Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 37(11): 3399-3409, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33689353

RESUMEN

A new hemofiltration system was developed to continuously capture circulating tumor cells (CTCs) from a large volume of whole blood using a column that was packed with antifouling zwitterionized silica microspheres. The silica microspheres were modified with sulfobetaine silane (SBSi) to inhibit fouling, resist clogging, and give a high surface wettability and prolonged operation time. Packed microspheres with different diameters formed size-controllable interstitial pores that effectively captured CTCs by ligand-free size selection. For optimized performance of the hemofiltration system, operational factors, including the size of microspheres, flow rate, and cross-sectional area of the column, were considered with respect to the removal rate for colorectal cancer cells and the retention rate for white blood cells and red blood cells. The captured CTCs were collected from the column by density sedimentation. A large quantity of colorectal cancer cells was spiked into sheep blood, and the sample was circulated for 5 h with a total operational volume of 2 L followed by collection and culture in vitro. The results showed that the proposed hemofiltration device selectively removed abundant CTCs from in vitro circulatory blood. The viable cells were harvested for amplification and potential applications for precision medicine.


Asunto(s)
Hemofiltración , Células Neoplásicas Circulantes , Animales , Recuento de Células , Línea Celular Tumoral , Separación Celular , Microesferas , Ovinos
2.
J Nanobiotechnology ; 17(1): 31, 2019 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30782169

RESUMEN

BACKGROUND: Circulating tumor cells (CTCs) comprise the high metastatic potential population of cancer cells in the blood circulation of humans; they have become the established biomarkers for cancer diagnosis, individualized cancer therapy, and cancer development. Technologies for the isolation and recovery of CTCs can be powerful cancer diagnostic tools for liquid biopsies, allowing the identification of malignancies and guiding cancer treatments for precision medicine. METHODS: We have used an electrospinning process to prepare poly(lactic-co-glycolic acid) (PLGA) nanofibrous arrays in random or aligned orientations on glass slips. We then fabricated poly(methyl methacrylate) (PMMA)-based microfluidic chips embedding the PLGA nanofiber arrays and modified their surfaces through sequential coating with using biotin-(PEG)7-amine through EDC/NHS activation, streptavidin (SA), and biotinylated epithelial-cell adhesion-molecule antibody (biotin-anti-EpCAM) to achieve highly efficient CTC capture. When combined with an air foam technology that induced a high shear stress and, thereby, nondestructive release of the captured cells from the PLGA surfaces, the proposed device system operated with a high cell recovery rate. RESULTS: The morphologies and average diameters of the electrospun PLGA nanofibers were characterized using scanning electron microscopy (SEM) and confocal Raman imaging. The surface chemistry of the PLGA nanofibers conjugated with the biotin-(PEG)7-amine was confirmed through time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging. The chip system was studied for the effects of the surface modification density of biotin-(PEG)7-amine, the flow rates, and the diameters of the PLGA nanofibers on the capture efficiency of EpCAM-positive HCT116 cells from the spiked liquid samples. To assess their CTC capture efficiencies in whole blood samples, the aligned and random PLGA nanofiber arrays were tested for their abilities to capture HCT116 cells, providing cancer cell capture efficiencies of 66 and 80%, respectively. With the continuous injection of air foam into the microfluidic devices, the cell release efficiency on the aligned PLGA fibers was 74% (recovery rate: 49%), while it was 90% (recovery rate: 73%) on the random PLGA fibers, from tests of 200 spiked cells in 2 mL of whole blood from healthy individuals. Our study suggests that integrated PMMA microfluidic chips embedding random PLGA nanofiber arrays may be suitable devices for the efficient capture and recovery of CTCs from whole blood samples.


Asunto(s)
Separación Celular/métodos , Nanofibras/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Biotina/química , Línea Celular Tumoral , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica , Polietilenglicoles/química
3.
Biomacromolecules ; 19(2): 426-437, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29281787

RESUMEN

To efficiently isolate maximal quantity of circulating tumor cells (CTCs) and circulating tumor cell microembolis (CTMs) from patient blood by antibody coated microfluidics, a multifunctional, pegylated polyamidoamine-dendrimers conjugated supported lipid bilayer surface construct was proposed to enhance accessibility of antibody molecules to the antigen molecules on target CTCs. The combination of a hydrated, stretchable dendrimer and a laterally mobile supported lipid bilayer (SLB) provide attached antibody molecules with 2.5-dimensional chain movement, achieving multivalency between the surface antibody and cell antigen molecules. An over 170% enhancement is distinctive for Panc-1 cells that expresses low antigen level. Of seven pancreatic ductal adenocarcinoma patients, an average 440 single CTCs and 90 CTMs were collected in 2 mL of peripheral blood, which were 1.6 times and 2.3 times more, than those captured by the SLB-only microfluidics. In summary, we have demonstrated a material design to enhance multivalent antibody-antigen interaction, which is useful for rare cell enrichment and cancer detection.


Asunto(s)
Anticuerpos Inmovilizados/inmunología , Anticuerpos/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Dendrímeros/química , Membrana Dobles de Lípidos/química , Células Neoplásicas Circulantes/inmunología , Adenocarcinoma/sangre , Anticuerpos/química , Anticuerpos Inmovilizados/química , Complejo Antígeno-Anticuerpo/química , Células HCT116 , Humanos , Microfluídica/métodos , Neoplasias Pancreáticas/sangre , Polietilenglicoles/química
4.
Adv Exp Med Biol ; 994: 43-66, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28560667

RESUMEN

Cancer is the leading cause of death by disease worldwide, and metastasis is responsible for more than 90% of the mortality of cancer patients. Metastasis occurs when tumor cells leave the primary tumor, travel through the blood stream as circulating tumor cells (CTCs), and then colonize secondary tumors at sites distant from the primary tumor. The capture, identification, and analysis of CTCs offer both scientific and clinical benefits. On the scientific side, the analysis of CTCs could help elucidate possible genetic alterations and signaling pathway aberrations during cancer progression, which could then be used to find new methods to stop cancer progression. On the clinical side, non-invasive testing of a patient's blood for CTCs can be used for patient diagnosis and prognosis, as well as subsequent monitoring of treatment efficacy in routine clinical practice. Additionally, investigation of CTCs early in the progression of cancer may reveal targets for initial cancer detection and for anti-cancer treatment. This chapter will evaluate strategies and devices used for the isolation and identification of CTCs directly from clinical samples of blood. Recent progress in the understanding of the significance of both single CTCs and circulating tumor microemboli will be discussed. Also, advancements in the use of CTC-based liquid biopsy in clinical diagnosis and the potential of CTC-based molecular characterization for use in clinical applications will be summarized.


Asunto(s)
Neoplasias/sangre , Neoplasias/diagnóstico , Células Neoplásicas Circulantes/metabolismo , Humanos , Neoplasias/terapia , Pronóstico
5.
Clin Chem ; 62(3): 505-13, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26861552

RESUMEN

BACKGROUND: Characterization of circulating tumor cells (CTCs) has been used to provide prognostic, predictive, and pharmacodynamic information in many different cancers. However, the clinical significance of CTCs and circulating tumor microemboli (CTM) in patients with pancreatic ductal adenocarcinoma (PDAC) has yet to be determined. METHODS: In this prospective study, CTCs and CTM were enumerated in the peripheral blood of 63 patients with PDAC before treatment using anti-EpCAM (epithelial cell adhesion molecule)-conjugated supported lipid bilayer-coated microfluidic chips. Associations of CTCs and CTM with patients' clinical factors and prognosis were determined. RESULTS: CTCs were abundant [mean (SD), 70.2 (107.6)] and present in 81% (51 of 63) of patients with PDAC. CTM were present in 81% (51 of 63) of patients with mean (SD) 29.7 (1101.4). CTM was an independent prognostic factor of overall survival (OS) and progression free survival (PFS). Patients were stratified into unfavorable and favorable CTM groups on the basis of CTM more or less than 30 per 2 mL blood, respectively. Patients with baseline unfavorable CTM, compared with patients with favorable CTM, had shorter PFS (2.7 vs 12.1 months; P < 0.0001) and OS (6.4 vs 19.8 months; P < 0.0001). Differences persisted if we stratified patients into early and advanced diseases. The number of CTM before treatment was an independent predictor of PFS and OS after adjustment for clinically significant factors. CONCLUSIONS: The number of CTM, instead of CTCs, before treatment is an independent predictor of PFS and OS in patients with PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/diagnóstico , Células Neoplásicas Circulantes , Biomarcadores de Tumor/sangre , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/fisiopatología , Femenino , Humanos , Masculino , Pronóstico , Estudios Prospectivos , Análisis de Regresión
6.
Langmuir ; 30(42): 12638-46, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25283175

RESUMEN

The use of synthetic biomaterials as implantable devices typically is accompanied by considerable nonspecific adsorption of proteins, cells, and bacteria. These may eventually induce adverse pathogenic problems in clinical practice, such as thrombosis and biomaterial-associated infection. Thus, an effective surface coating for medical devices has been pursued to repel nonspecific adsorption from surfaces. In this study, we employ an adhesive dopamine molecule conjugated with zwitterionic sulfobetaine moiety (SB-DA), developed based on natural mussels, as a surface ligand for the modification of TiO2. The electrochemical study shows that the SB-DA exhibits fully reversible reduction-oxidation behavior at pH 3, but it is irreversible at pH 8. A contact angle goniometer and X-ray photoelectron spectroscopy were utilized to explore the surface hydration, chemical states, and bonding mechanism of SB-DA. The results indicate that the binding between hydroxyl groups of SB-DA and TiO2 converts from hydrogen bonds to bidentate binding upon the pH transition from pH 3 to 8. In order to examine the antifouling properties of SB-DA thin films, the modified substrates were brought into contact with bovine serum albumin and bacteria solutions. The fouling levels were monitored using a quartz crystal microbalance with dissipation sensor and fluorescence optical microscope. Tests showed that the sample prepared via the pH transition approach provides the best resistance to nonspecific adsorption due to the high coverage and stability of the SB-DA films. These findings support the mechanism of the pH-modulated assembly of SB-DA molecules, and for the first time we demonstrate the antifouling properties of the SB-DA to be comparable with traditional thiol-based zwitterionic self-assemblies. The success of modification with SB-DA opens an avenue for developing a biologically inspired surface chemistry and can have applications over a wide spectrum of bioapplications. The strategy of the pH transition can also be applied to other functional dopamine derivatives.


Asunto(s)
Adhesión Bacteriana , Betaína/análogos & derivados , Materiales Biocompatibles Revestidos/química , Dopamina/química , Pseudomonas aeruginosa/metabolismo , Staphylococcus epidermidis/metabolismo , Adsorción , Animales , Betaína/química , Bovinos , Concentración de Iones de Hidrógeno , Pseudomonas aeruginosa/citología , Albúmina Sérica Bovina/química , Staphylococcus epidermidis/citología , Propiedades de Superficie , Titanio
7.
J Mater Chem B ; 11(34): 8159-8169, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37313622

RESUMEN

Because of scarcity, vulnerability, and heterogeneity in the population of circulating tumor cells (CTCs), the CTC isolation system relying on immunoaffinity interaction exhibits inconsistent efficiencies for all types of cancers and even CTCs with different phenotypes in individuals. Moreover, releasing viable CTCs from an isolation system is of importance for molecular analysis and drug screening in precision medicine, which remains a challenge for current systems. In this work, a new CTC isolation microfluidic platform was developed and contains a coating of the antibody-conjugated liposome-tethered-supported lipid bilayer in a developed chaotic-mixing microfluidic system, referred to as the "LIPO-SLB" platform. The biocompatible, soft, laterally fluidic, and antifouling properties of the LIPO-SLB platform offer high CTC capture efficiency, viability, and selectivity. We successfully demonstrated the capability of the LIPO-SLB platform to recapitulate different cancer cell lines with different antigen expression levels. In addition, the captured CTCs in the LIPO-SLB platform can be detached by air foam to destabilize the physically assembled bilayer structures due to a large water/air interfacial area and strong surface tension. More importantly, the LIPO-SLB platform was constructed and used for the verification of clinical samples from 161 patients with different primary cancer types. The mean values of both single CTCs and CTC clusters correlated well with the cancer stages. Moreover, a considerable number of CTCs were isolated from patients' blood samples in the early/localized stages. The clinical validation demonstrated the enormous potential of the universal LIPO-SLB platform as a tool for prognostic and predictive purposes in precision medicine.


Asunto(s)
Membrana Dobles de Lípidos , Células Neoplásicas Circulantes , Humanos , Membrana Dobles de Lípidos/química , Liposomas , Separación Celular , Células Neoplásicas Circulantes/patología , Microfluídica
8.
Lung Cancer ; 178: 198-205, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871344

RESUMEN

INTRODUCTION: Circulating tumor cells (CTCs) and their proliferative ability in lung adenocarcinoma (LUAD) were not well-investigated. We developed a protocol combining an efficient viable CTC isolation and in-vitro cultivation for the CTC enumeration and proliferation to evaluate their clinical significance. METHOD: The peripheral blood of 124 treatment-naïve LUAD patients were processed by a CTC isolation microfluidics, DS platform, followed by in-vitro cultivation. LUAD-specific CTCs were defined by immunostaining of DAPI+/CD45-/(TTF1/CK7)+ and were enumerated upon isolation and after 7-day cultivation. The CTC proliferative ability was evaluated by both the cultured number and the culture index, a ratio of cultured CTC number to the initial CTC number in 2 mL of blood. RESULT: All but two LUAD patients (98.4%) were detected with at least one CTC per 2 mL of blood. Initial CTC numbers did not correlate with metastasis (75 ± 126 for non-metastatic, 87 ± 113 for metastatic groups; P = 0.203). In contrast, both the cultured CTC number (mean: 28, 104, and 185 in stage 0/I, II/III, and IV; P < 0.001), and the culture index (mean: 1.1, 1.7 and 9.3 in stage 0/I, II/III, and IV; P = 0.043) were significantly correlated with the stages. Overall survival analysis within the non-metastatic group (N = 53) showed poor prognosis for patients with elevated cultured counts (cutoff ≥ 30; P = 0.027). CONCLUSION: We implemented a CTC assay in clinical LUAD patients with a high detection rate and cultivation capability. Cultured CTC count and proliferative ability, rather than the crude CTC numbers, highly associated with cancer prognosis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Pronóstico , Neoplasias Pulmonares/patología , Análisis de Supervivencia , Biomarcadores de Tumor
9.
Biomacromolecules ; 13(11): 3483-93, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23004572

RESUMEN

Multilayers of poly-l-lysine/poly-l-glutamic acid (PLL/PLGA) were constructed by layer-by-layer deposition on an end-tethered cationic PLL brush film serving as an initial layer. Increasing the number of coupling layers increased the thickness and the hydration of the films, and decreased the films' shear modulus and serum adsorption. These films were used to culture primary mouse fetal liver cells. Fetal liver stem/progenitor cells (FLSPCs) were isolated and maintained on the PLGA-terminal PLL/PLGA surfaces, forming colonies with clear boundaries that were partially attached to the surface, with cross-sectional areas of ~500 to ~2500 µm(2) after 2 days culture. Long-term studies showed that the cluster size of colonies slowly expanded and was correlated with the surface properties. For example, on the thicker films with shear modulus, G, less than 5 kPa, FLSPCs cluster size was constrained within a small distribution with less than 4000 µm(2) of projected area, whereas on the thinner films with G > 30 kPa, clusters were expanded and widely distributed, with projected areas over 4000 um(2). Immunostaining studies suggested that clusters with a small size maintained the self-renewal characteristics of stem cells, while the expanded clusters were clearly the results of spontaneous differentiation, exhibiting hepatocyte-like properties. On PLL-terminal t-(PLL/PLGA) films, which are less favorable for stem cell cultures than PLGA-terminal t-(PLL/PLGA) films, the cluster size distribution was also correlated with the film thickness, with more clusters of small size preserved on the thicker films. We observed that a soft, hydrated, serum-free surface could restrict the FLSPC expansion, resulting in self-maintenance of FLSPC colonies.


Asunto(s)
Técnicas de Cultivo de Célula , Hepatocitos/citología , Hígado/embriología , Células Madre/citología , Animales , Materiales Biocompatibles , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Hepatocitos/fisiología , Hígado/citología , Ratones , Ácido Poliglutámico/análogos & derivados , Polilisina/análogos & derivados , Células Madre/fisiología , Propiedades de Superficie
10.
Biomacromolecules ; 13(8): 2254-62, 2012 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-22721275

RESUMEN

A biomimetic construct containing an extracellular matrix protein-liposome composite tethered on supported lipid bilayers (SLBs) was formed with fibronectin (FN), and polyethylene glycol (PEG) and cholesterol-containing liposomes. The construct can serve as a multifunctional platform for cell attachment and drug release. The successful fabrication of the FN-liposome-SLB model platform was analyzed in situ with a quartz crystal microbalance with dissipation. The long-term stability of the surface tethered liposomes was measured via an encapsulated fluorescent probe. Less than 20% of the fluorescent probe content was released in 8 days, which compared favorably to the release of 90% of the probe content in one day from a similar construct made without PEG and cholesterol. HeLa cells were used to study the cellular interactions with the model platform. The extracellular matrix composition, FN, was found to be essential to promote HeLa cell adhesion on the liposome-SLB surfaces. Upon cell adhesion, the liposomes were spatially reorganized and absorbed by the cells. The rate of HeLa cell apoptosis was correlated with the surface density of doxorubicin-loaded liposomes, confirming the effective drug delivery through liposomes. The multifunctional model platform could be useful as preadministered, controlled-release platforms for cell- and tissue-based assays.


Asunto(s)
Fibronectinas/química , Proteínas Inmovilizadas/química , Membrana Dobles de Lípidos/química , Liposomas/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Materiales Biomiméticos/química , Biotina/química , Adhesión Celular , Supervivencia Celular/efectos de los fármacos , Colesterol/química , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Células HeLa , Humanos , Lípidos/química , Liposomas/metabolismo , Membranas Artificiales , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Tecnicas de Microbalanza del Cristal de Cuarzo
11.
Gels ; 8(7)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35877476

RESUMEN

Circulating tumor cells (CTCs) are indicators for the detection, diagnosis, and monitoring of cancers and offer biological information for the development of personalized medicine. Techniques for the specific capture and non-destructive release of CTCs from millions of blood cells remain highly desirable. Here, we present a CTC capture-and-release system using a disulfide-containing poly(carboxybetaine methacrylate) (pCB) hydrogel. The non-fouling characteristic of pCB prevents unwanted, nonspecific cell binding, while the carboxyl functionality of pCB is used for the conjugation of anti-epithelial cell adhesion molecule (anti-EpCAM) antibodies for the capture of CTCs. The results demonstrated that the anti-EpCAM-conjugated pCB hydrogel captured HCT116 cells from blood, and the capture ratio reached 45%. Furthermore, the captured HCT116 cells were released within 30 min from the dissolution of the pCB hydrogel by adding cysteine, which breaks the disulfide bonds of the crosslinkers. The cells released were viable and able to grow. Our system has potential in the development of a device for CTC diagnosis.

12.
iScience ; 25(10): 105081, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36204272

RESUMEN

Matching the treatment to an individual patient's tumor state can increase therapeutic efficacy and reduce tumor recurrence. Circulating tumor cells (CTCs) derived from solid tumors are promising subjects for theragnostic analysis. To analyze how CTCs represent tumor states, we established cell lines from CTCs, primary and metastatic tumors from a mouse model and provided phenotypic and multiomic analyses of these cells. CTCs and metastatic cells, but not primary tumor cells, shared stochastic mutations and similar hypomethylation levels at transcription start sites. CTCs and metastatic tumor cells shared a hybrid epithelial/mesenchymal transcriptome state with reduced adhesive and enhanced mobilization characteristics. We tested anti-cancer drugs on tumor cells from a metastatic breast cancer patient. CTC responses mirrored the impact of drugs on metastatic rather than primary tumors. Our multiomic and clinical anti-cancer drug response results reveal that CTCs resemble metastatic tumors and establish CTCs as an ex vivo tool for personalized medicine.

13.
Cancers (Basel) ; 13(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209279

RESUMEN

BACKGROUND: This study used NeuN transgenic (NTTg) mice with spontaneous breast tumor development to evaluate the dynamic changes of circulating tumor cells (CTCs) prior to and during tumor development. METHODS: In this longitudinal, clinically uninterrupted study, we collected 75 µL of peripheral blood at the age of 8, 12, 16, and 20 weeks in the first group of five mice, and at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability in the second group of four mice. Diluted blood samples were run through a modified mouse-CMx chip to isolate the CTCs. RESULTS: The CTC counts of the first group of mice were low (1 ± 1.6) initially. The average CTC counts were 16 ± 9.5, 29.0 ± 18.2, and 70.0 ± 30.3 cells per 75 µL blood at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability, respectively. There was a significant positive correlation between an increase in CTC levels and tumor vascular density (p-value < 0.01). This correlation was stronger than that between CTC levels and tumor size (p-value = 0.076). The captured CTCs were implanted into a non-tumor-bearing NTTg mouse for xenografting, confirming their viability and tumorigenesis. CONCLUSION: Serial CTCs during an early stage of tumor progression were quantified and found to be positively correlated with the later tumor vascular density and size. Furthermore, the successful generation of CTC-derived xenografts indicates the tumorigenicity of this early onset CTC population.

14.
Biomacromolecules ; 11(5): 1308-13, 2010 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-20415412

RESUMEN

We report on the synthesis and characterization of end-tethering polypeptide monolayers based on poly(beta-benzyl-L-aspartate) (PBLA) homopolymer and PBLA-b-poly(gamma-benzyl-L-glutamate) block copolymer. The homopolypeptide and copolypeptide brushes were fabricated by the sequential, surface-initiated vapor deposition polymerization of the N-carboxyanhydride of beta-benzyl-L-aspartate or gamma-benzyl-L-glutamate, yielding 80-nm-thick, chemically grafted films after 30 min of reaction time. Both Fourier transform infrared spectrometry and circular dichroism showed that the polypeptide brushes could be reversibly and repeatedly switched between left-handed and right-handed alpha-helical structures in response to solvent vapor exposure or permanently converted to a beta-sheet structure when heated to 160 degrees C in air. The facile, in vacuo manufacturability and the robustness of the films of PBLA-based brushes could allow them to be incorporated as active components for biosensing and nanofabricated devices.


Asunto(s)
Péptidos/química , Solventes/química , Temperatura , Dicroismo Circular , Microscopía Electrónica de Rastreo , Conformación Proteica , Espectroscopía Infrarroja por Transformada de Fourier
15.
Biomacromolecules ; 11(5): 1231-40, 2010 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-20361729

RESUMEN

The supported phospholipid bilayer serves as an important biomimetic model for the cell membrane in both basic and applied scientific research. We have constructed a biomimetic platform based on a supported phospholipid bilayer that is functionalized with type I collagen to serve as a substrate for cell culture. To create the type I collagen-functionalized lipid bilayer assembly, a simple chemical approach was employed: lipid vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl) (DP-NGPE), a carboxylic acid-functionalized phospholipid, were prepared and then fused onto an SiO(2) substrate to form a supported lipid bilayer. Subsequently, type I collagen molecules were introduced to form stable collagen-lipid conjugates via amide linkages with activated DP-NGPE lipids. The binding kinetics of the conjugation process and the resultant changes in film thickness and viscoelasticity were followed using the quartz crystal microbalance with dissipation (QCM-D) monitoring. The morphology of the conjugated collagen adlayer was investigated with atomic force microscopy (AFM). We observed that the adsorbed collagen molecules tended to self-assemble into fibrillar structures. Fluorescence recovery after photobleaching (FRAP) was utilized to estimate lateral lipid mobility, which was reduced by up to 20% after the coupling of type I collagen to the underlying lipid bilayer. As a cell culture platform, the collagen-conjugated supported lipid bilayer showed promising results. Smooth muscle cells (A10) retained normal growth behavior on the collagen-functionalized platform, unlike the bare POPC lipid bilayer and the POPC/DG-NGPE bilayer without collagen. The biomimetic functionalized lipid system presented here is a simple, yet effective approach for constructing a cell culture platform to explore the interactions between extracellular matrix components and cells.


Asunto(s)
Colágeno Tipo I/química , Membrana Dobles de Lípidos , Línea Celular , Microscopía de Fuerza Atómica
16.
Biomacromolecules ; 11(4): 994-1001, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20337459

RESUMEN

Recent progress has led to the identification of liver stem/progenitor cells as suitable sources for generating transplantable liver cells. However, the great variability in methods utilized to isolate liver stem/progenitor cells is a considerable challenge for clinical applications. The polyelectrolyte-multilayer technique can constitute a useful method for selective cell adhesion. Whether enrichment of liver stem/progenitor cells can be achieved utilizing polypeptide polyelectrolyte-multilayer films was investigated in current work. Fetal liver cells isolated from E13.5 mouse embryos were seeded on the poly-l-glutamic acid/poly-l-lysine alternating films, and we revealed that fetal liver stem/progenitor cells were selected and formed colonies. These undifferentiated colonies were maintained on the films composed of four alternating layers, with the topmost poly-l-glutamic acid layer judged by the constitutive expression of stem-cell markers such as Dlk-1, CD49f, and CD133 and self-renew marker-beta-catenin. Our work has demonstrated that highly tunable polyelectrolyte-multilayer films were suitable for selective enrichment of liver stem/progenitor cells in vitro.


Asunto(s)
Materiales Biocompatibles/química , Electrólitos/farmacología , Regeneración Hepática/fisiología , Hígado/citología , Hígado/embriología , Péptidos/química , Células Madre/citología , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Diferenciación Celular , Proliferación Celular , Feto , Técnica del Anticuerpo Fluorescente , Hígado/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ingeniería de Tejidos
17.
Anal Chem ; 81(1): 36-42, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19046071

RESUMEN

We demonstrate a rationale for using GaN nanowires (GaNNWs) in label-free DNA-sensing using dual routes of electrochemical impedance spectroscopy (EIS) and photoluminescence (PL) measurements, employing a popular target DNA with anthrax lethal factor (LF) sequence. The in situ EIS reveals that both high surface area and surface band-bending in the nanowires, providing more binding sites and surface-enhanced charge transfer, respectively, are responsible for the enhanced sensitivity to surface-immobilized DNA molecules. The net electron-transfer resistance can be readily deconvoluted into two components because of the coexistence of two interfaces, GaN/DNA and DNA/electrolyte interfaces, in series. Interestingly, the former, decreasing with LF concentration (C(LF)), serves as a signature for the extent of hybridization, while the latter as a fingerprint for DNA modification. For PL-sensing, the band-edge emission of GaNNWs serves as a parameter for DNA modification, which quenches exponentially with C(LF) as the incident light is increasingly blocked from reaching the core nanowire by rapidly developing a UV-absorbing DNA sheath at high C(LF). Furthermore, successful application for detection of "hotspot" mutations, related to the human p53 tumor-suppressor gene, revealed excellent selectivity and specificity, down to picomolar concentration, even in the current unoptimized sensor design/condition, and in the presence of mutations and noncomplementary strands, suggesting the potential pragmatic application in complex clinical samples.


Asunto(s)
Antígenos Bacterianos/genética , Bacillus anthracis/genética , Toxinas Bacterianas/genética , Técnicas Biosensibles/métodos , ADN Bacteriano/análisis , Galio/química , Nanocables/química , Materiales Biocompatibles/química , ADN Bacteriano/química , ADN Bacteriano/genética , Impedancia Eléctrica , Mediciones Luminiscentes/métodos , Sondas de Oligonucleótidos , Análisis Espectral/métodos
18.
Biomacromolecules ; 10(1): 58-65, 2009 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-19053808

RESUMEN

End-tethered cationic polypeptide brushes of poly(L-lysine) (t-PLL) were combined with three anionic polymers, poly(acrylic acid) (PAA), poly(L-glutamic acid) (PLGA), and poly(L-aspartic acid) (PLAA), to form reversible polyelectrolyte complex films at surfaces at neutral pH. The polyelectrolyte complex formation was confirmed by an in situ zeta-potential study and by positive fluorescent images after adding prelabeled anionic polymers. The secondary conformations of the t-PLL complex films depend upon the specific polyelectrolyte with which t-PLL was coupled as studied by circular dichroism and FTIR. Specifically, the random coil chain configuration of the t-PLL film was converted to an alpha-helical, beta-sheet, or random coil structure after forming complexes with PAA, PLGA, or PLAA, respectively. Each of these complexes could be returned to the original random coil t-PLL structure by a dilute acid rinse. Additional thickness and morphological studies from ellipsometry and atomic force microscopy have further shown that the corresponding film thicknesses of the individual solvated films were affected more by the secondary structures in films than by the adsorbed mass or surface net charges. The solvated thickness was reduced significantly after the random coil t-PLL film was coupled with polyanions in forming compact regulated structures in films. This biomimetic approach provides a new opportunity for controlling the molecular organization in surface macromolecular assemblies and may provide a model for structural study of protein complexes on a chip.


Asunto(s)
Sustancias Macromoleculares/química , Membranas Artificiales , Péptidos/química , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Electrólitos/química , Sustancias Macromoleculares/síntesis química , Modelos Moleculares , Estructura Molecular , Péptidos/síntesis química , Propiedades de Superficie
19.
Nanoscale ; 11(44): 21119-21127, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31538997

RESUMEN

An immunomagnetic "nano-net" was designed and synthesized for specifically capturing rare cells of interest from mixtures. The nano-net, Ab@Lipo-MNP-GO, consists of conjugated antibody molecules on a lipid coated magnetic nanoparticle-graphene oxide sheet complex. The magnetism, chemical composition, and the morphology of the construct and its precursors were characterized by SQUID, FTIR, TGA, DLS and SEM, to confirm the feasibility of the synthetic steps and the resulting properties suitable for solution phase immuno-recognition for cell capture. When applied to capturing circulating tumor cells (CTCs) in oral, colon and lung cancer clinical patients' blood samples, the nano-net construct exhibited far superior ability whereas conventional immunomagnetic beads in some cases were unable to capture any CTCs, even by increasing the bead concentration. Confocal images showed that the nano-net wrapped around the CTCs while the immunomagnetic beads attached them with point contacts. A stable, patch-like multivalent matrix nano-net was demonstrated to tackle the shortcomings of single point contact of immunomagnetic beads to the target cell. This strategy is universal for any cell separation in complex fluids.


Asunto(s)
Anticuerpos Antineoplásicos/química , Grafito/química , Separación Inmunomagnética , Nanoestructuras/química , Células Neoplásicas Circulantes/inmunología , Femenino , Células HCT116 , Humanos , Masculino
20.
ACS Biomater Sci Eng ; 5(6): 2725-2731, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33405604

RESUMEN

Circulating tumor cells (CTCs) have been suggested as the precursors of metastatic cancer. CTC-based characterization has thus been used to monitor tumor status before the onset of metastasis and has shown to be an independent factor. The low abundance of CTCs, however, makes it challenging to employ CTC as a clinical routine, thus making it impossible to address tumor heterogeneity. Here, we present a cell collection prototype for an efficient capture of CTCs from a large volume of body fluids such as blood. An antibody-PEG modified multilayer matrix column is engineered and connected to an apheresis-based circulation system. This setup allows us to capture CTCs repetitively from an unlimited sample volume through the circulation system, thereby increasing the capture count. Compared to conventional CTC capturing devices where the sample handling is generally limited to 1-10 mL, our collector is able to handle a wide range of fluidic sample (40-2000 mL) at a high flow rate (400 mL/min). By processing 90 min in circulation, we obtained an average capture efficiency of at least 75% for the colorectal cancer cell line HCT116 spiked in either 40-200 mL of buffer solution or 40 mL of a whole blood sample. This result highlights a possibility to construct personalized CTC libraries through high-throughput CTC collection for the study of tumor heterogeneity in precision medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA