Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(35): e2302083120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37607224

RESUMEN

Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in these drug targets is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein encoded as a small domain at the N terminus of nonstructural protein 3. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and IFN-stimulated gene expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Virus de la Hepatitis Murina , Animales , Ratones , SARS-CoV-2/genética , Técnicas de Cultivo de Célula , Línea Celular , Antivirales , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética
2.
Immunity ; 44(6): 1379-91, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27287409

RESUMEN

Two zoonotic coronaviruses (CoVs)-SARS-CoV and MERS-CoV-have crossed species to cause severe human respiratory disease. Here, we showed that induction of airway memory CD4(+) T cells specific for a conserved epitope shared by SARS-CoV and MERS-CoV is a potential strategy for developing pan-coronavirus vaccines. Airway memory CD4(+) T cells differed phenotypically and functionally from lung-derived cells and were crucial for protection against both CoVs in mice. Protection was dependent on interferon-γ and required early induction of robust innate and virus-specific CD8(+) T cell responses. The conserved epitope was also recognized in SARS-CoV- and MERS-CoV-infected human leukocyte antigen DR2 and DR3 transgenic mice, indicating potential relevance in human populations. Additionally, this epitope was cross-protective between human and bat CoVs, the progenitors for many human CoVs. Vaccine strategies that induce airway memory CD4(+) T cells targeting conserved epitopes might have broad applicability in the context of new CoVs and other respiratory virus outbreaks.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Coronavirus/inmunología , Sistema Respiratorio/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Vacunas Virales/inmunología , Animales , Antígenos Virales/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Células Cultivadas , Reacciones Cruzadas , Epítopos de Linfocito T/inmunología , Humanos , Inmunidad , Memoria Inmunológica , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos , Vacunación , Virión/inmunología
3.
J Virol ; 96(11): e0036422, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35588276

RESUMEN

Effective broad-spectrum antivirals are critical to prevent and control emerging human coronavirus (hCoV) infections. Despite considerable progress made toward identifying and evaluating several synthetic broad-spectrum antivirals against hCoV infections, a narrow therapeutic window has limited their success. Enhancing the endogenous interferon (IFN) and IFN-stimulated gene (ISG) response is another antiviral strategy that has been known for decades. However, the side effects of pegylated type-I IFNs (IFN-Is) and the proinflammatory response detected after delayed IFN-I therapy have discouraged their clinical use. In contrast to IFN-Is, IFN-λ, a dominant IFN at the epithelial surface, has been shown to be less proinflammatory. Consequently, we evaluated the prophylactic and therapeutic efficacy of IFN-λ in hCoV-infected airway epithelial cells and mice. Human primary airway epithelial cells treated with a single dose of IFN-I (IFN-α) and IFN-λ showed similar ISG expression, whereas cells treated with two doses of IFN-λ expressed elevated levels of ISG compared to that of IFN-α-treated cells. Similarly, mice treated with two doses of IFN-λ were better protected than mice that received a single dose, and a combination of prophylactic and delayed therapeutic regimens completely protected mice from a lethal Middle East respiratory syndrome CoV (MERS-CoV) infection. A two-dose IFN-λ regimen significantly reduced lung viral titers and inflammatory cytokine levels with marked improvement in lung inflammation. Collectively, we identified an effective regimen for IFN-λ use and demonstrated the protective efficacy of IFN-λ in MERS-CoV-infected mice. IMPORTANCE Effective antiviral agents are urgently required to prevent and treat individuals infected with SARS-CoV-2 and other emerging viral infections. The COVID-19 pandemic has catapulted our efforts to identify, develop, and evaluate several antiviral agents. However, a narrow therapeutic window has limited the protective efficacy of several broad-spectrum and CoV-specific antivirals. IFN-λ is an antiviral agent of interest due to its ability to induce a robust endogenous antiviral state and low levels of inflammation. Here, we evaluated the protective efficacy and effective treatment regimen of IFN-λ in mice infected with a lethal dose of MERS-CoV. We show that while prophylactic and early therapeutic IFN-λ administration is protective, delayed treatment is detrimental. Notably, a combination of prophylactic and delayed therapeutic administration of IFN-λ protected mice from severe MERS. Our results highlight the prophylactic and therapeutic use of IFN-λ against lethal hCoV and likely other viral lung infections.


Asunto(s)
Antivirales , Infecciones por Coronavirus , Interferones , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Humanos , Interferones/farmacología , Ratones , Interferón lambda
4.
Trends Immunol ; 41(12): 1083-1099, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33153908

RESUMEN

The innate immune system acts as the first line of defense against pathogens, including coronaviruses (CoVs). Severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV are epidemic zoonotic CoVs that emerged at the beginning of the 21st century. The recently emerged virus SARS-CoV-2 is a novel strain of CoV that has caused the coronavirus 2019 (COVID-19) pandemic. Scientific advancements made by studying the SARS-CoV and MERS-CoV outbreaks have provided a foundation for understanding pathogenesis and innate immunity against SARS-CoV-2. In this review, we focus on our present understanding of innate immune responses, inflammasome activation, inflammatory cell death pathways, and cytokine secretion during SARS-CoV, MERS-CoV, and SARS-CoV-2 infection. We also discuss how the pathogenesis of these viruses influences these biological processes.


Asunto(s)
COVID-19/inmunología , Muerte Celular/inmunología , Citocinas/inmunología , Inmunidad Innata/inmunología , Inflamasomas/inmunología , SARS-CoV-2/inmunología , Animales , Humanos
5.
J Immunol ; 206(8): 1866-1877, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811102

RESUMEN

HSV-1 infection of the cornea causes a severe immunoinflammatory and vision-impairing condition called herpetic stromal keratitis (SK). The virus replication in corneal epithelium followed by neutrophil- and CD4+ T cell-mediated inflammation plays a dominant role in SK. Although previous studies demonstrate critical functions of type I IFNs (IFN-α/ß) in HSV-1 infection, the role of recently discovered IFN-λ (type III IFN), specifically at the corneal mucosa, is poorly defined. Our study using a mouse model of SK pathogenesis shows that HSV-1 infection induces a robust IFN-λ response compared with type I IFN production at the corneal mucosal surface. However, the normal progression of SK indicates that the endogenous IFN responses are insufficient to suppress HSV-1-induced corneal pathology. Therefore, we examined the therapeutic efficacy of exogenous rIFN-λ during SK progression. Our results show that rIFN-λ therapy suppressed inflammatory cell infiltration in the cornea and significantly reduced the SK pathologic condition. Early rIFN-λ treatment significantly reduced neutrophil and macrophage infiltration, and IL-6, IL-1ß, and CXCL-1 production in the cornea. Notably, the virucidal capacity of neutrophils and macrophages measured by reactive oxygen species generation was not affected. Similarly, ex vivo rIFN-λ treatment of HSV-1-stimulated bone marrow-derived neutrophils significantly promoted IFN-stimulated genes without affecting reactive oxygen species production. Collectively, our data demonstrate that exogenous topical rIFN-λ treatment during the development and progression of SK could represent a novel therapeutic approach to control HSV-1-induced inflammation and associated vision impairment.


Asunto(s)
Córnea/patología , Citocinas/metabolismo , Herpesvirus Humano 1/fisiología , Inflamación/inmunología , Queratitis Herpética/inmunología , Macrófagos/inmunología , Membrana Mucosa/inmunología , Neutrófilos/inmunología , Animales , Antivirales/uso terapéutico , Citocinas/uso terapéutico , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Queratitis Herpética/terapia , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/patología , Especies Reactivas de Oxígeno/metabolismo
6.
Vet Pathol ; 59(4): 627-638, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35499307

RESUMEN

Emerging and re-emerging human coronaviruses (hCoVs) cause severe respiratory illness in humans, but the basis for lethal pneumonia in these diseases is not well understood. Alveolar macrophages (AMs) are key orchestrators of host antiviral defense and tissue tolerance during a variety of respiratory infections, and AM dysfunction is associated with severe COVID-19. In this study, using a mouse model of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, we examined the role of AMs in MERS pathogenesis. Our results show that depletion of AMs using clodronate (CL) liposomes significantly increased morbidity and mortality in human dipeptidyl peptidase 4 knock-in (hDPP4-KI) mice. Detailed examination of control and AM-depleted lungs at different days postinfection revealed increased neutrophil activity but a significantly reduced MERS-CoV-specific CD4 T-cell response in AM-deficient lungs during later stages of infection. Furthermore, enhanced MERS severity in AM-depleted mice correlated with lung inflammation and lesions. Collectively, these data demonstrate that AMs are critical for the development of an optimal virus-specific T-cell response and controlling excessive inflammation during MERS-CoV infection.


Asunto(s)
Infecciones por Coronavirus , Macrófagos Alveolares , Coronavirus del Síndrome Respiratorio de Oriente Medio , Neumonía , Animales , Ácido Clodrónico , Infecciones por Coronavirus/inmunología , Macrófagos Alveolares/inmunología , Ratones , Ratones Transgénicos , Neumonía/inmunología , Neumonía/virología
7.
J Biol Chem ; 295(41): 14040-14052, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32763970

RESUMEN

Coronaviruses have caused several zoonotic infections in the past two decades, leading to significant morbidity and mortality globally. Balanced regulation of cell death and inflammatory immune responses is essential to promote protection against coronavirus infection; however, the underlying mechanisms that control these processes remain to be resolved. Here we demonstrate that infection with the murine coronavirus mouse hepatitis virus (MHV) activated the NLRP3 inflammasome and inflammatory cell death in the form of PANoptosis. Deleting NLRP3 inflammasome components or the downstream cell death executioner gasdermin D (GSDMD) led to an initial reduction in cell death followed by a robust increase in the incidence of caspase-8- and receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated inflammatory cell deathafter coronavirus infection. Additionally, loss of GSDMD promoted robust NLRP3 inflammasome activation. Moreover, the amounts of some cytokines released during coronavirus infection were significantly altered in the absence of GSDMD. Altogether, our findings show that inflammatory cell death, PANoptosis, is induced by coronavirus infection and that impaired NLRP3 inflammasome function or pyroptosis can lead to negative consequences for the host. These findings may have important implications for studies of coronavirus-induced disease.


Asunto(s)
Caspasa 8/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Células Cultivadas , Coronavirus/fisiología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/veterinaria , Citocinas/metabolismo , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Necroptosis , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(12): 3144-3149, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507189

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. Although MERS-CoV infection is ubiquitous in dromedaries across Africa as well as in the Arabian Peninsula, zoonotic disease appears confined to the Arabian Peninsula. MERS-CoVs from Africa have hitherto been poorly studied. We genetically and phenotypically characterized MERS-CoV from dromedaries sampled in Morocco, Burkina Faso, Nigeria, and Ethiopia. Viruses from Africa (clade C) are phylogenetically distinct from contemporary viruses from the Arabian Peninsula (clades A and B) but remain antigenically similar in microneutralization tests. Viruses from West (Nigeria, Burkina Faso) and North (Morocco) Africa form a subclade, C1, that shares clade-defining genetic signatures including deletions in the accessory gene ORF4b Compared with human and camel MERS-CoV from Saudi Arabia, virus isolates from Burkina Faso (BF785) and Nigeria (Nig1657) had lower virus replication competence in Calu-3 cells and in ex vivo cultures of human bronchus and lung. BF785 replicated to lower titer in lungs of human DPP4-transduced mice. A reverse genetics-derived recombinant MERS-CoV (EMC) lacking ORF4b elicited higher type I and III IFN responses than the isogenic EMC virus in Calu-3 cells. However, ORF4b deletions may not be the major determinant of the reduced replication competence of BF785 and Nig1657. Genetic and phenotypic differences in West African viruses may be relevant to zoonotic potential. There is an urgent need for studies of MERS-CoV at the animal-human interface.


Asunto(s)
Camelus/virología , Variación Genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , África , Animales , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Femenino , Humanos , Pulmón/virología , Ratones Endogámicos C57BL , Filogenia , Replicación Viral , Zoonosis/virología
9.
Proc Natl Acad Sci U S A ; 114(15): E3119-E3128, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28348219

RESUMEN

The Middle East respiratory syndrome (MERS) emerged in Saudi Arabia in 2012, caused by a zoonotically transmitted coronavirus (CoV). Over 1,900 cases have been reported to date, with ∼36% fatality rate. Lack of autopsies from MERS cases has hindered understanding of MERS-CoV pathogenesis. A small animal model that develops progressive pulmonary manifestations when infected with MERS-CoV would advance the field. As mice are restricted to infection at the level of DPP4, the MERS-CoV receptor, we generated mice with humanized exons 10-12 of the mouse Dpp4 locus. Upon inoculation with MERS-CoV, human DPP4 knockin (KI) mice supported virus replication in the lungs, but developed no illness. After 30 serial passages through the lungs of KI mice, a mouse-adapted virus emerged (MERSMA) that grew in lungs to over 100 times higher titers than the starting virus. A plaque-purified MERSMA clone caused weight loss and fatal infection. Virus antigen was observed in airway epithelia, pneumocytes, and macrophages. Pathologic findings included diffuse alveolar damage with pulmonary edema and hyaline membrane formation associated with accumulation of activated inflammatory monocyte-macrophages and neutrophils in the lungs. Relative to the parental MERS-CoV, MERSMA viruses contained 13-22 mutations, including several within the spike (S) glycoprotein gene. S-protein mutations sensitized viruses to entry-activating serine proteases and conferred more rapid entry kinetics. Recombinant MERSMA bearing mutant S proteins were more virulent than the parental virus in hDPP4 KI mice. The hDPP4 KI mouse and the MERSMA provide tools to investigate disease causes and develop new therapies.


Asunto(s)
Infecciones por Coronavirus/complicaciones , Dipeptidil Peptidasa 4/genética , Modelos Animales de Enfermedad , Enfermedades Pulmonares/etiología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Mutación , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Infecciones por Coronavirus/virología , Dipeptidil Peptidasa 4/metabolismo , Femenino , Humanos , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Replicación Viral
10.
Annu Rev Med ; 68: 387-399, 2017 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-27576010

RESUMEN

In 2012, a zoonotic coronavirus was identified as the causative agent of Middle East respiratory syndrome and was named MERS coronavirus (MERS-CoV). As of August 11, 2016, the virus has infected 1,791 patients, with a mortality rate of 35.6%. Although MERS-CoV generally causes subclinical or mild disease, infection can result in serious outcomes, including acute respiratory distress syndrome and multi-organ failure in patients with comorbidities. The virus is endemic in camels in the Arabian Peninsula and Africa and thus poses a consistent threat of frequent reintroduction into human populations. Disease prevalence will increase substantially if the virus mutates to increase human-to-human transmissibility. No therapeutics or vaccines are approved for MERS; thus, development of novel therapies is needed. Further, since many MERS cases are acquired in healthcare settings, public health measures and scrupulous attention to infection control are required to prevent additional MERS outbreaks.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Brotes de Enfermedades , Coronavirus del Síndrome Respiratorio de Oriente Medio , Zoonosis/transmisión , Animales , Camelus , Quirópteros , Infecciones por Coronavirus/terapia , Infecciones por Coronavirus/virología , Citocinas/sangre , Humanos , Inmunidad Celular , Control de Infecciones , Medio Oriente/epidemiología , Zoonosis/virología
11.
J Immunol ; 198(10): 4046-4053, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28373583

RESUMEN

Pathogenic human coronaviruses (CoVs), such as the severe acute respiratory syndrome (SARS)-CoV and the Middle East respiratory syndrome-CoV, cause acute respiratory illness. Epidemiological data from the 2002-2003 SARS epidemic and recent Middle East respiratory syndrome outbreak indicate that there may be sex-dependent differences in disease outcomes. To investigate these differences, we infected male and female mice of different age groups with SARS-CoV and analyzed their susceptibility to the infection. Our results showed that male mice were more susceptible to SARS-CoV infection compared with age-matched females. The degree of sex bias to SARS-CoV infection increased with advancing age, such that middle-aged mice showed much more pronounced differences compared with young mice. Enhanced susceptibility of male mice to SARS-CoV was associated with elevated virus titers, enhanced vascular leakage, and alveolar edema. These changes were accompanied by increased accumulation of inflammatory monocyte macrophages and neutrophils in the lungs of male mice, and depletion of inflammatory monocyte macrophages partially protected these mice from lethal SARS. Moreover, the sex-specific differences were independent of T and B cell responses. Furthermore, ovariectomy or treating female mice with an estrogen receptor antagonist increased mortality, indicating a protective effect for estrogen receptor signaling in mice infected with SARS-CoV. Together, these data suggest that sex differences in the susceptibility to SARS-CoV in mice parallel those observed in patients and also identify estrogen receptor signaling as critical for protection in females.


Asunto(s)
Susceptibilidad a Enfermedades , Síndrome Respiratorio Agudo Grave/fisiopatología , Caracteres Sexuales , Animales , Antagonistas del Receptor de Estrógeno/farmacología , Femenino , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Monocitos/inmunología , Ovariectomía , Receptores de Estrógenos/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/aislamiento & purificación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Síndrome Respiratorio Agudo Grave/patología , Síndrome Respiratorio Agudo Grave/virología , Carga Viral
12.
J Virol ; 89(3): 1523-36, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25428866

RESUMEN

UNLABELLED: All coronaviruses encode a macrodomain containing ADP-ribose-1"-phosphatase (ADRP) activity within the N terminus of nonstructural protein 3 (nsp3). Previous work showed that mouse hepatitis virus strain A59 (MHV-A59) with a mutated catalytic site (N1348A) replicated similarly to wild-type virus but was unable to cause acute hepatitis in mice. To determine whether this attenuated phenotype is applicable to multiple disease models, we mutated the catalytic residue in the JHM strain of MHV (JHMV), which causes acute and chronic encephalomyelitis, using a newly developed bacterial artificial chromosome (BAC)-based MHV reverse genetics system. Infection of mice with the macrodomain catalytic point mutant virus (N1347A) resulted in reductions in lethality, weight loss, viral titers, proinflammatory cytokine and chemokine expression, and immune cell infiltration in the brain compared to mice infected with wild-type virus. Specifically, macrophages were most affected, with approximately 2.5-fold fewer macrophages at day 5 postinfection in N1347A-infected brains. Tumor necrosis factor (TNF) and interferon (IFN) signaling were not required for effective host control of mutant virus as all N1347A virus-infected mice survived the infection. However, the adaptive immune system was required for protection since N1347A virus was able to cause lethal encephalitis in RAG1(-/-) (recombination activation gene 1 knockout) mice although disease onset was modestly delayed. Overall, these results indicate that the BAC-based MHV reverse genetics system will be useful for studies of JHMV and expand upon previous studies, showing that the macrodomain is critical for the ability of coronaviruses to evade the immune system and promote viral pathogenesis. IMPORTANCE: Coronaviruses are an important cause of human and veterinary diseases worldwide. Viral processes that are conserved across a family are likely to be good targets for the development of antiviral therapeutics and vaccines. The macrodomain is a ubiquitous structural domain and is also conserved among all coronaviruses. The coronavirus macrodomain has ADP-ribose-1"-phosphatase activity; however, its function during infection remains unclear as does the reason that coronaviruses have maintained this enzymatic activity throughout evolution. For MHV, this domain has now been shown to promote multiple types of disease, including hepatitis and encephalitis. These data indicate that this domain is vital for the virus to replicate and cause disease. Understanding the mechanism used by this enzyme to promote viral pathogenesis will open up novel avenues for therapies and may give further insight into the role of macrodomain proteins in the host cell since these proteins are found in all living organisms.


Asunto(s)
Encefalitis Viral/patología , Virus de la Hepatitis Murina/genética , Virus de la Hepatitis Murina/patogenicidad , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Animales , Peso Corporal , Encéfalo/inmunología , Encéfalo/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis Viral/virología , Leucocitos/inmunología , Masculino , Ratones Endogámicos C57BL , Virus de la Hepatitis Murina/crecimiento & desarrollo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Mutación Puntual , Análisis de Supervivencia , Carga Viral , Virulencia
13.
J Immunol ; 192(11): 5245-56, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24795457

RESUMEN

Peptides that bind poorly to MHC class I molecules often elicit low-functional avidity T cell responses. Peptide modification by altering the anchor residue facilitates increased binding affinity and may elicit T cells with increased functional avidity toward the native epitope ("heteroclitic"). This augmented MHC binding is likely to increase the half-life and surface density of the heteroclitic complex, but precisely how this enhanced T cell response occurs in vivo is not known. Furthermore, the ideal heteroclitic epitope will elicit T cell responses that completely cross-react with the native epitope, maximizing protection and minimizing undesirable off-target effects. Such epitopes have been difficult to identify. In this study, using mice infected with a murine coronavirus that encodes epitopes that elicit high (S510, CSLWNGPHL)- and low (S598, RCQIFANI)-functional avidity responses, we show that increased expression of peptide S598 but not S510 generated T cells with enhanced functional avidity. Thus, immune responses can be augmented toward T cell epitopes with low functional avidity by increasing Ag density. We also identified a heteroclitic epitope (RCVIFANI) that elicited a T cell response with nearly complete cross-reactivity with native epitope and demonstrated increased MHC/peptide abundance compared with native S598. Structural and thermal melt analyses indicated that the Q600V substitution enhanced stability of the peptide/MHC complex without greatly altering the antigenic surface, resulting in highly cross-reactive T cell responses. Our data highlight that increased peptide/MHC complex display contributes to heteroclitic epitope efficacy and describe parameters for maximizing immune responses that cross-react with the native epitope.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Coronavirus/inmunología , Coronavirus/inmunología , Epítopos de Linfocito T/inmunología , Péptidos/inmunología , Sustitución de Aminoácidos , Animales , Antígenos Virales/genética , Linfocitos T CD8-positivos/patología , Coronavirus/genética , Infecciones por Coronavirus/genética , Epítopos de Linfocito T/genética , Células HeLa , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Ratones , Mutación Missense , Péptidos/genética , Proteínas Virales/genética , Proteínas Virales/inmunología
14.
J Infect Dis ; 212(12): 1894-903, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26164863

RESUMEN

To gain entry into the target cell, Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) uses its spike (S) protein S2 subunit to fuse with the plasma or endosomal membrane. Previous work identified a peptide derived from the heptad repeat (HR) 2 domain in S2 subunit, HR2P, which potently blocked MERS-CoV S protein-mediated membrane fusion. Here, we tested an HR2P analogue with improved pharmaceutical property, HR2P-M2, for its inhibitory activity against MERS-CoV infection in vitro and in vivo. HR2P-M2 was highly effective in inhibiting MERS-CoV S protein-mediated cell-cell fusion and infection by pseudoviruses expressing MERS-CoV S protein with or without mutation in the HR1 region. It interacted with the HR1 peptide to form stable α-helical complex and blocked six-helix bundle formation between the HR1 and HR2 domains in the viral S protein. Intranasally administered HR2P-M2 effectively protected adenovirus serotype-5-human dipeptidyl peptidase 4-transduced mice from infection by MERS-CoV strains with or without mutations in the HR1 region of S protein, with >1000-fold reduction of viral titers in lung, and the protection was enhanced by combining HR2P-M2 with interferon ß. These results indicate that this combination regimen merits further development to prevent MERS in high-risk populations, including healthcare workers and patient family members, and to treat MERS-CoV-infected patients.


Asunto(s)
Antivirales/administración & dosificación , Infecciones por Coronavirus/prevención & control , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Péptidos/administración & dosificación , Internalización del Virus/efectos de los fármacos , Administración Intranasal , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Pulmón/virología , Ratones Endogámicos C57BL , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Carga Viral
15.
J Biol Chem ; 289(40): 27979-91, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25135637

RESUMEN

Cysteine-containing peptides represent an important class of T cell epitopes, yet their prevalence remains underestimated. We have established and interrogated a database of around 70,000 naturally processed MHC-bound peptides and demonstrate that cysteine-containing peptides are presented on the surface of cells in an MHC allomorph-dependent manner and comprise on average 5-10% of the immunopeptidome. A significant proportion of these peptides are oxidatively modified, most commonly through covalent linkage with the antioxidant glutathione. Unlike some of the previously reported cysteine-based modifications, this represents a true physiological alteration of cysteine residues. Furthermore, our results suggest that alterations in the cellular redox state induced by viral infection are communicated to the immune system through the presentation of S-glutathionylated viral peptides, resulting in altered T cell recognition. Our data provide a structural basis for how the glutathione modification alters recognition by virus-specific T cells. Collectively, these results suggest that oxidative stress represents a mechanism for modulating the virus-specific T cell response.


Asunto(s)
Presentación de Antígeno , Infecciones por Coronavirus/veterinaria , Epítopos de Linfocito T/metabolismo , Virus de la Hepatitis Murina/inmunología , Enfermedades de los Roedores/metabolismo , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/virología , Linfocitos T CD8-positivos/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Cisteína/metabolismo , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Femenino , Glutatión/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Virus de la Hepatitis Murina/genética , Oxidación-Reducción , Enfermedades de los Roedores/inmunología , Enfermedades de los Roedores/virología
16.
J Virol ; 88(19): 11034-44, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25056892

RESUMEN

UNLABELLED: Severe acute respiratory syndrome coronavirus (SARS-CoV) caused an acute human respiratory illness with high morbidity and mortality in 2002-2003. Several studies have demonstrated the role of neutralizing antibodies induced by the spike (S) glycoprotein in protecting susceptible hosts from lethal infection. However, the anti-SARS-CoV antibody response is short-lived in patients who have recovered from SARS, making it critical to develop additional vaccine strategies. SARS-CoV-specific memory CD8 T cells persisted for up to 6 years after SARS-CoV infection, a time at which memory B cells and antivirus antibodies were undetectable in individuals who had recovered from SARS. In this study, we assessed the ability of virus-specific memory CD8 T cells to mediate protection against infection in the absence of SARS-CoV-specific memory CD4 T or B cells. We demonstrate that memory CD8 T cells specific for a single immunodominant epitope (S436 or S525) substantially protected 8- to 10-month-old mice from lethal SARS-CoV infection. Intravenous immunization with peptide-loaded dendritic cells (DCs) followed by intranasal boosting with recombinant vaccinia virus (rVV) encoding S436 or S525 resulted in accumulation of virus-specific memory CD8 T cells in bronchoalveolar lavage fluid (BAL), lungs, and spleen. Upon challenge with a lethal dose of SARS-CoV, virus-specific memory CD8 T cells efficiently produced multiple effector cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin 2 [IL-2]) and cytolytic molecules (granzyme B) and reduced lung viral loads. Overall, our results show that SARS-CoV-specific memory CD8 T cells protect susceptible hosts from lethal SARS-CoV infection, but they also suggest that SARS-CoV-specific CD4 T cell and antibody responses are necessary for complete protection. IMPORTANCE: Virus-specific CD8 T cells are required for pathogen clearance following primary SARS-CoV infection. However, the role of SARS-CoV-specific memory CD8 T cells in mediating protection after SARS-CoV challenge has not been previously investigated. In this study, using a prime-boost immunization approach, we showed that virus-specific CD8 T cells protect susceptible 8- to 10-month-old mice from lethal SARS-CoV challenge. Thus, future vaccines against emerging coronaviruses should emphasize the generation of a memory CD8 T cell response for optimal protection.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Síndrome Respiratorio Agudo Grave/prevención & control , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Animales , Antígenos Virales/química , Antígenos Virales/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Células Dendríticas/inmunología , Células Dendríticas/trasplante , Células Dendríticas/virología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Femenino , Expresión Génica , Humanos , Inmunidad Activa , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Inmunización , Ratones , Péptidos/administración & dosificación , Péptidos/genética , Péptidos/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/mortalidad , Síndrome Respiratorio Agudo Grave/virología , Análisis de Supervivencia
17.
bioRxiv ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38826464

RESUMEN

RNA virus induced excessive inflammation and impaired antiviral interferon (IFN-I) responses are associated with severe disease. This innate immune response, also referred to as 'dysregulated immunity,' is caused by viral single-stranded RNA (ssRNA) and double-stranded-RNA (dsRNA) mediated exuberant inflammation and viral protein-induced IFN antagonism. However, key host factors and the underlying mechanism driving viral RNA-mediated dysregulated immunity are poorly defined. Here, using viral ssRNA and dsRNA mimics, which activate toll-like receptor 7 (TLR7) and TLR3, respectively, we evaluated the role of viral RNAs in causing dysregulated immunity. We show that murine bone marrow-derived macrophages (BMDMs) stimulated with TLR3 and TLR7 agonists induce differential inflammatory and antiviral cytokine response. TLR7 activation triggered a robust inflammatory cytokine/chemokine induction compared to TLR3 activation, whereas TLR3 stimulation induced significantly increased IFN/IFN stimulated gene (ISG) response relative to TLR7 activation. To define the mechanistic basis for dysregulated immunity, we examined cell-surface and endosomal TLR levels and downstream mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-kB) activation. We identified a significantly higher cell-surface and endosomal TLR7 expression compared to TLR3, which further correlated with early and robust MAPK (pERK1/2 and p-P38) and NF-kB activation in TLR7-stimulated macrophages. Furthermore, blocking EKR1/2, p38, and NF-kB activity reduced TLR3/7-induced inflammatory cytokine/chemokine levels, whereas only ERK1/2 inhibition enhanced viral RNA-mimic-induced IFN/ISG responses. Collectively, our results illustrate that high cell surface and endosomal TLR7 expression and robust ERK1/2 activation drive viral ssRNA mimic-induced excessive inflammatory and reduced IFN/ISG responses, and blocking ERK1/2 activity would mitigate viral-RNA/TLR-induced dysregulated immunity.

18.
Viruses ; 16(2)2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38400048

RESUMEN

The ongoing COVID-19 pandemic caused by SARS-CoV-2 is associated with acute respiratory distress syndrome (ARDS) and fatal pneumonia. Excessive inflammation caused by SARS-CoV-2 is the key driver of ARDS and lethal disease. Several FDA-approved drugs that suppress virus replication are in clinical use. However, despite strong evidence for the role of virus-induced inflammation in severe COVID-19, no effective anti-inflammatory drug is available to control fatal inflammation as well as efficiently clear the virus. Therefore, there is an urgent need to identify biologically derived immunomodulators that suppress inflammation and promote antiviral immunity. In this study, we evaluated acellular human amniotic fluid (acAF) containing extracellular vesicles (hAF-EVs) as a potential non-toxic and safe biologic for immunomodulation during COVID-19. Our in vitro results showed that acAF significantly reduced inflammatory cytokine production in TLR2/4/7 and SARS-CoV-2 structural protein-stimulated mouse macrophages. Importantly, an intraperitoneal administration of acAF reduced morbidity and mortality in SARS-CoV-2-infected mice. A detailed examination of SARS-CoV-2-infected lungs revealed that the increased protection in acAF-treated mice was associated with reduced viral titers and levels of inflammatory myeloid cell infiltration. Collectively, our results identify a novel biologic that has potential to suppress excessive inflammation and enhance survival following SARS-CoV-2 infection, highlighting the translational potential of acAF against COVID-19.


Asunto(s)
Productos Biológicos , COVID-19 , Vesículas Extracelulares , Síndrome de Dificultad Respiratoria , Humanos , Animales , Ratones , SARS-CoV-2 , Líquido Amniótico , Pandemias , Inflamación , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
19.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260573

RESUMEN

All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in nonstructural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the GIF (glycine-isoleucine-phenylalanine) motif. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus (MHV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that led to attenuated replication and pathogenesis in cell culture and mice. In contrast, the I-A mutations had normal enzyme activity and enhanced ADP-ribose binding. Despite increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication and pathogenesis.

20.
bioRxiv ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37577517

RESUMEN

SARS-CoV-2 patients have been reported to have high rates of secondary Klebsiella pneumoniae infections. Klebsiella pneumoniae is a commensal that is typically found in the respiratory and gastrointestinal tracts. However, it can cause severe disease when a person's immune system is compromised. Despite a high number of K. pneumoniae cases reported in SARS-CoV-2 patients, a co-infection animal model evaluating the pathogenesis is not available. We describe a mouse model to study disease pathogenesis of SARS-CoV-2 and K. pneumoniae co-infection. BALB/cJ mice were inoculated with mouse-adapted SARS-CoV-2 followed by a challenge with K. pneumoniae . Mice were monitored for body weight change, clinical signs, and survival during infection. The bacterial load, viral titers, immune cell accumulation and phenotype, and histopathology were evaluated in the lungs. The co-infected mice showed severe clinical disease and a higher mortality rate within 48 h of K. pneumoniae infection. The co-infected mice had significantly elevated bacterial load in the lungs, however, viral loads were similar between co-infected and single-infected mice. Histopathology of co-infected mice showed severe bronchointerstitial pneumonia with copious intralesional bacteria. Flow cytometry analysis showed significantly higher numbers of neutrophils and macrophages in the lungs. Collectively, our results demonstrated that co-infection of SARS-CoV-2 with K. pneumoniae causes severe disease with increased mortality in mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA