Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.417
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(12): 3163-3177.e21, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33964209

RESUMEN

Cancer cell genetic variability and similarity to host cells have stymied development of broad anti-cancer therapeutics. Our innate immune system evolved to clear genetically diverse pathogens and limit host toxicity; however, whether/how innate immunity can produce similar effects in cancer is unknown. Here, we show that human, but not murine, neutrophils release catalytically active neutrophil elastase (ELANE) to kill many cancer cell types while sparing non-cancer cells. ELANE proteolytically liberates the CD95 death domain, which interacts with histone H1 isoforms to selectively eradicate cancer cells. ELANE attenuates primary tumor growth and produces a CD8+T cell-mediated abscopal effect to attack distant metastases. Porcine pancreatic elastase (ELANE homolog) resists tumor-derived protease inhibitors and exhibits markedly improved therapeutic efficacy. Altogether, our studies suggest that ELANE kills genetically diverse cancer cells with minimal toxicity to non-cancer cells, raising the possibility of developing it as a broad anti-cancer therapy.


Asunto(s)
Carcinogénesis/patología , Elastasa de Leucocito/metabolismo , Neoplasias/enzimología , Neoplasias/patología , Regulación Alostérica/efectos de los fármacos , Animales , Linfocitos T CD8-positivos/inmunología , Carcinogénesis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteína Catiónica del Eosinófilo/metabolismo , Histonas/metabolismo , Humanos , Ratones , Neoplasias/inmunología , Neutrófilos/efectos de los fármacos , Neutrófilos/enzimología , Elastasa Pancreática/metabolismo , Inhibidores de Proteasas/farmacología , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Porcinos , Receptor fas/química , Receptor fas/metabolismo
2.
Cell ; 182(1): 226-244.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649875

RESUMEN

Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteogenómica , Fumar/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinógenos/toxicidad , Estudios de Cohortes , Citosina Desaminasa/metabolismo , Asia Oriental , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Metaloproteinasas de la Matriz/metabolismo , Mutación/genética , Análisis de Componente Principal
3.
Nature ; 616(7957): 581-589, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020023

RESUMEN

General approaches for designing sequence-specific peptide-binding proteins would have wide utility in proteomics and synthetic biology. However, designing peptide-binding proteins is challenging, as most peptides do not have defined structures in isolation, and hydrogen bonds must be made to the buried polar groups in the peptide backbone1-3. Here, inspired by natural and re-engineered protein-peptide systems4-11, we set out to design proteins made out of repeating units that bind peptides with repeating sequences, with a one-to-one correspondence between the repeat units of the protein and those of the peptide. We use geometric hashing to identify protein backbones and peptide-docking arrangements that are compatible with bidentate hydrogen bonds between the side chains of the protein and the peptide backbone12. The remainder of the protein sequence is then optimized for folding and peptide binding. We design repeat proteins to bind to six different tripeptide-repeat sequences in polyproline II conformations. The proteins are hyperstable and bind to four to six tandem repeats of their tripeptide targets with nanomolar to picomolar affinities in vitro and in living cells. Crystal structures reveal repeating interactions between protein and peptide interactions as designed, including ladders of hydrogen bonds from protein side chains to peptide backbones. By redesigning the binding interfaces of individual repeat units, specificity can be achieved for non-repeating peptide sequences and for disordered regions of native proteins.


Asunto(s)
Péptidos , Ingeniería de Proteínas , Proteínas , Secuencia de Aminoácidos , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Proteínas/química , Proteínas/metabolismo , Ingeniería de Proteínas/métodos , Enlace de Hidrógeno , Unión Proteica , Pliegue de Proteína , Conformación Proteica
4.
EMBO J ; 41(15): e110472, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35686621

RESUMEN

Microtubules tightly regulate various cellular activities. Our understanding of microtubules is largely based on experiments using microtubule-targeting agents, which, however, are insufficient to dissect the dynamic mechanisms of specific microtubule populations, due to their slow effects on the entire pool of microtubules. To overcome this technological limitation, we have used chemo and optogenetics to disassemble specific microtubule subtypes, including tyrosinated microtubules, primary cilia, mitotic spindles, and intercellular bridges, by rapidly recruiting engineered microtubule-cleaving enzymes onto target microtubules in a reversible manner. Using this approach, we show that acute microtubule disassembly swiftly halts vesicular trafficking and lysosomal dynamics. It also immediately triggers Golgi and ER reorganization and slows the fusion/fission of mitochondria without affecting mitochondrial membrane potential. In addition, cell rigidity is increased after microtubule disruption owing to increased contractile stress fibers. Microtubule disruption furthermore prevents cell division, but does not cause cell death during interphase. Overall, the reported tools facilitate detailed analysis of how microtubules precisely regulate cellular architecture and functions.


Asunto(s)
Microtúbulos , Huso Acromático , Interfase , Microtúbulos/metabolismo , Huso Acromático/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(19): e2215005120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126685

RESUMEN

Genome-wide association studies (GWAS) have identified genetic risk loci for age-related macular degeneration (AMD) on the chromosome 10q26 (Chr10) locus and are tightly linked: the A69S (G>T) rs10490924 single-nucleotide variant (SNV) and the AATAA-rich insertion-deletion (indel, del443/ins54), which are found in the age-related maculopathy susceptibility 2 (ARMS2) gene, and the G512A (G>A) rs11200638 SNV, which is found in the high-temperature requirement A serine peptidase 1 (HTRA1) promoter. The fourth variant is Y402H complement factor H (CFH), which directs CFH signaling. CRISPR manipulation of retinal pigment epithelium (RPE) cells may allow one to isolate the effects of the individual SNV and thus identify SNV-specific effects on cell phenotype. Clustered regularly interspaced short palindromic repeats (CRISPR) editing demonstrates that rs10490924 raised oxidative stress in induced pluripotent stem cell (iPSC)-derived retinal cells from patients with AMD. Sodium phenylbutyrate preferentially reverses the cell death caused by ARMS2 rs10490924 but not HTRA1 rs11200638. This study serves as a proof of concept for the use of patient-specific iPSCs for functional annotation of tightly linked GWAS to study the etiology of a late-onset disease phenotype. More importantly, we demonstrate that antioxidant administration may be useful for reducing reactive oxidative stress in AMD, a prevalent late-onset neurodegenerative disorder.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Macular , Humanos , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas/metabolismo , Serina Endopeptidasas/genética , Estudio de Asociación del Genoma Completo , Degeneración Macular/genética , Estrés Oxidativo , Polimorfismo de Nucleótido Simple , Factor H de Complemento/genética , Genotipo
6.
PLoS Genet ; 18(10): e1010314, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36191002

RESUMEN

Regulation of immunity throughout an organism is critical for host defense. Previous studies in the nematode Caenorhabditis elegans have described an "ON/OFF" immune switch comprised of the antagonistic paralogs PALS-25 and PALS-22, which regulate resistance against intestinal and epidermal pathogens. Here, we identify and characterize a PALS-25 gain-of-function mutant protein with a premature stop (Q293*), which we find is freed from physical repression by its negative regulator, the PALS-22 protein. PALS-25(Q293*) activates two related gene expression programs, the Oomycete Recognition Response (ORR) against natural pathogens of the epidermis, and the Intracellular Pathogen Response (IPR) against natural intracellular pathogens of the intestine. A subset of ORR/IPR genes is upregulated in pals-25(Q293*) mutants, and they are resistant to oomycete infection in the epidermis, and microsporidia and virus infection in the intestine, but without compromising growth. Surprisingly, we find that activation of PALS-25 seems to primarily stimulate the downstream bZIP transcription factor ZIP-1 in the epidermis, with upregulation of gene expression in both the epidermis and in the intestine. Interestingly, we find that PALS-22/25-regulated epidermal-to-intestinal signaling promotes resistance to the N. parisii intestinal pathogen, demonstrating cross-tissue protective immune induction from one epithelial tissue to another in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Alelos , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Mutación con Ganancia de Función , Inmunidad Innata/genética , Proteínas Mutantes/genética
7.
Proc Natl Acad Sci U S A ; 119(43): e2210122119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36256819

RESUMEN

Hyperexcitability of brain circuits is a common feature of autism spectrum disorders (ASDs). Genetic deletion of a chromatin-binding protein, retinoic acid induced 1 (RAI1), causes Smith-Magenis syndrome (SMS). SMS is a syndromic ASD associated with intellectual disability, autistic features, maladaptive behaviors, overt seizures, and abnormal electroencephalogram (EEG) patterns. The molecular and neural mechanisms underlying abnormal brain activity in SMS remain unclear. Here we show that panneural Rai1 deletions in mice result in increased seizure susceptibility and prolonged hippocampal seizure duration in vivo and increased dentate gyrus population spikes ex vivo. Brain-wide mapping of neuronal activity pinpointed selective cell types within the limbic system, including the hippocampal dentate gyrus granule cells (dGCs) that are hyperactivated by chemoconvulsant administration or sensory experience in Rai1-deficient brains. Deletion of Rai1 from glutamatergic neurons, but not from gamma-aminobutyric acidergic (GABAergic) neurons, was responsible for increased seizure susceptibility. Deleting Rai1 from the Emx1Cre-lineage glutamatergic neurons resulted in abnormal dGC properties, including increased excitatory synaptic transmission and increased intrinsic excitability. Our work uncovers the mechanism of neuronal hyperexcitability in SMS by identifying Rai1 as a negative regulator of dGC intrinsic and synaptic excitability.


Asunto(s)
Síndrome de Smith-Magenis , Ratones , Animales , Síndrome de Smith-Magenis/genética , Transactivadores/genética , Transactivadores/metabolismo , Fenotipo , Modelos Animales de Enfermedad , Cromatina , Hipocampo/metabolismo , Convulsiones/genética , Tretinoina
8.
J Biol Chem ; 299(1): 102728, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410433

RESUMEN

Haploinsufficiency in retinoic acid induced 1 (RAI1) causes Smith-Magenis syndrome (SMS), a severe neurodevelopmental disorder characterized by neurocognitive deficits and obesity. Currently, curative treatments for SMS do not exist. Here, we take a recombinant adeno-associated virus (rAAV)-clustered regularly interspaced short palindromic repeats activation (CRISPRa) approach to increase expression of the remaining intact Rai1 allele. Building upon our previous work that found the paraventricular nucleus of hypothalamus plays a central role in SMS pathogenesis, we performed paraventricular nucleus of hypothalamus-specific rAAV-CRISPRa therapy by increasing endogenous Rai1 expression in SMS (Rai1±) mice. We found that rAAV-CRISPRa therapy rescues excessive repetitive behavior, delays the onset of obesity, and partially reduces hyperphagia in SMS mice. Our work provides evidence that rAAV-CRISPRa therapy during early adolescence can boost the expression of healthy Rai1 allele and modify disease progression in a mouse model of Smith-Magenis syndrome.


Asunto(s)
Síndrome de Smith-Magenis , Ratones , Animales , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/terapia , Síndrome de Smith-Magenis/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Haploinsuficiencia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Obesidad/genética
9.
Plant J ; 114(2): 279-292, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36738107

RESUMEN

Terrestrial plants emit volatiles into the atmosphere to attract both pollinators and the enemies of herbivores, for defense. Phalaenopsis bellina is a scented orchid species in which the main scent components are monoterpenes, including linalool and geraniol, and their derivatives. Here, we investigated whether ABC transporters are involved in floral scent emission. We carried out whole-genome identification of ABC transporter-related genes using four floral transcriptomics libraries of P. bellina. We identified 86 ABC subfamily G genes related to terpenoid transport. After comparing the gene expression patterns of P. bellina with that of Phalaenopsis aphrodite subsp. formosana, a scentless species, followed by gene-to-gene correlation analysis, PbABCG1 and PbABCG2 were selected. The temporal expression of both PbABCG1 and PbABCG2 was highly correlated with that of the key enzyme PbGDPS and the major transcription factor PbbHLH4 in monoterpene biosynthesis, with optimal expression on day 5 post-anthesis. Spatial gene expression analysis showed that PbABCG1 was highly expressed in sepals, whereas PbABCG2 was expressed in the lip. Subcellular localization with a GFP fusion protein revealed that both PbABCG1 and PbABCG2 are cytoplasmic membrane proteins. Co-downregulation of PbABCG1 and PbABCG2 using both double-strand RNA interference and tobacco rattle virus-based gene silencing led to a significant decrease in monoterpene emission, accompanied by an increase in the internal monoterpene pools. Furthermore, ectopic expression of PbABCG1 and PbABCG2 in an ABC16- mutant yeast strain rescued its tolerance to geraniol. Altogether, our results indicate that PbABCG1 and PbABCG2 play substantial roles in monoterpene transport/emission in P. bellina floral scent.


Asunto(s)
Monoterpenos , Orchidaceae , Monoterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/metabolismo , Orchidaceae/genética
10.
Am J Physiol Endocrinol Metab ; 326(5): E547-E554, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38363735

RESUMEN

Type 2 diabetes (T2D) prevalence in adults at a younger age has increased but the disease status may go unnoticed. This study aimed to determine whether the onset age and subsequent diabetic complications can be attributed to the polygenic architecture of T2D in the Taiwan Han population. A total of 9,627 cases with T2D and 85,606 controls from the Taiwan Biobank were enrolled. Three diabetic polygenic risk scores (PRSs), PRS_EAS and PRS_EUR, and a trans-ancestry PRS (PRS_META), calculated using summary statistic from East Asian and European populations. The onset age was identified by linking to the National Taiwan Insurance Research Database, and the incidence of different diabetic complications during follow-up was recorded. PRS_META (7.4%) explained a higher variation for T2D status. And the higher percentile of PRS is also correlated with higher percentage of T2D family history and prediabetes status. More, the PRS was negatively associated with onset age (ß = -0.91 yr), and this was more evident among males (ß = -1.11 vs. -0.76 for males and females, respectively). The hazard ratio of diabetic retinopathy (DR) and diabetic foot were significantly associated with PRS_EAS and PRS_META, respectively. However, the PRS was not associated with other diabetic complications, including diabetic nephropathy, cardiovascular disease, and hypertension. Our findings indicated that diabetic PRS which combined susceptibility variants from cross-population could be used as a tool for early screening of T2D, especially for high-risk populations, such as individuals with high genetic risk, and may be associated with the risk of complications in subjects with T2D. NEW & NOTEWORTHY Our findings indicated that diabetic polygenic risk score (PRS) which combined susceptibility variants from Asian and European population affect the onset age of type 2 diabetes (T2D) and could be used as a tool for early screening of T2D, especially for individuals with high genetic risk, and may be associated with the risk of diabetic complications among people in Taiwan.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Masculino , Adulto , Femenino , Humanos , Diabetes Mellitus Tipo 2/genética , Puntuación de Riesgo Genético , Taiwán , Predisposición Genética a la Enfermedad , Edad de Inicio , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo , Factores de Riesgo
11.
Hum Mol Genet ; 31(14): 2438-2451, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35195241

RESUMEN

Retinitis pigmentosa (RP) is caused by one of many possible gene mutations. The National Institutes of Health recommends high daily doses of vitamin A palmitate for RP patients. There is a critical knowledge gap surrounding the therapeutic applicability of vitamin A to patients with the different subtypes of the disease. Here, we present a case report of a patient with RP caused by a p.D190N mutation in Rhodopsin (RHO) associated with abnormally high quantitative autofluorescence values after long-term vitamin A supplementation. We investigated the effects of vitamin A treatment strategy on RP caused by the p.D190N mutation in RHO by exposing Rhodopsin p.D190N (RhoD190N/+) and wild-type (WT) mice to experimental vitamin A-supplemented and standard control diets. The patient's case suggests that the vitamin A treatment strategy should be further studied to determine its effect on RP caused by p.D190N mutation in RHO and other mutations. Our mouse experiments revealed that RhoD190N/+ mice on the vitamin A diet exhibited higher levels of autofluorescence and lipofuscin metabolites compared to WT mice on the same diet and isogenic controls on the standard control diet. Vitamin A supplementation diminished photoreceptor function in RhoD190N/+ mice while preserving cone response in WT mice. Our findings highlight the importance of more investigations into the efficacy of clinical treatments like vitamin A for patients with certain genetic subtypes of disease and of genotyping in the precision care of inherited retinal degenerations.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Animales , Suplementos Dietéticos , Ratones , Mutación , Degeneración Retiniana/genética , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Vitamina A
12.
Small ; 20(3): e2303916, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37705134

RESUMEN

The induction of anti-drug antibody (ADA) is a formidable challenge for protein-based therapy. Trichosanthin (TCS) as a class of ribosome-inactivating proteins is widely studied in tumor treatment. However, the immunogenicity can induce the formation of ADA, which can cause hypersensitivity reactions and neutralize the efficacy of TCS, thus limiting its clinical application in cancer therapy. Here, a promising solution to this issue is presented by co-administration of the rapamycin nanoparticles and TCS. PEGylated rapamycin amphiphilic molecule is designed and synthesized as a prodrug and a delivery carrier, which can self-assemble into a nanoparticle system with encapsulation of free rapamycin, a hydrophobic drug. It is found that co-injection of the PEGylated rapamycin nanoparticles and TCS could mitigate the formation of anti-TCS antibody via inducing durable immunological tolerance. Importantly, the combination of TCS and the rapamycin nanoparticles has an enhanced effect on inhibit the growth of breast cancer. This work provides a promising approach for protein toxin-based anticancer therapy and for promoting the clinical translation.


Asunto(s)
Nanopartículas , Tricosantina , Humanos , Sirolimus/farmacología , Sirolimus/uso terapéutico , Formación de Anticuerpos , Tricosantina/farmacología , Tricosantina/uso terapéutico , Anticuerpos , Polietilenglicoles
13.
Cerebellum ; 23(2): 401-417, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36943575

RESUMEN

Spinocerebellar ataxias (SCAs) are a large and diverse group of autosomal-dominant neurodegenerative diseases. No drugs have been approved for these relentlessly progressive and fatal SCAs. Our previous studies indicate that oxidative stress, neuroinflammation, and neuronal apoptosis are elevated in the SCA17 mice, which are the main therapeutic targets of hyperbaric oxygen treatment (HBOT). HBOT is considered to be an alternative and less invasive therapy for SCAs. In this study, we evaluated the HBOT (2.2 ATA for 14 days) effect and the persistence for the management of SCA17 mice and their wild-type littermates. We found HBOT attenuated the motor coordination and cognitive impairment of SCA17 mice and which persisted for about 1 month after the treatment. The results of several biochemistry and liver/kidney hematoxylin and eosin staining show the HBOT condition has no obvious toxicity in the mice. Immunostaining analyses show that the neuroprotective effect of HBOT could be through the promotion of BDNF production and the amelioration of neuroinflammation. Surprisingly, HBOT executes different effects on the male and female SCA17 mice, including the reduction of neuroinflammation and activation of CaMKII and ERK. This study suggests HBOT is a potential alternative therapeutic treatment for SCA17. Accumulated findings have revealed the similarity in disease pathomechanisms and possible therapeutic strategies in polyQ diseases; therefore, HBOT could be an optional treatment as well as the other polyQ diseases.


Asunto(s)
Disfunción Cognitiva , Oxigenoterapia Hiperbárica , Péptidos , Ataxias Espinocerebelosas , Ratones , Masculino , Femenino , Animales , Oxigenoterapia Hiperbárica/métodos , Enfermedades Neuroinflamatorias , Disfunción Cognitiva/terapia , Ataxias Espinocerebelosas/terapia , Ataxias Espinocerebelosas/tratamiento farmacológico
14.
Brain Behav Immun ; 120: 413-429, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925413

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by involuntary movements, cognitive deficits, and psychiatric symptoms. Currently, there is no cure, and only limited treatments are available to manage the symptoms and to slow down the disease's progression. The molecular and cellular mechanisms of HD's pathogenesis are complex, involving immune cell activation, altered protein turnover, and disturbance in brain energy homeostasis. Microglia have been known to play a dual role in HD, contributing to neurodegeneration through inflammation but also enacting neuroprotective effects by clearing mHTT aggregates. However, little is known about the contribution of microglial metabolism to HD progression. This study explores the impact of a microglial metabolite transporter, equilibrative nucleoside transporter 3 (ENT3), in HD. Known as a lysosomal membrane transporter protein, ENT3 is highly enriched in microglia, with its expression correlated with HD severity. Using the R6/2 ENT3-/- mouse model, we found that the deletion of ENT3 increases microglia numbers yet worsens HD progression, leading to mHTT accumulation, cell death, and disturbed energy metabolism. These results suggest that the delicate balance between microglial metabolism and function is crucial for maintaining brain homeostasis and that ENT3 has a protective role in ameliorating neurodegenerative processes.


Asunto(s)
Modelos Animales de Enfermedad , Progresión de la Enfermedad , Enfermedad de Huntington , Microglía , Proteínas de Transporte de Nucleósidos , Animales , Humanos , Masculino , Ratones , Encéfalo/metabolismo , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Proteínas de Transporte de Nucleósidos/metabolismo , Proteínas de Transporte de Nucleósidos/genética
15.
Nitric Oxide ; 147: 1-5, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547960

RESUMEN

Endotoxin tolerance (ET) is the hyporesponsiveness to lipopolysaccharide (LPS) after prior exposure. It is characterized by the downregulation of pro-inflammatory cytokine levels. Although ET protects against inflammation, its abolishment or recovery is critical for immunity. Nitric oxide (NO) plays various roles in the development of ET; however, its specific role in ET recovery remains unknown. To induce ET, RAW264.7 cells (a murine macrophage cell line) were pre-exposed to LPS (LPS1, 100 ng/mL for 24 h) and subsequently re-stimulated with LPS (LPS2, 100 ng/mL for 24 h). Expression of cytokines, NO, nitrite and inducible NO synthase (iNOS) were measured after 0, 12, 24, and 36 h of resting after LPS1 treatment with or without the iNOS-specific inhibitor, 1400W. LPS2-induced tumor necrosis factor-⍺ (TNF-⍺) and interleukin-6 (IL-6) were downregulated after LPS1 treatment, confirming the development of ET. Notably, TNF-⍺ and IL-6 levels spontaneously rebounded after 12-24 h of resting following LPS1 treatment. In contrast, levles of NO, nitrite and iNOS increased during ET development and decreased during ET recovery. Moreover, 1400W inhibited ET development and blocked the early production of NO (<12 h) during ET recovery. Our findings suggest a negative correlation between iNOS-induced NO and cytokine levels in the abolishment of ET.


Asunto(s)
Lipopolisacáridos , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico , Factor de Necrosis Tumoral alfa , Animales , Óxido Nítrico/metabolismo , Ratones , Lipopolisacáridos/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7 , Interleucina-6/metabolismo , Endotoxinas/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
16.
Pediatr Res ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349820

RESUMEN

BACKGROUND: To evaluate the association between maternal MVCs during pregnancy and neurodevelopmental disorders (NDDs, including intellectual disability, ADHD, ASD, and infantile cerebral palsy) in children. METHODS: This population-based cohort of live births in Taiwan was analyzed, comparing children born to mothers involved in MVCs during pregnancy with those without such exposure. Children were linked to the insurance database to identify the possible diagnosis of NDDs. The Cox proportional hazards regression model was used to estimate the relative hazards. RESULTS: A total of 19,277 children with maternal MVCs and 76,015 children without exposure were included. Children exposed to maternal MVCs during the first two trimesters or whose mothers sustained mild to severe injuries showed a higher risk of intellectual disability. Severe maternal injuries also increased the risk of infantile cerebral palsy (aHR = 3.86; 1.27-11.78). MVCs in the third trimester, or mild maternal injuries, were associated with a higher risk of ASD (third trimester: aHR = 1.40; 1.04-1.87; mild injuries: aHR = 1.38; 1.09-1.74). CONCLUSION: Children exposed to maternal MVCs with severe injuries had a higher risk of intellectual disability and cerebral palsy. Third-trimester exposure may increase the risk of ASD. However, these findings should be interpreted cautiously as genetic factors may contribute to the observed association. IMPACT: There is some evidence linking maternal MVCs during pregnancy to the development of neurodevelopmental disorders in children. Children of mothers with severely injured were more likely to suffer from infantile cerebral palsy and intellectual disability. The risk of autism spectrum disorder is higher in children whose mothers are involved in MVCs during the late stage of pregnancy, and there is also an increased risk of intellectual disability during the first two trimesters.

17.
EMBO Rep ; 23(8): e54265, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35766227

RESUMEN

The aggressive nature and poor prognosis of lung cancer led us to explore the mechanisms driving disease progression. Utilizing our invasive cell-based model, we identified methylthioadenosine phosphorylase (MTAP) and confirmed its suppressive effects on tumorigenesis and metastasis. Patients with low MTAP expression display worse overall and progression-free survival. Mechanistically, accumulation of methylthioadenosine substrate in MTAP-deficient cells reduce the level of protein arginine methyltransferase 5 (PRMT5)-mediated symmetric dimethylarginine (sDMA) modification on proteins. We identify vimentin as a dimethyl-protein whose dimethylation levels drop in response to MTAP deficiency. The sDMA modification on vimentin reduces its protein abundance but trivially affects its filamentous structure. In MTAP-deficient cells, lower sDMA modification prevents ubiquitination-mediated vimentin degradation, thereby stabilizing vimentin and contributing to cell invasion. MTAP and PRMT5 negatively correlate with vimentin in lung cancer samples. Taken together, we propose a mechanism for metastasis involving vimentin post-translational regulation.


Asunto(s)
Neoplasias Pulmonares , Purina-Nucleósido Fosforilasa , Humanos , Neoplasias Pulmonares/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Purina-Nucleósido Fosforilasa/metabolismo , Vimentina/genética
18.
Curr Hypertens Rep ; 26(5): 201-211, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460066

RESUMEN

PURPOSE OF REVIEW: The effect of continuous positive airway pressure (CPAP) on resistant hypertension in patients at high risk with obstructive sleep apnea (OSA) needs further investigation. We aimed to determine the effect of CPAP on blood pressure in patients with resistant hypertension and OSA. Databases including PubMed, EMBASE, MEDLINE, the Cochrane Library, and CMB were searched. Data were pooled using a random-effects or fixed-effects model to derive weighted mean differences (WMDs) and 95% confidence intervals (CIs). RECENT FINDINGS: A total of 12 trials and 718 participants were included. Compared with control, CPAP significantly reduced 24-h systolic blood pressure (SBP) (WMD: - 5.92 mmHg [ - 8.72, - 3.11]; P<0.001), 24-h diastolic blood pressure (DBP) (WMD: - 4.44 mmHg [- 6.26 , - 2.62]; P <0.001),  daytime SBP (WMD: - 5.76 mmHg [ - 9.16, - 2.36]; P <0.001),  daytime DBP (WMD: - 3.92 mmHg [- 5.55, - 2.30];  nighttime SBP (WMD: - 4.87 mmHg [ - 7.96 , - 1.78]; P = 0.002), and nighttime DBP (WMD: - 2.05 mmHg [- 2.99, - 1.11]; P<0.001) in patients with resistant hypertension and OSA. CPAP improved the blood pressure both in the short (<3 months) and long term (≥ 3 months). No significant impact on mean heart rate was noted (WMD: -2.76 beats per min [- 7.50, 1.97]; P = 0.25). CPAP treatment was associated with BP reduction in patients with resistant hypertension and OSA.


Asunto(s)
Presión Sanguínea , Presión de las Vías Aéreas Positiva Contínua , Hipertensión , Apnea Obstructiva del Sueño , Humanos , Apnea Obstructiva del Sueño/terapia , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/complicaciones , Presión de las Vías Aéreas Positiva Contínua/métodos , Hipertensión/fisiopatología , Hipertensión/terapia , Presión Sanguínea/fisiología , Resultado del Tratamiento , Antihipertensivos/uso terapéutico
19.
Pediatr Blood Cancer ; 71(9): e31176, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38967585

RESUMEN

INTRODUCTION: Neuroblastoma is a pediatric malignancy with heterogeneous clinical outcomes. Our aim was to identify prognostic genetic markers for patients with neuroblastoma, who were treated with the Taiwan Pediatric Oncology Group (TPOG) neuroblastoma N2002 protocol, to improve risk stratification and inform treatment. METHODS: Our analysis was based on 53 primary neuroblastoma specimens, diagnosed pre-chemotherapy, and 11 paired tumor relapse specimens. Deep sequencing of 113 target genes was performed using a custom panel. Multiplex ligation-dependent probe amplification was performed to identify clinical outcomes related to copy-number variations. RESULTS: We identified 128 variations associated with survival, with the number of variations being higher in the relapse than that in the diagnostic specimen (p = .03). The risk of event and mortality was higher among patients with a tumor mutational burden ≥10 than that in patients with a lower burden (p < .0001). Multivariate analysis identified tumor mutational burden, MYCN amplification, and chromosome 3p deletion as significant prognostic factors, independent of age at diagnosis, sex, and tumor stage. The 5-year event-free survival and overall survival rate was lower among patients with high tumor burden than in patients with low tumor burden. Furthermore, there was no survival of patients with an ALK F1147L variation at 5 years after diagnosis. CONCLUSIONS: Genome sequencing to determine the tumor mutational burden and ALK variations can improve the risk classification of neuroblastoma and inform treatment.


Asunto(s)
Mutación , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/mortalidad , Neuroblastoma/patología , Masculino , Femenino , Preescolar , Lactante , Niño , Pronóstico , Biomarcadores de Tumor/genética , Tasa de Supervivencia , Estudios de Seguimiento , Variaciones en el Número de Copia de ADN , Carga Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Adolescente
20.
Circ J ; 88(5): 663-671, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325819

RESUMEN

BACKGROUND: Complications arising from transcatheter closure of perimembranous ventricular septal defects (pmVSD) in children, such as residual shunts and aortic regurgitation (AR), have been observed. However, the associated risk factors remain unclear. This study identified risk factors linked with residual shunts and AR following transcatheter closure of pmVSD in children aged 2-12 years. METHODS AND RESULTS: The medical records of 63 children with pmVSD and a pulmonary-to-systemic blood flow ratio <2.0 who underwent transcatheter closure between 2011 and 2018 were analyzed with a minimum 3-year follow-up. The success rate of transcatheter closure was 98.4%, with no emergency surgery, permanent high-degree atrioventricular block, or mortality. Defects ≥4.5 mm had significantly higher odds of persistent residual shunt (odds ratio [OR] 6.85; P=0.03). The use of an oversize device (≥1.5 mm) showed a trend towards reducing residual shunts (OR 0.23; P=0.06). Age <4 years (OR 27.38; 95% confidence interval [CI] 2.33-321.68) and perimembranous outlet-type VSD (OR 11.94, 95% CI 1.10-129.81) were independent risk factors for AR progression after closure. CONCLUSIONS: Careful attention is crucial for pmVSDs ≥4.5 mm to prevent persistent residual shunts in transcatheter closure. Assessing AR risk, particularly in children aged <4 years, is essential while considering the benefits of pmVSD closure.


Asunto(s)
Cateterismo Cardíaco , Defectos del Tabique Interventricular , Humanos , Defectos del Tabique Interventricular/cirugía , Preescolar , Niño , Factores de Riesgo , Masculino , Femenino , Cateterismo Cardíaco/efectos adversos , Estudios Retrospectivos , Dispositivo Oclusor Septal/efectos adversos , Resultado del Tratamiento , Insuficiencia de la Válvula Aórtica/etiología , Factores de Edad , Factores de Tiempo , Estudios de Seguimiento , Complicaciones Posoperatorias/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA