RESUMEN
Emerging evidence indicates that high-fat, high carbohydrate diet (HFHC) impacts central pathological features of Alzheimer's disease (AD) across both human incidences and animal models. However, the mechanisms underlying this association are poorly understood. Here, we identify compartment-specific metabolic and inflammatory dysregulations that are induced by HFHC diet in the 5xFAD mouse model of AD pathology. We observe that both male and female 5xFAD mice display exacerbated adiposity, cholesterolemia, and dysregulated insulin signaling. Independent of biological sex, HFHC diet also resulted in altered inflammatory cytokine profiles across the gastrointestinal, circulating, and central nervous systems (CNS) compartments demonstrating region-specific impacts of metabolic inflammation. Interestingly, inhibiting the inflammatory cytokine, soluble tumor necrosis factor (TNF) with the brain-permeant soluble TNF inhibitor XPro1595 was able to restore aspects of HFHC-induced metabolic inflammation, but only in male mice. Targeted transcriptomics of CNS regions revealed that inhibition of soluble TNF was sufficient to alter expression of hippocampal and cortical genes associated with beneficial immune and metabolic responses. Collectively, these results suggest that HFHC diet impairs metabolic and inflammatory pathways in an AD-relevant genotype and that soluble TNF has sex-dependent roles in modulating these pathways across anatomical compartments. Modulation of energy homeostasis and inflammation may provide new therapeutic avenues for AD.
Asunto(s)
Enfermedad de Alzheimer , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Ratones Transgénicos , Factor de Necrosis Tumoral alfa , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Ratones , Masculino , Femenino , Factor de Necrosis Tumoral alfa/metabolismo , Dieta Alta en Grasa/efectos adversos , Transducción de Señal/fisiología , Caracteres Sexuales , Inflamación/metabolismoRESUMEN
The aggregation, mislocalization, and phosphorylation of TDP-43 are pathologic hallmarks of several neurodegenerative diseases and provide a defining criterion for the neuropathologic diagnosis of Limbic-predominant Age-related TDP-43 Encephalopathy (LATE). LATE neuropathologic changes (LATE-NC) are often comorbid with other neurodegenerative pathologies including Alzheimer's disease neuropathologic changes (ADNC). We examined whether TDP-43 regulated cryptic exons accumulate in the hippocampus of neuropathologically confirmed LATE-NC cases. We found that several cryptic RNAs are robustly expressed in LATE-NC cases with or without comorbid ADNC and correlate with pTDP-43 abundance; however, the accumulation of cryptic RNAs is more robust in LATE-NC with comorbid ADNC. Additionally, cryptic RNAs can robustly distinguish LATE-NC from healthy controls and AD cases. These findings expand our current understanding and provide novel potential biomarkers for LATE pathogenesis.
Asunto(s)
Enfermedad de Alzheimer , Demencia , Proteinopatías TDP-43 , Humanos , Encéfalo/patología , Proteinopatías TDP-43/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Envejecimiento/genética , Envejecimiento/patología , Proteínas de Unión al ADN/metabolismo , ExonesRESUMEN
BACKGROUND: Repeated exposure to sevoflurane during early developmental stages is a risk factor for social behavioural disorders, but the underlying neuropathological mechanisms remain unclear. As the hippocampal cornu ammonis area 2 subregion (CA2) is a critical centre for social cognitive functions, we hypothesised that sevoflurane exposure can lead to social behavioural disorders by disrupting neuronal activity in the CA2. METHODS: Neonatal mice were anaesthetised with sevoflurane 3 vol% for 2 h on postnatal day (PND) 6, 8, and 10. Bulk RNA sequencing of CA2 tissue was conducted on PND 12. Social cognitive function was assessed by behavioural experiments, and in vivo CA2 neuronal activity was recorded by multi-channel electrodes on PND 60-65. RESULTS: Repeated postnatal exposure to sevoflurane impaired social novelty recognition in adulthood. It also caused a decrease in the synchronisation of neuronal spiking, gamma oscillation power, and spike phase-locking between GABAergic spiking and gamma oscillations in the CA2 during social interaction. After sevoflurane exposure, we observed a reduction in the density and dendritic complexity of CA2 GABAergic neurones, and decreased expression of transcription factors critical for GABAergic neuronal development after. CONCLUSIONS: Repeated postnatal exposure to sevoflurane disturbed the development of CA2 GABAergic neurones through downregulation of essential transcription factors. This resulted in impaired electrophysiological function in adult GABAergic neurones, leading to social recognition deficits. These findings reveal a potential electrophysiological mechanism underlying the long-term social recognition deficits induced by sevoflurane and highlight the crucial role of CA2 GABAergic neurones in social interactions.
Asunto(s)
Anestésicos por Inhalación , Animales Recién Nacidos , Neuronas GABAérgicas , Hipocampo , Sevoflurano , Animales , Sevoflurano/farmacología , Ratones , Anestésicos por Inhalación/toxicidad , Anestésicos por Inhalación/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Masculino , Ratones Endogámicos C57BL , Conducta Social , Reconocimiento en Psicología/efectos de los fármacos , FemeninoRESUMEN
OBJECTIVE: To study the effects of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) on epileptic seizures, anxiety, and depression in patients with epilepsy. METHODS: Based on the inclusion and exclusion criteria, an ambispective cohort study was hereby conducted on patients with epilepsy infected with SARS-CoV-2 who visited the outpatient and ward of the Department of Neurology of Xinyang Central Hospital from December 2022 (when the domestic epidemic prevention and control policy was lifted) to February 2023. A face-to-face questionnaire survey involving factors including basic information, vaccination with inactivated COVID-19 vaccines, number of seizures within 2 months before and after SARS-CoV-2 infection, and scores of anxiety and depression was carried out. RESULTS: A total of 107 patients with epilepsy satisfying the inclusion and exclusion criteria completed the follow-up after 2 months. It was found that enrolled patients maintained the original dose of antiepileptic drugs, but the frequency of seizures after COVID-19 infection could not be controlled. After infection with SARS-CoV-2, the frequency of seizures in patients with epilepsy in 2 months increased compared with that before infection (P < 0.05). Meanwhile, compared with the vaccinated group, the high-frequency seizure rate of epilepsy in the unvaccinated group was higher. (P < 0.05), and the anxiety and depression scores of patients with epilepsy were worse than those before they were infected (P < 0.05). CONCLUSION: Being infected with SARS-CoV-2 can increase the number of seizures and aggravate the degree of anxiety and depression in patients with epilepsy. The inactivated vaccine is protective, and the inactivated SARS-CoV-2 vaccine can reduce the rate of high-frequency seizures.
Asunto(s)
COVID-19 , Epilepsia , Humanos , Vacunas contra la COVID-19 , Estudios de Cohortes , Depresión/etiología , COVID-19/complicaciones , SARS-CoV-2 , Ansiedad/etiología , Epilepsia/complicaciones , Epilepsia/epidemiología , Convulsiones/complicaciones , Pacientes AmbulatoriosRESUMEN
PURPOSE: Several recent studies have reported a possible association between gut microbiota and intervertebral disc degeneration; however, no studies have shown a causal relationship between gut microbiota and disc degeneration. This study was dedicated to investigate the causal relationship between the gut microbiota and intervertebral disc degeneration and the presence of potentially bacterial traits using two-sample Mendelian randomization. METHODS: A two-sample Mendelian randomization study was performed using the summary statistics of the gut microbiota from the largest available genome-wide association study meta-analysis conducted by the MiBioGen consortium. Summary statistics of intervertebral disc degeneration were obtained from the FinnGen consortium R8 release data. Five basic methods and MR-PRESSO were used to examine causal associations. The results of the study were used to examine the causal association between gut microbiota and intervertebral disc degeneration. Cochran's Q statistics were used to quantify the heterogeneity of instrumental variables. RESULTS: By using Mendelian randomization analysis, 10 bacterial traits potentially associated with intervertebral disc degeneration were identified: genus Eubacterium coprostanoligenes group, genus Lachnoclostridium, unknown genus id.2755, genus Marvinbryantia, genus Ruminococcaceae UCG003, family Rhodospirillaceae, unknown genus id.959, order Rhodospirillales, genus Lachnospiraceae NK4A136 grou, genus Eubacterium brachy group. CONCLUSION: This Mendelian Randomization study found a causal effect between 10 gut microbiota and intervertebral disc degeneration, and we summarize the possible mechanisms of action in the context of existing studies. However, additional research is essential to fully understand the contribution of genetic factors to the dynamics of gut microbiota and its impact on disc degeneration.
RESUMEN
BACKGROUND: Endoscopic lumbar interbody fusion has become an emerging technique. Some researchers have reported the technique of percutaneous endoscopic transforaminal lumbar interbody fusion. We propose percutaneous endoscopic posterior lumbar interbody fusion (PE-PLIF) as an alternative approach. The purpose of this study was to assess the clinical efficacy of PE-PLIF by comparing percutaneous endoscopic and open posterior lumbar interbody fusion (PLIF). METHODS: Thirty patients were enrolled in each group. Demographic data, perioperative data, and radiological parameters were collected prospectively. The clinical outcomes were evaluated by visual analog scale (VAS) and Oswestry Disability Index (ODI) scores. RESULTS: The background data were comparable between the two groups. The mean operation time was longer in the PE-PLIF group. The PE-PLIF group showed benefits in less blood loss and shorter hospital stay. VAS and ODI scores significantly improved in both groups. However, the VAS score of low-back pain was lower in the PE-PLIF group. The satisfaction rate was 96.7% in both groups. The radiological outcomes were similar in both groups. In the PE-PLIF group, the fusion rate was 93.3%, and the cage subsidence rate was 6.7%; in the open PLIF group, the fusion and cage subsidence rates were 96.7% and 16.7%. There were minor complications in one patient in the PE-PLIF group and two in the open PLIF group. CONCLUSIONS: The current study revealed that PE-PLIF is safe and effective compared with open PLIF. In addition, this minimally invasive technique may enhance postoperative recovery by reducing tissue damage and blood loss.
Asunto(s)
Vértebras Lumbares , Fusión Vertebral , Endoscopía/efectos adversos , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Región Lumbosacra/cirugía , Estudios Retrospectivos , Fusión Vertebral/efectos adversos , Fusión Vertebral/métodos , Resultado del TratamientoRESUMEN
Degeneration of locus ceruleus (LC) neurons and dysregulation of noradrenergic signaling are ubiquitous features of Parkinson's disease (PD). The LC is among the first brain regions affected by α-synuclein (asyn) pathology, yet how asyn affects these neurons remains unclear. LC-derived norepinephrine (NE) can stimulate neuroprotective mechanisms and modulate immune cells, while dysregulation of NE neurotransmission may exacerbate disease progression, particularly nonmotor symptoms, and contribute to the chronic neuroinflammation associated with PD pathology. Although transgenic mice overexpressing asyn have previously been developed, transgene expression is usually driven by pan-neuronal promoters and thus has not been selectively targeted to LC neurons. Here we report a novel transgenic mouse expressing human wild-type asyn under control of the noradrenergic-specific dopamine ß-hydroxylase promoter (DBH-hSNCA). These mice developed oligomeric and conformation-specific asyn in LC neurons, alterations in hippocampal and LC microglial abundance, upregulated GFAP expression, degeneration of LC fibers, decreased striatal DA metabolism, and age-dependent behaviors reminiscent of nonmotor symptoms of PD that were rescued by adrenergic receptor antagonists. These mice provide novel insights into how asyn pathology affects LC neurons and how central noradrenergic dysfunction may contribute to early PD pathophysiology.SIGNIFICANCE STATEMENT É-Synuclein (asyn) pathology and loss of neurons in the locus ceruleus (LC) are two of the most ubiquitous neuropathologic features of Parkinson's disease (PD). Dysregulated norepinephrine (NE) neurotransmission is associated with the nonmotor symptoms of PD, including sleep disturbances, emotional changes such as anxiety and depression, and cognitive decline. Importantly, the loss of central NE may contribute to the chronic inflammation in, and progression of, PD. We have generated a novel transgenic mouse expressing human asyn in LC neurons to investigate how increased asyn expression affects the function of the central noradrenergic transmission and associated behaviors. We report cytotoxic effects of oligomeric and conformation-specific asyn, astrogliosis, LC fiber degeneration, disruptions in striatal dopamine metabolism, and age-dependent alterations in nonmotor behaviors without inclusions.
Asunto(s)
Neuronas Adrenérgicas/metabolismo , Gliosis/genética , Locus Coeruleus/metabolismo , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo , Neuronas Adrenérgicas/patología , Animales , Ritmo Circadiano , Femenino , Gliosis/patología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Locus Coeruleus/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , Movimiento , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , alfa-Sinucleína/genéticaRESUMEN
BACKGROUND: Percutaneous endoscopic lumbar interbody fusion was a new technique that leads to improved visualization, improved safety and less trauma than does the traditional procedure. The purpose of this study was to introduce the technique of percutaneous endoscopic posterior lumbar interbody fusion (PE-PLIF) and determine its efficacy. METHODS: 35 patients with an average age of 52.3±13.7 years were treated with single-segment PE-PLIF. The perioperative parameters and the radiographic parameters were measured. The visual analog scale (VAS) score for low back pain, VAS score for leg pain and Oswestry disability index (ODI) score were used to assess the levels of pain and function. RESULTS: The mean estimated volume of blood loss was 68.6±32.3 ml, operative time was 179.6±31.0 minutes. PE-PLIF significantly reduced the VAS score for low back pain, VAS score for leg pain and ODI score, and improved the posterior disc height, lumbar lordosis angle and segmental lordosis angle (p < 0.05). The rate of satisfaction was 94.3%. One patient suffered a dural tear. There was one case of contralateral radiculopathy that was relieved after conservative treatment. CONCLUSIONS: This research suggests that PE-PLIF is a minimally invasive, safe, and effective treatment for degenerative lumbar diseases requiring interbody fusion.
RESUMEN
BACKGROUND: Autosomal recessive mutations in the glucocerebrosidase gene, Beta-glucocerebrosidase 1 (GBA1), cause the lysosomal storage disorder Gaucher's disease. Heterozygous carriers of most GBA1 mutations have dramatically increased Parkinson's disease (PD) risk, but the mechanisms and cells affected remain unknown. Glucocerebrosidase expression is relatively enriched in astrocytes, yet the impact of its mutation in these cells has not yet been addressed. OBJECTIVES: Emerging data supporting non-cell-autonomous mechanisms driving PD pathogenesis inspired the first characterization of GBA1-mutant astrocytes. In addition, we asked whether LRRK2, likewise linked to PD and enriched in astrocytes, intersected with GBA1 phenotypes. METHODS: Using heterozygous and homozygous GBA1 D409V knockin mouse astrocytes, we conducted rigorous biochemical and image-based analyses of lysosomal function and morphology. We also examined basal and evoked cytokine response at the transcriptional and secretory levels. RESULTS: The D409V knockin astrocytes manifested broad deficits in lysosomal morphology and function, as expected. This, however, is the first study to show dramatic defects in basal and TLR4-dependent cytokine production. Albeit to different extents, both the lysosomal dysfunction and inflammatory responses were normalized by inhibition of LRRK2 kinase activity, suggesting functional intracellular crosstalk between glucocerebrosidase and LRRK2 activities in astrocytes. CONCLUSIONS: These data demonstrate novel pathologic effects of a GBA1 mutation on inflammatory responses in astrocytes, indicating the likelihood of broader immunologic changes in GBA-PD patients. Our findings support the involvement of non-cell-autonomous mechanisms contributing to the pathogenesis of GBA1-linked PD and identify new opportunities to correct these changes with pharmacological intervention. © 2020 International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Gaucher , Enfermedad de Parkinson , Animales , Astrocitos , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Lisosomas , Ratones , Mutación/genética , Enfermedad de Parkinson/genéticaRESUMEN
Smoke inhalation injury is the leading cause of death in firefighters and victims. Inhaled hot air and toxic smoke are the predominant hazards to the respiratory epithelium. We aimed to analyze the effects of thermal stress and smoke aldehyde on the permeability of the airway epithelial barrier. Transepithelial resistance (RTE) and short-circuit current (ISC) of mouse tracheal epithelial monolayers were digitized by an Ussing chamber setup. Zonula occludens-1 tight junctions were visualized under confocal microscopy. A cell viability test and fluorescein isothiocyanate-dextran assay were performed. Thermal stress (40 °C) decreased RTE in a two-phase manner. Meanwhile, thermal stress increased ISC followed by its decline. Na+ depletion, amiloride (an inhibitor for epithelial Na+ channels [ENaCs]), ouabain (a blocker for Na+/K+-ATPase), and CFTRinh-172 (a blocker of cystic fibrosis transmembrane regulator [CFTR]) altered the responses of RTE and ISC to thermal stress. Steady-state 40 °C increased activity of ENaCs, Na+/K+-ATPase, and CFTR. Acrolein, one of the main oxidative unsaturated aldehydes in fire smoke, eliminated RTE and ISC. Na+ depletion, amiloride, ouabain, and CFTRinh-172 suppressed acrolein-sensitive ISC, but showed activating effects on acrolein-sensitive RTE. Thermal stress or acrolein disrupted zonula occludens-1 tight junctions, increased fluorescein isothiocyanate-dextran permeability but did not cause cell death or detachment. The synergistic effects of thermal stress and acrolein exacerbated the damage to monolayers. In conclusion, the paracellular pathway mediated by the tight junctions and the transcellular pathway mediated by active and passive ion transport pathways contribute to impairment of the airway epithelial barrier caused by thermal stress and acrolein. Graphical abstract Thermal stress and acrolein are two essential determinants for smoke inhalation injury, impairing airway epithelial barrier. Transcellular ion transport pathways via the ENaC, CFTR, and Na/K-ATPase are interrupted by both thermal stress and acrolein, one of the most potent smoke toxins. Heat and acrolein damage the integrity of the airway epithelium through suppressing and relocating the tight junctions.
Asunto(s)
Acroleína/toxicidad , Bronquios/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Calor/efectos adversos , Proteínas de Transporte de Membrana/metabolismo , Lesión por Inhalación de Humo/etiología , Humo/efectos adversos , Tráquea/efectos de los fármacos , Animales , Bronquios/metabolismo , Bronquios/patología , Células Cultivadas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Impedancia Eléctrica , Células Epiteliales/metabolismo , Células Epiteliales/patología , Canales Epiteliales de Sodio/metabolismo , Femenino , Humanos , Exposición por Inhalación/efectos adversos , Transporte Iónico , Masculino , Ratones Endogámicos C57BL , Permeabilidad , Lesión por Inhalación de Humo/metabolismo , Lesión por Inhalación de Humo/patología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Tráquea/metabolismo , Tráquea/patología , Proteína de la Zonula Occludens-1/metabolismoRESUMEN
BACKGROUND: Gut microbiota play important roles in their co-evolution with mammals. However, little is understood about gut bacterial community of Tibetan sheep compared with other sheep breeds. In this study, we investigated the gut bacterial community in 4 different sheep breeds living in the Qinghai-Tibetan Plateau (QTP) of China using high-throughput sequencing (HTS) technique. RESULTS: The results suggested that bacterial community abundance and breeds diversity of Tibetan sheep (TS) were significantly lower than that of the other three breeds of sheep [Dorset sheep (DrS), Dorper sheep (DrS) and Small Tail Han sheep (STHS)] (p < 0.05). Principal coordinates analysis (PCoA) and nonmetric multidimensional scaling (NMDS) analysis indicated that microbiome composition of TS was significantly different from that of other three sheep breeds (p < 0.01). Firmicutes was the most predominant microbial phylum in the gut, followed by Bacteroidetes. The gut bacterial community of TS showed higher proportions of phylum Spirochaetes, Proteobacteria and Verrucomicrobia, compared to the other three sheep breeds, but the Deferribacteres was absent in TS. At the genus level, Treponema, Succinivibrio, 5-7 N15 and Prevotella showed significantly higher abundance in TS than in the other three sheep breeds (p < 0.05). CONCLUSIONS: In this study, we first employed HTS to understand the gut microbiomes among different sheep breeds in QTP of China.
Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Oveja Doméstica/microbiología , Animales , Bacterias/genética , China , Heces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Análisis de Secuencia de ADNRESUMEN
Physical and psychosocial maltreatment experienced before the age of 18, termed early life adversity (ELA), affects an estimated 39% of the world's population, and has long-term detrimental health and psychological outcomes. While adult phenotypes vary following ELA, inflammation and altered stress responsivity are pervasive. Cytokines, most notably tumor necrosis factor (TNF), are elevated in adults with a history of ELA. While soluble TNF (solTNF) drives chronic inflammatory disease, transmembrane TNF facilitates innate immunity. Here, we test whether solTNF mediates the behavioral and molecular outcomes of adolescent psychological stress by administering a brain permeable, selective inhibitor of solTNF, XPro1595. Male and female C57BL/6 mice were exposed to an aggressive rat through a perforated translucent ball ('predatory stress') or transported to an empty room for 30â¯min for 30â¯days starting on postnatal day 34. Mice were given XPro1595 or vehicle treatment across the last 15â¯days. Social interaction, sucrose preference, and plasma inflammation were measured at 2 and 4â¯weeks, and open field behavior, adiposity, and neuroinflammation were measured at 4â¯weeks. Chronic adolescent stress resulted in increased peripheral inflammation and dysregulated neuroinflammation in adulthood in a sex-specific manner. Abnormal social and open field behavior, fat pad weight, and fecal boli deposition were noted after 30â¯days; solTNF antagonism ameliorated the effects of stress. Together, these data support our hypothesis, and suggest that targeting solTNF with XPro1595 may improve quality of life for individuals with a history of adolescent stress.
Asunto(s)
Adiposidad , Inflamación , Factores Sexuales , Estrés Psicológico , Factor de Necrosis Tumoral alfa , Animales , Femenino , Masculino , Ratones , Adiposidad/efectos de los fármacos , Factores de Edad , Inflamación/etiología , Inflamación/metabolismo , Ratones Endogámicos C57BL , Modelos Animales , Obesidad/etiología , Obesidad/fisiopatología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidoresRESUMEN
BACKGROUND: Gastrointestinal symptoms are common in Parkinson's disease and frequently precede the development of motor impairments. Intestinal inflammation has been proposed as a driver of disease pathology, and evaluation of inflammatory mediators in stool could possibly identify valuable early-stage biomarkers. We measured immune- and angiogenesis-related proteins in human stool to examine inflammatory profiles associated with Parkinson's disease. METHODS: Stool samples and subjects' self-reported metadata were obtained from 156 individuals with Parkinson's disease and 110 without, including spouse and nonhousehold controls. Metadata were probed for disease-associated differences, and levels of 37 immune and angiogenesis factors in stool homogenates were measured by multiplexed immunoassay and compared across experimental groups. RESULTS: Parkinson's disease patients reported greater incidence of intestinal disease and digestive problems than controls. Direct comparison of levels of stool analytes in patients and controls revealed elevated vascular endothelial growth factor receptor 1, interleukin-1α, and CXCL8 in patients' stool. Paired comparison of patients and spouses suggested higher levels of multiple factors in patients, but this was complicated by sex differences. Sex, body mass index, a history of smoking, and use of probiotics were found to strongly influence levels of stool analytes. Multivariate analysis accounting for these and other potential confounders confirmed elevated levels of interleukin-1α and CXCL8 and also revealed increased interleukin-1ß and C-reactive protein in stool in Parkinson's disease. These differences were not dependent on subject age or disease duration. CONCLUSIONS: Levels of stool immune factors indicate that intestinal inflammation is present in patients with Parkinson's disease. © 2018 International Parkinson and Movement Disorder Society.
Asunto(s)
Citocinas/metabolismo , Heces/química , Gastroenteritis/etiología , Gastroenteritis/metabolismo , Enfermedad de Parkinson/complicaciones , Adulto , Anciano , Anciano de 80 o más Años , Inductores de la Angiogénesis/metabolismo , Proteína C-Reactiva/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Humor/etiología , Enfermedad de Parkinson/psicología , Caracteres SexualesRESUMEN
Transepithelial fluid and salt re-absorption in epithelial tissues play an important role in fluid and salt homeostasis. In absorptive epithelium, fluid and salt flux is controlled by machinery mainly composed of epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), Naâº/H⺠exchanger (NHE), aquaporin, and sodium potassium adenosine triphosphatase (Naâº/Kâº-ATPase). Dysregulation of fluid and salt transport across epithelium contributes to the pathogenesis of many diseases, such as pulmonary edema and cystic fibrosis. Intracellular and extracellular signals, i.e., hormones and protein kinases, regulate fluid and salt turnover and resolution. Increasing evidence demonstrates that transepithelial fluid transport is regulated by cyclic guanosine monophosphate-dependent protein kinase (cGK) signals. cGK2 was originally identified and cloned from intestinal specimens, the presence of which has also been confirmed in the kidney and the lung. cGK2 regulates fluid and salt through ENaC, CFTR and NHE. Deficient cGK2 regulation of transepithelial ion transport was seen in acute lung injury, and cGK2 could be a novel druggable target to restore edematous disorder in epithelial tissues.
Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo II/metabolismo , Transcitosis , Equilibrio Hidroelectrolítico , Lesión Pulmonar Aguda/metabolismo , Animales , Acuaporinas/metabolismo , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Descubrimiento de Drogas , Canales Epiteliales de Sodio/metabolismo , Epitelio/metabolismo , Humanos , Transporte Iónico , Ratones , ATPasa Intercambiadora de Sodio-Potasio/metabolismoRESUMEN
Clinical and animal model studies have implicated inflammation and peripheral immune cell responses in the pathophysiology of Alzheimer's disease (AD). Peripheral immune cells including T cells circulate in the cerebrospinal fluid (CSF) of healthy adults and are found in the brains of AD patients and AD rodent models. Blocking entry of peripheral macrophages into the CNS was reported to increase amyloid burden in an AD mouse model. To assess inflammation in the 5xFAD (Tg) mouse model, we first quantified central and immune cell profiles in the deep cervical lymph nodes and spleen. In the brains of Tg mice, activated (MHCII+, CD45high, and Ly6Chigh) myeloid-derived CD11b+ immune cells are decreased while CD3+ T cells are increased as a function of age relative to non-Tg mice. These immunological changes along with evidence of increased mRNA levels for several cytokines suggest that immune regulation and trafficking patterns are altered in Tg mice. Levels of soluble Tumor Necrosis Factor (sTNF) modulate blood-brain barrier (BBB) permeability and are increased in CSF and brain parenchyma post-mortem in AD subjects and Tg mice. We report here that in vivo peripheral administration of XPro1595, a novel biologic that sequesters sTNF into inactive heterotrimers, reduced the age-dependent increase in activated immune cells in Tg mice, while decreasing the overall number of CD4+ T cells. In addition, XPro1595 treatment in vivo rescued impaired long-term potentiation (LTP) measured in brain slices in association with decreased Aß plaques in the subiculum. Selective targeting of sTNF may modulate brain immune cell infiltration, and prevent or delay neuronal dysfunction in AD. SIGNIFICANCE STATEMENT: Immune cells and cytokines perform specialized functions inside and outside the brain to maintain optimal brain health; but the extent to which their activities change in response to neuronal dysfunction and degeneration is not well understood. Our findings indicate that neutralization of sTNF reduced the age-dependent increase in activated immune cells in Tg mice, while decreasing the overall number of CD4+ T cells. In addition, impaired long-term potentiation (LTP) was rescued by XPro1595 in association with decreased hippocampal Aß plaques. Selective targeting of sTNF holds translational potential to modulate brain immune cell infiltration, dampen neuroinflammation, and prevent or delay neuronal dysfunction in AD.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Inhibidores del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Antiinflamatorios no Esteroideos/farmacología , Encéfalo/metabolismo , Encéfalo/patología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Citocinas/metabolismo , Femenino , Potenciación a Largo Plazo/fisiología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroinmunomodulación/efectos de los fármacos , Neuroinmunomodulación/fisiología , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/metabolismo , Placa Amiloide/patología , Distribución Aleatoria , Técnicas de Cultivo de Tejidos , Factores de Necrosis Tumoral/metabolismoRESUMEN
BACKGROUND: Efforts to identify fluid biomarkers of Parkinson's disease (PD) have intensified in the last decade. As the role of inflammation in PD pathophysiology becomes increasingly recognized, investigators aim to define inflammatory signatures to help elucidate underlying mechanisms of disease pathogenesis and aid in identification of patients with inflammatory endophenotypes that could benefit from immunomodulatory interventions. However, discordant results in the literature and a lack of information regarding the stability of inflammatory factors over a 24-h period have hampered progress. METHODS: Here, we measured inflammatory proteins in serum and CSF of a small cohort of PD (n = 12) and age-matched healthy control (HC) subjects (n = 6) at 11 time points across 24 h to (1) identify potential diurnal variation, (2) reveal differences in PD vs HC, and (3) to correlate with CSF levels of amyloid ß (Aß) and α-synuclein in an effort to generate data-driven hypotheses regarding candidate biomarkers of PD. RESULTS: Despite significant variability in other factors, a repeated measures two-way analysis of variance by time and disease state for each analyte revealed that serum IFNγ, TNF, and neutrophil gelatinase-associated lipocalin (NGAL) were stable across 24 h and different between HC and PD. Regression analysis revealed that C-reactive protein (CRP) was the only factor with a strong linear relationship between CSF and serum. PD and HC subjects showed significantly different relationships between CSF Aß proteins and α-synuclein and specific inflammatory factors, and CSF IFNγ and serum IL-8 positively correlated with clinical measures of PD. Finally, linear discriminant analysis revealed that serum TNF and CSF α-synuclein discriminated between PD and HC with a minimum of 82% sensitivity and 83% specificity. CONCLUSIONS: Our findings identify a panel of inflammatory factors in serum and CSF that can be reliably measured, distinguish between PD and HC, and monitor inflammation as disease progresses or in response to interventional therapies. This panel may aid in generating hypotheses and feasible experimental designs towards identifying biomarkers of neurodegenerative disease by focusing on analytes that remain stable regardless of time of sample collection.
Asunto(s)
Mediadores de Inflamación/sangre , Mediadores de Inflamación/líquido cefalorraquídeo , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/líquido cefalorraquídeo , alfa-Sinucleína/sangre , alfa-Sinucleína/líquido cefalorraquídeo , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Femenino , Humanos , Masculino , Enfermedad de Parkinson/diagnóstico , Índice de Severidad de la EnfermedadRESUMEN
The mechanisms underlying the association between chronic psychological stress, development of metabolic syndrome (MetS), and behavioral impairment in obesity are poorly understood. The aim of the present study was to assess the effects of mild chronic psychological stress on metabolic, inflammatory, and behavioral profiles in a mouse model of diet-induced obesity. We hypothesized that (1) high-fat high-fructose diet (HFHF) and psychological stress would synergize to mediate the impact of inflammation on the central nervous system in the presence of behavioral dysfunction, and that (2) HFHF and stress interactions would impact insulin and lipid metabolism. C57Bl/6 male mice underwent a combination of HFHF and two weeks of chronic psychological stress. MetS-related conditions were assessed using untargeted plasma metabolomics, and structural and immune changes in the gut and liver were evaluated. Inflammation was measured in plasma, liver, gut, and brain. Our results show a complex interplay of diet and stress on gut alterations, energetic homeostasis, lipid metabolism, and plasma insulin levels. Psychological stress and HFHF diet promoted changes in intestinal tight junctions proteins and increases in insulin resistance and plasma cholesterol, and impacted the RNA expression of inflammatory factors in the hippocampus. Stress promoted an adaptive anti-inflammatory profile in the hippocampus that was abolished by diet treatment. HFHF increased hippocampal and hepatic Lcn2 mRNA expression as well as LCN2 plasma levels. Behavioral changes were associated with HFHF and stress. Collectively, these results suggest that diet and stress as pervasive factors exacerbate MetS-related conditions through an inflammatory mechanism that ultimately can impact behavior. This rodent model may prove useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders.
Asunto(s)
Conducta Animal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Fructosa/efectos adversos , Redes Reguladoras de Genes/efectos de los fármacos , Inflamación/genética , Metabolismo/genética , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología , Animales , Peso Corporal , Química Encefálica/genética , Metabolismo Energético/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lipocalina 2/biosíntesis , Lipocalina 2/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Conducta SocialRESUMEN
Progranulin (PGRN) is a secreted glycoprotein expressed in neurons and glia that is implicated in neuronal survival on the basis that mutations in the GRN gene causing haploinsufficiency result in a familial form of frontotemporal dementia (FTD). Recently, a direct interaction between PGRN and tumor necrosis factor receptors (TNFR I/II) was reported and proposed to be a mechanism by which PGRN exerts anti-inflammatory activity, raising the possibility that aberrant PGRN-TNFR interactions underlie the molecular basis for neuroinflammation in frontotemporal lobar degeneration pathogenesis. Here, we report that we find no evidence for a direct physical or functional interaction between PGRN and TNFRs. Using coimmunoprecipitation and surface plasmon resonance (SPR) we replicated the interaction between PGRN and sortilin and that between TNF and TNFRI/II, but not the interaction between PGRN and TNFRs. Recombinant PGRN or transfection of a cDNA encoding PGRN did not antagonize TNF-dependent NFκB, Akt, and Erk1/2 pathway activation; inflammatory gene expression; or secretion of inflammatory factors in BV2 microglia and bone marrow-derived macrophages (BMDMs). Moreover, PGRN did not antagonize TNF-induced cytotoxicity on dopaminergic neuroblastoma cells. Last, co-addition or pre-incubation with various N- or C-terminal-tagged recombinant PGRNs did not alter lipopolysaccharide-induced inflammatory gene expression or cytokine secretion in any cell type examined, including BMDMs from Grn+/- or Grn-/- mice. Therefore, the neuroinflammatory phenotype associated with PGRN deficiency in the CNS is not a direct consequence of the loss of TNF antagonism by PGRN, but may be a secondary response by glia to disrupted interactions between PGRN and Sortilin and/or other binding partners yet to be identified.
Asunto(s)
Citocinas/metabolismo , Regulación de la Expresión Génica/inmunología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Análisis de Varianza , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Granulinas , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Isoquinolinas/metabolismo , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/metabolismo , FN-kappa B/metabolismo , Progranulinas , Unión Proteica/genética , Receptores del Factor de Necrosis Tumoral/genética , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Resonancia por Plasmón de Superficie , TransfecciónRESUMEN
Emerging evidence indicates that high-fat, high carbohydrate diet (HFHC) impacts central pathological features of Alzheimer's disease (AD) across both human incidences and animal models. However, the mechanisms underlying this association are poorly understood. Here, we identify compartment-specific metabolic and inflammatory dysregulations that are induced by HFHC diet in the 5xFAD mouse model of AD pathology. We observe that both male and female 5xFAD mice display exacerbated adiposity, cholesterolemia, and dysregulated insulin signaling. Independent of biological sex, HFHC diet also resulted in altered inflammatory cytokine profiles across the gastrointestinal, circulating, and central nervous systems (CNS) compartments demonstrating region-specific impacts of metabolic inflammation. In male mice, we note that HFHC triggered increases in amyloid beta, an observation not seen in female mice. Interestingly, inhibiting the inflammatory cytokine, soluble tumor necrosis factor (TNF) with the brain-permeant soluble TNF inhibitor XPro1595 was able to restore aspects of HFHC-induced metabolic inflammation, but only in male mice. Targeted transcriptomics of CNS regions revealed that inhibition of soluble TNF was sufficient to alter expression of hippocampal and cortical genes associated with beneficial immune and metabolic responses. Collectively, these results suggest that HFHC diet impairs metabolic and inflammatory pathways in an AD-relevant genotype and that soluble TNF has sex-dependent roles in modulating these pathways across anatomical compartments. Modulation of energy homeostasis and inflammation may provide new therapeutic avenues for AD.
RESUMEN
Spinal cord injury (SCI) results in a plethora of physiological dysfunctions across all body systems, including intestinal dysmotility and atrophy of the enteric nervous system (ENS). Typically, the ENS has capacity to recover from perturbation, so it is unclear why intestinal pathophysiologies persist after traumatic spinal injury. With emerging evidence demonstrating SCI-induced alterations to the gut microbiome composition, we hypothesized that modulation of the gut microbiome could contribute to enteric nervous system recovery after injury. Here, we show that intervention with the dietary fiber, inulin prevents ENS atrophy and limits SCI-induced intestinal dysmotility in mice. However, SCI-associated microbiomes and exposure to specific SCI-sensitive gut microbes are not sufficient to modulate injury-induced intestinal dysmotility. Intervention with microbially-derived short-chain fatty acid (SCFA) metabolites prevents ENS dysfunctions and phenocopies inulin treatment in injured mice, implicating these microbiome metabolites in protection of the ENS. Notably, inulin-mediated resilience is dependent on signaling by the cytokine IL-10, highlighting a critical diet-microbiome-immune axis that promotes ENS resilience following SCI. Overall, we demonstrate that diet and microbially-derived signals distinctly impact recovery of the ENS after traumatic spinal injury. This protective diet-microbiome-immune axis may represent a foundation to uncover etiological mechanisms and future therapeutics for SCI-induced neurogenic bowel.