Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Acta Pharmacol Sin ; 45(4): 738-750, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38097716

RESUMEN

Myocardial hypertrophy is a pathological thickening of the myocardium which ultimately results in heart failure. We previously reported that zonisamide, an antiepileptic drug, attenuated pressure overload-caused myocardial hypertrophy and diabetic cardiomyopathy in murine models. In addition, we have found that the inhibition of proteasome activates glycogen synthesis kinase 3 (GSK-3) thus alleviates myocardial hypertrophy, which is an important anti-hypertrophic strategy. In this study, we investigated whether zonisamide prevented pressure overload-caused myocardial hypertrophy through suppressing proteasome. Pressure overload-caused myocardial hypertrophy was induced in mice by trans-aortic constriction (TAC) surgery. Two days after the surgery, the mice were administered zonisamide (10, 20, 40 mg·kg-1·d-1, i.g.) for four weeks. We showed that zonisamide administration significantly mitigated impaired cardiac function. Furthermore, zonisamide administration significantly inhibited proteasome activity as well as the expression levels of proteasome subunit beta types (PSMB) of the 20 S proteasome (PSMB1, PSMB2 and PSMB5) and proteasome-regulated particles (RPT) of the 19 S proteasome (RPT1, RPT4) in heart tissues of TAC mice. In primary neonatal rat cardiomyocytes (NRCMs), zonisamide (0.3 µM) prevented myocardial hypertrophy triggered by angiotensin II (Ang II), and significantly inhibited proteasome activity, proteasome subunits and proteasome-regulated particles. In Ang II-treated NRCMs, we found that 18α-glycyrrhetinic acid (18α-GA, 2 mg/ml), a proteasome inducer, eliminated the protective effects of zonisamide against myocardial hypertrophy and proteasome. Moreover, zonisamide treatment activated GSK-3 through inhibiting the phosphorylated AKT (protein kinase B, PKB) and phosphorylated liver kinase B1/AMP-activated protein kinase (LKB1/AMPKα), the upstream of GSK-3. Zonisamide treatment also inhibited GSK-3's downstream signaling proteins, including extracellular signal-regulated kinase (ERK) and GATA binding protein 4 (GATA4), both being the hypertrophic factors. Collectively, this study highlights the potential of zonisamide as a new therapeutic agent for myocardial hypertrophy, as it shows potent anti-hypertrophic potential through the suppression of proteasome.


Asunto(s)
Anticonvulsivantes , Bloqueadores de los Canales de Calcio , Cardiomegalia , Glucógeno Sintasa Quinasa 3 , Complejo de la Endopetidasa Proteasomal , Zonisamida , Animales , Ratones , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Cardiomegalia/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3/farmacología , Ratones Endogámicos C57BL , Miocitos Cardíacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Zonisamida/farmacología , Zonisamida/uso terapéutico , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico
2.
Funct Integr Genomics ; 22(1): 89-112, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34870779

RESUMEN

Epigenetic modifications viz. DNA methylation, histone modifications, and RNA-based alterations play a crucial role in the development of cardiovascular diseases. In this study, we investigated DNA methylation with an aim to reveal the epigenetic etiology of heart failure. Sprague-Dawley rats surviving myocardial infarction developed acute heart failure in 1 week. Genomic DNA methylation changes were profiled by bisulfite sequencing, and gene expression levels were analyzed by RNA-seq in failing and sham-operation hearts. A total of 3480 differentially methylated genes in the promoter regions including transcriptional start site and 1934 transcriptome-altered genes were identified in the defected hearts. Common differential genes were enriched by the gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and protein-protein interaction for HF phenotypes. Among these, Mettl11b, HDAC3, HDAC11, ubiquitination-related genes, and snoRNAs are new epigenetic classifiers that had not been reported yet, which may be important regulators in HF.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Insuficiencia Cardíaca , Transcriptoma , Animales , Insuficiencia Cardíaca/genética , Ratas , Ratas Sprague-Dawley
3.
Biomed Pharmacother ; 165: 115117, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37406509

RESUMEN

An increasing body of research suggests cancer-induced cardiovascular diseases, leading to the appearance of an interdisciplinary study known as onco-cardiology. Lung cancer has the highest incidence and mortality. Cardiac dysfunction constitutes a major cause of death in lung cancer patients. However, its mechanism has not been elucidated because suitable animal models that adequately mimic clinical features are lacking. Here, we established a novel chemically induced lung cancer mouse model using benzo[a]pyrene and urethane to recapitulate the general characteristics of cardiac dysfunction caused by lung cancer, the cardiac disorders in the context of the progression of lung cancer were evaluated using echocardiographic and histological approaches. The pathological changes included myocardial ischaemia, pericarditis, cardiac pre-cachexia, and pulmonary artery hypertension. We performed sequencing to detect the tRNA-derived fragments and tRNA-derived stress-induced RNAs (tRFs/tiRNAs) expressions in mouse heart tissue. 22 upregulated and 16 downregulated tRFs/tiRNAs were identified. Subsequently, the top 10 significant results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were presented. The in vitro model was established by exposing neonatal rat cardiomyocytes and myocardial fibroblasts to lung tumour cell-conditioned medium, respectively. Western blotting revealed significant changes in cardiac failure markers (atrial natriuretic peptide and α-myosin heavy chain) and cardiac fibrosis markers (Collagen-1 and Collagen-3). Our model adequately reflects the pathological features of lung cancer-induced cardiac dysfunction. Furthermore, the altered tRF/tiRNA profiles showed great promise as novel targets for therapies. These results might pave the way for research on therapeutic targets in onco-cardiology.


Asunto(s)
Cardiología , Cardiopatías , Neoplasias Pulmonares , Ratas , Ratones , Animales , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Neoplasias Pulmonares/genética , Colágeno
4.
Adv Healthc Mater ; 12(20): e2203177, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36947826

RESUMEN

Traditional starvation treatment strategies, which involve glucose oxidase and drug-induced thrombi, often suffer from aggravated tumor hypoxia and have failed to improve antitumor efficacy in combination with oxygen-dependent photodynamic therapy (PDT). Herein, glucose transporter 1 inhibitor genistein (Gen) and photosensitizer chlorin e6 (Ce6) are integrated to construct carrier-free self-assembled nanoparticles defined as GC NPs, for starvation therapy-amplified PDT of tumor. GC NPs with regular morphology and stability are screened out by component adjustment, while the function of each component is preserved. On the one hand, Gen released from GC NPs can cut off tumor glucose uptake by inhibiting the glucose transporter 1 to restrict tumor growth, achieving starvation therapy. On the other hand, they are able to decrease the amount of oxygen consumed by tumor respiration and amplify the therapeutic effect of PDT. In vitro and in vivo experiments verify the excellent synergistic antitumor therapeutic efficacy of GC NPs without any apparent toxicity. Moreover, fluorescence and photoacoustic imaging provide guidance for in vivo PDT, demonstrating the excellent tumor enrichment efficiency of GC NPs. It is believed that this starvation therapy-amplified PDT strategy by carrier-free self-assembled GC NPs holds promising clinical prospects.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Fotoquimioterapia/métodos , Transportador de Glucosa de Tipo 1 , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno , Nanopartículas/uso terapéutico , Porfirinas/farmacología , Neoplasias/tratamiento farmacológico
5.
Int J Nanomedicine ; 18: 8001-8021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164266

RESUMEN

Nucleic acids have emerged as promising therapeutic agents for many diseases because of their potential in modulating gene expression. However, the delivery of nucleic acids remains a significant challenge in gene therapy. Although viral vectors have shown high transfection efficiency, concerns regarding teratogenicity or carcinogenicity have been raised. Non-viral vehicles, including cationic polymers, liposomes, and inorganic materials possess advantages in terms of safety, ease of preparation, and low cost. Nevertheless, they also face limitations related to immunogenicity, quick clearance in vivo, and lack of targeting specificity. On the other hand, bioinspired strategies have shown increasing potential in the field of drug delivery, yet there is a lack of comprehensive reviews summarizing the rapid development of bioinspired nanoparticles based on the cell membrane camouflage to construct the nucleic acids vehicles. Herein, we enumerated the current difficulties in nucleic acid delivery with various non-viral vehicles and provided an overview of bioinspired strategies for nucleic acid delivery.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Transfección , Liposomas , Membrana Celular
6.
MedComm (2020) ; 4(3): e293, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37287755

RESUMEN

The balance of M1/M2 macrophage polarization plays an important role in regulating inflammation during acute lung injury (ALI). Yes-associated protein (YAP1) is a key protein in the Hippo-YAP1 signaling pathway and is involved in macrophage polarization. We aimed to determine the role of YAP1 in pulmonary inflammation following ALI and regulation of M1/M2 polarization. Pulmonary inflammation and injury with upregulation of YAP1 were observed in lipopolysaccharide (LPS)-induced ALI. The YAP1 inhibitor, verteporfin, attenuated pulmonary inflammation and improved lung function in ALI mice. Moreover, verteporfin promoted M2 polarization and inhibited M1 polarization in the lung tissues of ALI mice and LPS-treated bone marrow-derived macrophages (BMMs). Additionally, siRNA knockdown confirmed that silencing Yap1 decreased chemokine ligand 2 (CCL2) expression and promoted M2 polarization, whereas silencing large tumor suppressor 1 (Lats1) increased CCL2 expression and induced M1 polarization in LPS-treated BMMs. To investigate the role of inflammatory macrophages in ALI mice, we performed single-cell RNA sequencing of macrophages isolated from the lungs. Thus, verteporfin could activate the immune-inflammatory response, promote the potential of M2 macrophages, and alleviate LPS-induced ALI. Our results reveal a novel mechanism where YAP1-mediated M2 polarization alleviates ALI. Therefore, inhibition of YAP1 may be a target for the treatment of ALI.

7.
MedComm (2020) ; 4(4): e273, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37521428

RESUMEN

Gene therapy has emerged as a potential approach for lung cancer therapy. However, the application of gene therapy is still limited by their properties, such as low specificity to the cancer cells, negatively charged groups, short systemic circulation time, and rapid degradation by nucleases. The progression of lung adenocarcinoma (LUAD) can be promoted through the methylation process of miR-148a-3p promoter, as confirmed by our previous research. In the current study, we are the first to design a mirrored Arg-Gly-Asp (RGD)-modified cationic peptide (RD24) as a microRNA (miRNA) vehicle, which enabled to pack the miRNA (miR-148a-3p) efficiently and generate RD24/miR-148a-3p nanoparticles (RPRIN) by self-assembling. RPRIN exhibited a high transfection efficiency in lung cancer cells via the conjugation between RGD and integrins on the surface of lung cancer cells. Furthermore, RD24 showed matrix metallopeptidase 2 (MMP2) responsiveness, which improved lung cancer cell inhibition induced by the miRNA intracellularly. In addition, RPRIN exhibits several advantages, such as prolonged circulation duration, reduced toxicity, and immune escape. Experiments conducted both in vitro and in vivo revealed that RPRIN effectively suppressed the growth and progression of lung cancer. Thus, the mirrored RGD-modified cationic peptide showed great potential in transducing miRNA for lung cancer therapy.

8.
J Pharm Biomed Anal ; 197: 113969, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33636646

RESUMEN

Previous studies have reported that nucleic acid methylation is a critical element in cardiovascular disease, and most studies mainly focused on sequencing and biochemical research. Here we developed an Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/ MS) method for the quantification analysis of the dissociative epigenetic modified nucleosides (5mdC, 5mrC, m6A) in Myocardial Infarction (MI) SD rats from different periods (1 week, 4 weeks, 8 weeks) after the surgery. The samples for analysis were obtained from heart tissue and blood of the rats. All the quantification results are compared with the sham-operated group. Total RNA and DNA were isolated by enzymatic hydrolytic methods before the UPLC-MS/MS analysis. The statistical analysis demonstrates the dynamic changes of modified nucleosides in MI rats, and it showed good specificity, accuracy, stability and less samples were needed in the method. In this paper, we discovered that the concentration of 5mdC, 5mrC, m6A from heart tissue significantly increased at 8 weeks after the surgery. Furthermore, UPLC-MS/MS helps us observe the similar change of the concentration of those 3 methylated biomarkers in peripheral blood after 8 weeks. The result shows that the dynamic process of those 3 methylated biomarkers in peripheral blood is related to the content of methylated biomarkers from the heart tissue. Based on the scientific evidence available, we proved that the methylation of genetic materials in peripheral blood is similar to myocardial infarction tissue. The relation between them indicates that peripheral blood could be a promising alternative to the heart tissue which monitor the level of methylation and MI diagnosis-aided.


Asunto(s)
ARN , Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Metilación de ADN , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA