_{s}^{+}→η^{'}µ^{+}ν_{µ}, with a statistical significance larger than 10σ, and the measurements of the D_{s}^{+}→ηµ^{+}ν_{µ} and D_{s}^{+}→η^{'}µ^{+}ν_{µ} decay dynamics for the first time. The branching fractions of D_{s}^{+}→ηµ^{+}ν_{µ} and D_{s}^{+}→η^{'}µ^{+}ν_{µ} are determined to be (2.235±0.051_{stat}±0.052_{syst})% and (0.801±0.055_{stat}±0.028_{syst})%, respectively, with precision improved by factors of 6.0 and 6.6 compared to the previous best measurements. Combined with the results for the decays D_{s}^{+}→ηe^{+}ν_{e} and D_{s}^{+}→η^{'}e^{+}ν_{e}, the ratios of the decay widths are examined both inclusively and in several ℓ^{+}ν_{ℓ} four-momentum transfer ranges. No evidence for lepton flavor universality violation is found within the current statistics. The products of the hadronic form factors f_{+,0}^{η^{(')}}(0) and the c→s Cabibbo-Kobayashi-Maskawa matrix element |V_{cs}| are determined. The results based on the two-parameter series expansion are f_{+,0}^{η}(0)|V_{cs}|=0.452±0.010_{stat}±0.007_{syst} and f_{+,0}^{η^{'}}(0)|V_{cs}|=0.504±0.037_{stat}±0.012_{syst}, which help to constrain present models on f_{+,0}^{η^{(')}}(0). The forward-backward asymmetries are determined to be ⟨A_{FB}^{η}⟩=-0.059±0.031_{stat}±0.005_{syst} and ⟨A_{FB}^{η^{'}}⟩=-0.064±0.079_{stat}±0.006_{syst} for the first time, which are consistent with the theoretical calculation.

8.
Phys Rev Lett ; 132(3): 031801, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38307076

RESUMEN

Based on 4.4 fb^{-1} of e^{+}e^{-} annihilation data collected at the center-of-mass energies between 4.60 and 4.70 GeV with the BESIII detector at the BEPCII collider, the pure W-boson-exchange decay Λ_{c}^{+}→Ξ^{0}K^{+} is studied with a full angular analysis. The corresponding decay asymmetry is measured for the first time to be α_{Ξ^{0}K^{+}}=0.01±0.16(stat)±0.03(syst). This result reflects the noninterference effect between the S- and P-wave amplitudes. The phase shift between S- and P-wave amplitudes has two solutions, which are δ_{p}-δ_{s}=-1.55±0.25(stat)±0.05(syst) rad or 1.59±0.25(stat)±0.05(syst) rad.

9.
Phys Rev Lett ; 132(8): 081904, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38457707

RESUMEN

Based on data samples collected with the BESIII detector at the BEPCII collider, the process e^{+}e^{-}→Σ^{+}Σ[over ¯]^{-} is studied at center-of-mass energies sqrt[s]=2.3960, 2.6454, and 2.9000 GeV. Using a fully differential angular description of the final state particles, both the relative magnitude and phase information of the Σ^{+} electromagnetic form factors in the timelike region are extracted. The relative phase between the electric and magnetic form factors is determined to be sinΔΦ=-0.67±0.29(stat)±0.18(syst) at sqrt[s]=2.3960 GeV, ΔΦ=55°±19°(stat)±14°(syst) at sqrt[s]=2.6454 GeV, and 78°±22°(stat)±9°(syst) at sqrt[s]=2.9000 GeV. For the first time, the phase of the hyperon electromagnetic form factors is explored in a wide range of four-momentum transfer. The evolution of the phase along with four-momentum transfer is an important input for understanding its asymptotic behavior and the dynamics of baryons.

10.
Phys Rev Lett ; 132(10): 101801, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38518329

RESUMEN

Using (10087±44)×10^{6} J/ψ events collected with the BESIII detector, numerous Ξ^{-} and Λ decay asymmetry parameters are simultaneously determined from the process J/ψ→Ξ^{-}Ξ[over ¯]^{+}→Λ(pπ^{-})π^{-}Λ[over ¯](n[over ¯]π^{0})π^{+} and its charge-conjugate channel. The precisions of α_{Λ0} for Λ→nπ^{0} and α[over ¯]_{Λ0} for Λ[over ¯]→n[over ¯]π^{0} compared to world averages are improved by factors of 4 and 1.7, respectively. The ratio of decay asymmetry parameters of Λ→nπ^{0} to that of Λ→pπ^{-}, ⟨α_{Λ0}⟩/⟨α_{Λ-}⟩, is determined to be 0.873±0.012_{-0.010}^{+0.011}, where the first and the second uncertainties are statistical and systematic, respectively. The ratio is smaller than unity more than 5σ, which signifies the existence of the ΔI=3/2 transition in Λ for the first time. Besides, we test for CP symmetry in Ξ^{-}→Λπ^{-} and in Λ→nπ^{0} with the best precision to date.

11.
Phys Rev Lett ; 133(5): 051801, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39159085

RESUMEN

This Letter presents results of a search for the mixing of a sub-eV sterile neutrino with three active neutrinos based on the full data sample of the Daya Bay Reactor Neutrino Experiment, collected during 3158 days of detector operation, which contains 5.55×10^{6} reactor ν[over ¯]_{e} candidates identified as inverse beta-decay interactions followed by neutron capture on gadolinium. The analysis benefits from a doubling of the statistics of our previous result and from improvements of several important systematic uncertainties. No significant oscillation due to mixing of a sub-eV sterile neutrino with active neutrinos was found. Exclusion limits are set by both Feldman-Cousins and CLs methods. Light sterile neutrino mixing with sin^{2}2θ_{14}≳0.01 can be excluded at 95% confidence level in the region of 0.01 eV^{2}≲|Δm_{41}^{2}|≲0.1 eV^{2}. This result represents the world-leading constraints in the region of 2×10^{-4} eV^{2}≲|Δm_{41}^{2}|≲0.2 eV^{2}.

12.
Phys Rev Lett ; 133(2): 021901, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39073971

RESUMEN

Using data samples collected with the BESIII detector operating at the BEPCII storage ring, the cross section of the inclusive process e^{+}e^{-}→η+X, normalized by the total cross section of e^{+}e^{-}→hadrons, is measured at eight center-of-mass energy points from 2.0000 to 3.6710 GeV. These are the first measurements with momentum dependence in this energy region. Our measurement shows a significant discrepancy compared to the existing fragmentation functions. To address this discrepancy, a new QCD analysis is performed at the next-to-next-to-leading order with hadron mass corrections and higher twist effects, which can explain both the established high-energy data and our measurements reasonably well.

13.
Phys Rev Lett ; 133(8): 081901, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39241714

RESUMEN

Using data samples collected with the BESIII detector at the BEPCII collider at center-of-mass energies ranging from 3.80 to 4.95 GeV, corresponding to an integrated luminosity of 20 fb^{-1}, a measurement of Born cross sections for the e^{+}e^{-}→D^{0}D[over ¯]^{0} and D^{+}D^{-} processes is presented with unprecedented precision. Many clear peaks in the line shape of e^{+}e^{-}→D^{0}D[over ¯]^{0} and D^{+}D^{-} around the mass range of G(3900), ψ(4040), ψ(4160), Y(4260), and ψ(4415), etc., are foreseen. These results offer crucial experimental insights into the nature of hadron production in the open-charm region.

14.
Phys Rev Lett ; 132(16): 161901, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38701481

RESUMEN

We present measurements of the Born cross sections for the processes e^{+}e^{-}→ωχ_{c1} and ωχ_{c2} at center-of-mass energies sqrt[s] from 4.308 to 4.951 GeV. The measurements are performed with data samples corresponding to an integrated luminosity of 11.0 fb^{-1} collected with the BESIII detector operating at the Beijing Electron Positron Collider storage ring. Assuming the e^{+}e^{-}→ωχ_{c2} signals come from a single resonance, the mass and width are determined to be M=(4413.6±9.0±0.8) MeV/c^{2} and Γ=(110.5±15.0±2.9) MeV, respectively, which is consistent with the parameters of the well-established resonance ψ(4415). In addition, we also use one single resonance to describe the e^{+}e^{-}→ωχ_{c1} line shape and determine the mass and width to be M=(4544.2±18.7±1.7) MeV/c^{2} and Γ=(116.1±33.5±1.7) MeV, respectively. The structure of this line shape, observed for the first time, requires further understanding.

15.
Phys Rev Lett ; 132(23): 231902, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38905649

RESUMEN

Using (10.087±0.044)×10^{9} J/ψ events collected with the BESIII detector at the BEPCII storage ring, the processes Λp→Λp and Λ[over ¯]p→Λ[over ¯]p are studied, where the Λ/Λ[over ¯] baryons are produced in the process J/ψ→ΛΛ[over ¯] and the protons are the hydrogen nuclei in the cooling oil of the beam pipe. Clear signals are observed for the two reactions. The cross sections in -0.9≤cosθ_{Λ/Λ[over ¯]}≤0.9 are measured to be σ(Λp→Λp)=(12.2±1.6_{stat}±1.1_{syst}) and σ(Λ[over ¯]p→Λ[over ¯]p)=(17.5±2.1_{stat}±1.6_{syst}) mb at the Λ/Λ[over ¯] momentum of 1.074 GeV/c within a range of ±0.017 GeV/c, where the θ_{Λ/Λ[over ¯]} are the scattering angles of the Λ/Λ[over ¯] in the Λp/Λ[over ¯]p rest frames. Furthermore, the differential cross sections of the two reactions are also measured, where there is a slight tendency of forward scattering for Λp→Λp, and a strong forward peak for Λ[over ¯]p→Λ[over ¯]p. We present an approach to extract the total elastic cross sections by extrapolation. The study of Λ[over ¯]p→Λ[over ¯]p represents the first study of antihyperon-nucleon scattering, and these new measurements will serve as important inputs for the theoretical understanding of the (anti)hyperon-nucleon interaction.

16.
Phys Rev Lett ; 132(19): 191902, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38804946

RESUMEN

We report the measurement of the inclusive cross sections for e^{+}e^{-}→nOCH (where nOCH denotes non-open charm hadrons) with improved precision at center-of-mass (c.m.) energies from 3.645 to 3.871 GeV. We observe three resonances: R(3760), R(3780), and R(3810) with significances of 8.1σ, 13.7σ, and 8.8σ, respectively. The R(3810) state is observed for the first time, while the R(3760) and R(3780) states are observed for the first time in the nOCH cross sections. Two sets of resonance parameters describe the energy-dependent line shape of the cross sections well. In set I [set II], the R(3810) state has mass (3805.7±1.1±2.7) [(3805.7±1.1±2.7)] MeV/c^{2}, total width (11.6±2.9±1.9) [(11.5±2.8±1.9)] MeV, and an electronic width multiplied by the nOCH decay branching fraction of (10.9±3.8±2.5) [(11.0±3.4±2.5)] eV. In addition, we measure the branching fractions B[R(3760)→nOCH]=(25.2±16.1±30.4)%[(6.4±4.8±7.7)%] and B[R(3780)→nOCH]=(12.3±6.6±8.3)%[(10.4±4.8±7.0)%] for the first time. The R(3760) state can be interpreted as an open-charm (OC) molecular state, but containing a simple four-quark state component. The R(3810) state can be interpreted as a hadrocharmonium state.

17.
Phys Rev Lett ; 132(18): 181901, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38759175

RESUMEN

Based on (10087±44)×10^{6} J/ψ events collected with the BESIII detector, a partial wave analysis of the decay J/ψ→γK_{S}^{0}K_{S}^{0}η^{'} is performed. The mass and width of the X(2370) are measured to be 2395±11(stat)_{-94}^{+26}(syst) MeV/c^{2} and 188_{-17}^{+18}(stat)_{-33}^{+124}(syst) MeV, respectively. The corresponding product branching fraction is B[J/ψ→γX(2370)]×B[X(2370)→f_{0}(980)η^{'}]×B[f_{0}(980)→K_{S}^{0}K_{S}^{0}]=(1.31±0.22(stat)_{-0.84}^{+2.85}(syst))×10^{-5}. The statistical significance of the X(2370) is greater than 11.7σ and the spin parity is determined to be 0^{-+} for the first time. The measured mass and spin parity of the X(2370) are consistent with the predictions of the lightest pseudoscalar glueball.

18.
Phys Rev Lett ; 132(17): 171001, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38728703

RESUMEN

Recently a dark matter-electron (DM-electron) paradigm has drawn much attention. Models beyond the standard halo model describing DM accelerated by high energy celestial bodies are under intense examination as well. In this Letter, a velocity components analysis (VCA) method dedicated to swift analysis of accelerated DM-electron interactions via semiconductor detectors is proposed and the first HPGe detector-based accelerated DM-electron analysis is realized. Utilizing the method, the first germanium based constraint on sub-GeV solar reflected DM-electron interaction is presented with the 205.4 kg·day dataset from the CDEX-10 experiment. In the heavy mediator scenario, our result excels in the mass range of 5-15 keV/c^{2}, achieving a 3 orders of magnitude improvement comparing with previous semiconductor experiments. In the light mediator scenario, the strongest laboratory constraint for DM lighter than 0.1 MeV/c^{2} is presented. The result proves the feasibility and demonstrates the vast potential of the VCA technique in future accelerated DM-electron analyses with semiconductor detectors.

19.
Phys Rev Lett ; 132(15): 151903, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682963

RESUMEN

We perform a study of the χ_{c1}(3872) line shape using the data samples of e^{+}e^{-}→γχ_{c1}(3872), χ_{c1}(3872)→D^{0}D[over ¯]^{0}π^{0}, and π^{+}π^{-}J/ψ collected with the BESIII detector. The effects of the coupled channels and the off-shell D^{*0} are included in the parametrization of the line shape. The line shape mass parameter is obtained to be M_{X}=(3871.63±0.13_{-0.05}^{+0.06}) MeV. Two poles are found on the first and second Riemann sheets corresponding to the D^{*0}D[over ¯]^{0} branch cut. The pole location on the first sheet is much closer to the D^{*0}D[over ¯]^{0} threshold than the other, and is determined to be 7.04±0.15_{-0.08}^{+0.07} MeV above the D^{0}D[over ¯]^{0}π^{0} threshold with an imaginary part -0.19±0.08_{-0.19}^{+0.14} MeV.

20.
Phys Rev Lett ; 132(15): 151901, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682972

RESUMEN

Using a sample of (10087±44)×10^{6} J/ψ events, which is about 45 times larger than that was previously analyzed, a further investigation on the J/ψ→γ3(π^{+}π^{-}) decay is performed. A significant distortion at 1.84 GeV/c^{2} in the line shape of the 3(π^{+}π^{-}) invariant mass spectrum is observed for the first time, which could be resolved by two overlapping resonant structures, X(1840) and X(1880). The new state X(1880) is observed with a statistical significance larger than 10σ. The mass and width of X(1880) are determined to be 1882.1±1.7±0.7 MeV/c^{2} and 30.7±5.5±2.4 MeV, respectively, which indicates the existence of a pp[over ¯] bound state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA